The Annals of Probability
1974, Vol. 2, No. 3, 464-475

ON QUASI-COMPACT MARKOV OPERATORS!

By MiCHAEL LIN
The Ohio State University, Columbus

Let P be a conservative Markov operator on Le(X, Z,m). The fol-
lowing conditions are proved to be equivalent: (i) P is ergodic and quasi-
compact. (ii) P is ergodic and (I — P)L is closed. (iii) For every ue L;
with S udm = 0 the sequence {3 Y_, uPr} is weakly sequentially compact
in L;. (iv) There exists an invariant probability measure 2 ~ m, and for
every ue L, with § udm = 0, supyzo [|Z¥_,uPr||1 < co. These conditions
are used to study the quasi-compactness of the induced operators Py =
To_o PTi—f)»PTy in the case that P is Harris-recurrent: The following
conditions are equivalent: (i) Py is quasi-compact. (ii) f is ‘‘special” in
the (modified) sense of Neveu. (iii) There exists a ¢-finite measure 2, e-
quivalent to mon A = {f > 0}, with { fd2 < oo, and { f9d2 = 0 implies
SUpNzo T o Pr(fg)|l < co. Using this characterization certain limit
theorems for P are obtained.

1. Introduction. Let (X, X, m) be a o-finite measure space and let P be a
positive linear contraction of L,(X, X, m), denoted by u — uP. The adjoint of
P, operating on L. (X, X, m), will be denoted by P and written to the left of its
variable so that (uP, f> = (u, Py = §uPfdmforue L and fe L,. Piscalled
a Markov operator.

P is called conservative if Pf < f for f e L,, implies Pf = f. It is conservative
and ergodic if Pf < f for fe L, implies that f is constant a.e. (all inequalities
are assumed a.e.).

A Harris operator is a conservative and ergodic Markov operator P such that
for some n > 0 there is a function k(x, y) = 0, measurable in (x, y), satisfying
PYf(x) = § k(x, y)f(y)m(dy) (and k == 0). A bounded linear operator T in a
Banach space is quasi-compact if ||T* — K|| < 1 for some n > 0 and some com-
pact linear operator K 0. Quasi-compactness of a transition probability oper-
ator is discussed in Neveu [14] Section V. 3. It is equivalent to Doeblin’s
condition, which is treated in Doob [5].

Horowitz [10] studied the quasi-compactness of an ergodic and conservative
Markov operator P and of certain induced Markov operators. Some additional
information on quasi-compact Markov operators is obtained in Section 2, while
Section 3 deals with the quasi-compactness of the induced operators

P, = Yo (PT,;)"T, (where T,g=fg,f" =1— f)

for 0 < f < 1, which is shown to be equivalent to f being “special” in the sense
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QUASI-COMPACT MARKOV OPERATORS 465

of Neveu [15], although in a somewhat different context. (Brunel and Revuz [2]
have obtained independently and announced this result in the exact context of [15].
Their remark about “changing time” seems to indicate a different proof). The
quasi-compactness of P, is given a characterization in terms of P, and is used
to obtain certain limit theorems for Harris operators (only for such Markov
operators special functions exist), yielding as corollaries some results of Chung
[4] about Markov chains.

2. Quasi-compact conservative Markov operators. In this section we obtain
some necessary and sufficient conditions for a conservative and ergodic Markov
operator to be quasi-compact.

By Theorems VI. 6.2 and VI. 6.4 of [6] we have that L,(/ — P) is closed if
and only if (I — P)L, is closed, and in that case (/ — P)L, = {fe L,: uP =
u = {u, Y = 0}. We now obtain a general result.

THEOREM 2.1. Let P be a conservative Markov operator. If (I — P)L,, is closed,
then P has a finite invariant measure equivalent to m, and N~ 3, ¥_, P"f converges in
L_-norm for every f € L.

Proor. By Theorem IV. E in [7], X = C, 4+ C, where on C, there is a finite
invariant measure A(~ m ), and every finite invariant measure vanishes on Cj.
If uP = u then u*P = u* and therefore {u, 1, > = 0. Hence —1, € (/ — P)L,,
so that for some f'e L, —1, = (I — P)f or Pf = f + 1,. Since P is conserva-
tive, m(C,) = 0 and there is a finite measure A ~ m, AP = 2. Hence f — Pfisa
contraction of L,(2), with the adjoint f — P*f also a contraction of L (2) and
L.(2). By the Radon-Nikodym theorem L,(1) ~ L(m), so we assume m = A.
Then P*u = uP = u if and only if u is X,-measurable, since P and P* have the
same invariant sets [7]. Denote by Ef = E,(f|Z;) the conditional expectation
projection, and PEf = Ef. For fe L, write f = Ef + f — Ef. Then E(f — Ef) =
0, and if P = u then u is X,-measurable and therefore (u,f— Ef) =0
and f — Efe (I — P)L,. Thus we have L, = (I — P)L,® L,(X, Z,, ) and
[|[N-? ¥4 PYf — Ef||.. — O for every fe L..

REMARKS. 1. If we assume only P1 = 1, we obtain (by restriction to the
conservative part) an invariant measure supported on the conservative part.

2. P need not be ergodic (P = I satisfies our conditions).

Theorem 2.1 yields the following improved version of Horowitz’ result [10].

THEOREM 2.2. Let P be conservative and ergodic. Then the following conditions
are equivalent:

(i) (I — P)L, is closed (in L-norm);
(ii) L,(I — P) is closed (in L,-norm);
(iii) P is quasi-compact.
REMARK. Without restricting the size of the invariant field X; the theorem is
not true. Instead of “ergodic” we put “X, finite” (and apply the theorem to
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each of its atoms). Since if P is quasicompact N=* 3}¥_, P converges to a finite
dimensional projection ([6] pages 709-711), Z, must be finite if (iii) holds.

THEOREM 2.3. Let P be conservative. Then the following conditions are
equivalent:.

(i) For every ue L, with § udm = 0 the sequence {},3_, uP"} is weakly sequen-
tially compact in L,.
(ii) There exists an invariant probability measure A ~ m, and for every ue L,
with § udm = 0 we have sup,., ||215_, uP"||; < oo.
(iii) P is quasi-compact and ergodic.

ProoF. (i) = (ii): Fixue L, with § udm = 0. Clearly sup,.,||232_ #P"||, =
K < oo, and we have to show the existence of a finite invariant measure. Define
v, = Yzt uP'. Then v,(I — P) = u — uP". It follows easily from Theorem
IV. 8.9, in [6] that also the sequence of averages w, = 3 7_, v,/N is weakly
sequentially compact. If v is a weak limit of {w,}, say wy,—, v, then for
felL,
(I — P), [y = (v, (I = P)f) = lim (wy (I — P), f)
= lim (u — N, 215, uP~, > = (u, f)

and »(I — P) = u. By (i) P is ergodic (If 1 P1, =1, # 0, we take , = 0
supported in 4 and u, > 0 supported in X — A with §u, = and u = u, — u,
will satisfy § udm = 0, but 3%, (uP", 1,5 = Nu,, 1,) — co-a contradiction),
so that

{ueL;: Yudm =0} C L(I — P) C cimL(I — P) = {uelL,: §udm = 0}

and L(I — P) is closed. Now Theorem 2.1 yields the existence of a finite
invariant measure.

(ii) = (ili): We want to show first that if ge L, satisfies § gd2 =0, then
SUPy20 || 4 P"g||l. < oo. Denote gy = 313, P*g. For ve L, define u =v —
(§ vdm)u,, where u, = di/dm. Then §udm =0, and by our assumption
sup || D, uP||, = K, < co. But

(vP, gy = (uP*, 9> + §v dmluy, gy = (uP", g5, yielding
<0, gup| = | 08 COP™, 9)| = | Z 0 (uP, 93] = K ||9le -

By the Banach-Steinhaus theorem supy [|gy|. < 0.

Now for B ¢ £ with A(B) > Odefine g = A(B)l — 1;. Then || X1, P"Y|l. = K
for N=0,1, ... If R> (K + 1)/A(B), then %, P*l, = A(B) 1%, P*l —
K = 1. By Horowitz [10] this condition implies that P is quasi-compact. (P is
ergodic, as proved before).

(iii) = (i): By Theorem 2.2, L(I — P) is closed. Thus, L(/ — P) = {ue
L,: Yudm = 0}. Hence {udm =0=u = v(I — P)and B N_ uP* = v — vP¥*,
Since P is necessarily Harris, it has a period k, and necessarily ppre+d
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converges weakly as n — oo, for fixed 0 < d < k (see [7] page 91. In fact, L,-
norm convergence holds). Thus {vP"} is weakly sequentially-compact.

COROLLARY 2.1. Let P be conservative. Then P is quasi-compact aperiodic if
and only if for every u e L, with { udm = 0 we have },7_, |[uP"|]|, < co.

PrOOF. Assume that Pis quasi-compactaperiodic. Then, in L, ||P"—E||—0,
where Ef = § fdA (see Neveu [14]. 1 is the invariant probability). But 4E =
(§ wdm)uy(u, = di/dm), so that || P* — E|| — 0 as L, operators, and || P" — E|| < Kr"
with 0 < r < 1. Hence, if § udm = 0, |[uP"|| < Kr*||u||, and 33, [|[uP"||, < oo.

For the converse, note that P is quasi-compact by Theorem 2.3, since (i) is
clearly satisfied. };»_, ||uP"||, < oo implies ||uP"||, — O whenever §udm = 0,
hence all the iterates P* are ergodic.

CoROLLARY 2.2. If P is conservative, quasi-compact and aperiodic, then for every
ue L, we have lim,_,, uP"(x) = (§ u dm)u,, (where u,P = u, and § uydm = 1).

PROOF. 32, |uP"|(x)converges a.e. for ue L, with { udm = 0. If ve L, put
u = v — (yvdm)u, and uP*(x) — 0 a.e.

ReMARk. If Pis quasi-compact, P* may fail to be quasi-compact. Take on
X=1{0,1,2,...} Py=4%, P,,,, =%, P,; = Ootherwise. Then }}it{ P*1 (i) =
2-4-1 for every i and P is quasi-compact, with invariant measure {i} = 2-'~*
fori = 0. P*isgiven by Pf; = 279-', P¥, , = 1for i = 1, P}; = 0 otherwise,
and is not quasi-compact.

3. Application to Harris operators. In this section we obtain some results
for Harris operators (for their properties see Foguel [7]), using the quasi-com-
pactness of certain induced Markov operators.

We start by generalizing a result of Butzer and Westphal [3] to nonreflexive
spaces (with a shorter proof).

THEOREM 3.1. Let T be a linear operator on a Banach space Y satisfying
SUP,z0 ||T"|| = K< co, and let X = Y*. Then for x € X, supy, || 0= T*"x|| < o0
if and only if x e (I* — T*)X.

Proor. Let x € X satisfy sup,., [|214., T*"x|| = ¢ < co. Then

[N 0= T*"x|| - 0.
Let u, = };7- T*'x and let z € X be a weak-* limit point of v, = N~! 3.V, u,.
For y e Y there is a sequence N; such that (z, (I — T)y) = lim (vy, (/ — T)y).
But _
(= T4z, y) = (2, (I = T)y) = lim {(I = T*)vy ;5 y)
= lim {x — N,/ 704, T*"x, y> = {x, y) .
Thus x = (I* — T*) ze (I* — T*)X. The converse is obvious.

CorOLLARY 3.1. [3). Let X be a reflexive Banach space and T a linear operator
with sup,;, ||T"|]| < co. Then x € X satisfies supy || V., T"x|| < oo if and only
xe(l — T)X.
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In the remainder of this section P is a conservative and ergodic Markov
operator. Let 0 < f < I be in L, with f % 0, denote f" =1 — fand let T, be
the operator of multiplication by f. If f = 1, we put /, instead of T,.

LemMA 3.1. (i) The operator P, = 3.7 (PT;)"PT, is a Markov operator with
P/l =1.

(i) Ty P(T, — T,P) = (I — P")P,.

(iii) The conservative part of P, is A = {x: f(x) > 0} and I, P, is conservative
and ergodic.

(iv) If P, has a finite invariant measure p, then P has a o-finite invariant measure
Aand § fdi < co.

(V) If 2 ~ m is a o-finite invariant measure for P with § fdA < co, then p =
AT, is a finite invariant measure for P,.

Proor. Except for (iii), the lemma is proved in [8]. Clearly L(X)P, C L,(4),
so that X — 4 must be in the dissipative part of P,, and since L,(A4)P; =
L(A)I, P, C L(A), we have to show that I, P, is conservative (and ergodic).

Let0<ge L (A)satisfy I, P,g<g. Then0<T,9—T,1,P,9=(T;—T;Pf)g
and by (ii) 0 < (T, — T,P;)g = (I — P)P,g. Since P is conservative and
ergodic, we have P,g = ¢ (a constant) a.e. Hence g > I, P,g = cl,, and

f9—c¢f=0=c—cP,l =c—cP;1,=Py9—cl,)
= PT(9 — cl,) = P(fg — cf).

Thus P(fg — ¢f) = 0 = (f9g — ¢f)and g = con A. Therefore I, P, is ergodic
and conservative.

ReMARk. For the case f = 1, the lemma is well known.
We now investigate the quasi-compactness of I, P,. It is equivalent to the
quasi-compactness of P;, because P," = P,(I,P;)"".

THEOREM 3.2. Let P be conservative and ergodic andlet 0 < f < 1, with support
A = {x: f(x) > 0}. Then the following conditions are equivalent:

(i) The operator I, P, = 1, 3 7, (PT,)"PT; is quasi-compact (on L(A)).

(ii) There exists a o-finite measure 2, (Al, ~ ml,) with § fdA < oo, such that
for every g € L (A) with § gf dA = 0 we have sup,., || 237-, P"(f9)]]|. < oco.

Proor. (i) = (ii): I, P, is conservative, ergodic and quasi-compact, so it has
a finite invariant measure p, by Theoréms 2.1 and 2.2. Thus P has a o-finite
invariant measure 2 (see [8]), with § fdA < oo, and g = AT,. Thus0 = § fgdi =
§gdp. By [10) ge (I, — I,P;)L(A) ie., g = (I, — I,P;)h with heL_.(A).
Then by Lemma 3.1 P(fg) = P(T; — T;P;)h = (I — P)P,h. This shows that
f9 = (' = PY(P,h — fg) and ||, PX(f9)l. < 2I|P,h — fol . for every N = 0.

(ii) = (i). Take ge L.(A) with §fgdi = 0. By (ii) and Theorem 3.1 there
is an ke L (X) satisfying (I — P)h = fg. Now (I, — I, 217 (PT;)"PT;)P =
I,P — I, 2, (PT,)"P* + 1, i, (PT,)"PT, P = I, By (PT,)"P(I — P) +
1,(PT;)¥*'P. But (I — P)h = fg, and (PT;)"l — 0 by Lemma 2.1 of [8], so
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that (I, — I, P)I,Ph = (I, — I, P,)Ph = lim,__ I, Y%, (PT,)"P(I — P)h +
limy_, I,(PT,)"*'Ph = lim, I, > ¥_ (PT,)*P(f9) = I,P;g9. Thus I,P,g =
(I,—1,P)I,Phand (I,—1I,P,)(I,Ph+9)=1,9=g. Since{ge L.(A4): §f9di=0}
is a closed subspace of L.(4), (I, —I,P;)L(A) has closed range, and by
Theorem 2.2 I, P, is quasi-compact, being conservative and ergodic by Lemma
3.1.

REMARKS. 1. (i) = (ii). For the case f = 1, was similarly proved first by
Brunel [1] (using one of the equivalent conditions of quasi-compactness).

2. Horowitz [10] showed only that if (ii) holds for f = 1,, then for certain
subsets B of A, I P, is quasi-compact.

3. Following the method in [10] it can be shown that if f is “small” in the
sense of Ornstein and Sucheston [17] (and 0 < f < 1), then I, P, is quasi-
compact.

4. Let f satsify (ii) in the theorem. If E = {x: f(x) = a}, then A(E) < oo,
and A(E) > 0 for a small enough. For B C E define (on E) g = f~'(1; —
A(B)JA(E)1;). Then geL.,(A) and §fgdi = 0. Thus sup,,,|| 235, P*(1; —
A(B)]A(E)1)|].. < oo for B C E and by Horowitz [10] P is Harris. (By Theorem
3.2 I, P, is quasi-compact). Thus Theorem 3.2 implicitly assumes that P is
Harris.

DEFINITION. Let P be a conservative and ergodic Markov operator. A
function 0 < f is called special if for every 0 < A < 1in L, k = 0, we have
S o (PT,)"PfeL,. If 1, is special then A4 is a special set.

Special functions were introduced in Neveu’s remarkable paper [15], while
special sets were treated by Brunel [1], who proved that A is special if and only
if L(I, — I,P,)) is closed (I,P,, is quasi-compact). We extend this result to
special functions, with a different proof, once we assume that P is Harris.
Brunel’s result is needed, however, to establish the fact that special functions
exist only for Harris operators, which is done in the next lemma.

LeMMA 3.2. Let P be ergodic and conservative.

(i) If there exists a special function f == 0, then P is Harris.
(ii) If P is Harris, with o-finite invariant measure A, then § f dA < oo for every
special function f.

Proor. (i) Let f = 0 be special. Then Pf is bounded, and Pf = 0. For
h = 0with0 < 7 <1 we have
Zweo (PTo)"P(Ef) = 250 (PTw)"PTy Bf + 220, (PT)"PTLEf
S Do (PT)Ef + |Ifll a1
Thus Pf = 0 is special and bounded. Clearly 4 = {x: Pf(x) = a} is a special

set. By Brunel [1] /, P,, is quasi-compact and thus P is Harris by Horowitz
[10].
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(i) Let 0 < & < 1 satisfy § £ d2 < co. Then

WAl 25 (PTo ) Bf |l = § k- X230 (PT,)"Pf d2
= §f Do (P*T, )" P*T, 1 d2 = § fdA.

(Lemma 3.1 is applied to the adjoint process P*).
Some of Neveu’s results [15] concerning special functions are collected in the
following proposition.

PROPOSITION 3.1. Let P be a Harris operator.

(i) There exists a function 0 < he L, with 0 < h <1 a.e. and a measure
my ~ m, such that 3,7, (PT,)"P1, = myA) a.e. for every AeZ.
(ii) A function f > 0 is special if and only if (for the function h in (i))
Sz (PTL)Pf € L.
(iii) If § gdA = 0 and |g| € L, is special, then g € (I — P)L,,.

REMARK. Neveu’s results are obtained for the operators on the space B(X, X)
of bounded measurable functions, induced by transition probabilities, with the
probabilistic Harris condition: if m(A4) > 0 then > %, (PI,)"Pl,(x) =1 for
every x, and with the assumption of separability of X. It does not seem that
Doob’s method of admissible sub-g-algebras ([5] page 209) can be used to obtain
the proof in the general case. We therefore give the reduction of Proposition
3.1 to Neveu’s results.

Proor. We may and do assume m(X) = 1. Let X’ be the compact Hausdorff
space such that C(X) is isometrically isomorphic to L(X, Z, m), and it is known
that order will also be preserved (see Horowitz [10], whose results we are now
using). P is then represented by an operator P’ on C(X’) which is induced by a
transition probability P'(x’, 4), x' € X, 4 € ¥’ = Baire g-algebra of X’, and m is
represented by a measure m’ on (X', ¥'), such that L. (x, Z, m)and L (x', Z’, m’)
are isometrically and order-preserving isomorphic, and pointwise convergence
is also preserved under this isomorphism.

Since Pis Harris, by Theorem 3.2 of [10] there exists a set N ¢ X’ with m'(N) = 0
such that if m’(4) > 0 then Y v_, (P'1,)"P'1 ,(x') = 1 for x’ ¢ N. From theorem
6 of Moy [13] it follows that P’ is a Harris operator on (X', X', m’) (separability
is not necessary to obtain the existence of a kernel). Let ¢,’(x’, ') be the maxi-
mal kernel of P'”, with corresponding integral operator Q,’. Then R, = P —
Q,’ is given by a transitive probability, and for a.e. x' R,/(x’, +) is singular with
respect to m’ [7].

Define the measures U,(x'4) = ¥, (1 — 6)"'P"*(x’, A) on (X', X’). Then

Uy(X', A) = Zooi (1 — 0)"71Q,/(x', A) + Yipi (1 — 0) 'R,/ (X5 A) .
Also R,/(x', X'y — 0 m’-a.e. which shows that Q,'(x/, Xy — 1 a.e. and if
Po(¥y) = i (1 = 0) ¢,/ (¥, ),
then for a.e. X', p,(x’, y') > 0 m’-a.e.
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Let N, = {x': m'{y’: py(x', y') = 0} > 0}, and let N, = N, U N. Define N, =
{x': S5, P"(x', N}) > 0}. Since m'(N,) = m'(N) = 0, also m'(N,) = m'(N,) = 0
(P’ is a Markov operator on L (X', X/, m')). LetE = X’ — N,. Then m'(E) =1
and also P'(y’, E) = 1 for y’ e E. On (E, X' n E) we have a transition proba-
bility P satisfying the Harris condition and also Y7, (1 — 6)""P""(x’, A) =
§.4 po(x', y)ym'(dy’) for every x'eE, with p,(x’,y’) >0 on E x E. These are
exactly the conditions in [15] to obtain all the results stated in Proposition 3.1
(with equalities everywhere). Going back to P’ on (X', ') we have that Pro-
position 3.1 is true for P’ on L (X', X', m') and therefore for P on L (X, Z, m).

THEOREM 3.3. Let P be an ergodic and conservative Markoyv operator with o-finite
invariant measure A ~ m. Let 0 < f < 1 have support A = {x: f(x) > 0}. Then
[ is special if and only if 1, P, is quasi-compact.

Proor. If A(4) = 0 both conditions are trivailly satisfied, so we assume
A(A4) > 0.

Let I, P, be quasi-compact. Without loss of generality we may assume
{fdi=1,byLemma3.1. Let0 </ < land0 = he L, (X). Theng = hl, —
(§ Af d2)1, e L (A)and § gf dA = 0. By Theorem 3.2 there exists an 4, € L,, with
(I, — 1,P;)h, = g (since dy = fd2 is the invariant measure of I, P;). Thus
PT,g = P(T; — T;P;)h, = (I — P)P;h, by Lemma 3.1 and

W — (S hfd0)f = fg = T;9 = (I — P)(Pshy + f9)
= —T,P— T, P)(P;h + f9).
Denote k, = P;h, + fg. Then (§ Af dA)f = T,(f + Ph,) + T, Phy — h,.
§ hfda 3o, (PT,)"Pf = P,(f + Phy) + lim,_, (PT,.)"Ph, — Ph,.
Since (PT,.)"1 | 0 a.e. we have that if § Afd4 = 0, then Y7, (PT,)"Pf € L.
Take 0 < £ < 1 which is defined in the proposition, and by (ii) of that pro-
position f is special.

For the converse, assume 0 < f < 1 special. The invariant measure 4 satisfies

§fd2 < oco. Let ge L,(A) satisfy § gf d4 = 0. Then |gf| is special, and by part

(iii) of Proposition 3.1 gf € (I— P)L,,. Thussup,.,||2;7-o P"(f9)||. By Theorem
3.2 I, P, is quasi-compact.

CoROLLARY 3.2. Let0 < f < 1. If there exists a measure m, with myl, ~ ml,
such that for every 0 < g € L. (A) we have Y7, (PT;)"Pg = § g dm, then f is special.
Proor. For 0 < he L. (A4) we have
I,Ph =1, %5 ,(PT)"P(fh)y = I, § fhdm, = cl,(c > 0, if k= 0)
and by Horowitz [10] I, P, is quasi-compact, and by Theorem 3.3, f if special.

REMARKS. 1. Neveu’s Corollary 4.8 [15] is the particular case when 4 = X.

2. If 0 < f is special with ||f]|. < 1, then an m, as in the corollary must
exist [15]. '
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THEOREM 3.4. Let P bea Harris process. Then for every two probability measures
u, v & A and for every two bounded special functions f and g, we have

limy, o, 330 (P [0 o (uP™, gy = § fdA]§ fdA.
(f> 9 € Ly(2) by Lemma 3.2).

Proor. Define & = f — (§ fd2/§ gdA)g. Then h is a special function with
§{hdi=0. By Proposition 3.1 he (I — P)L,. Thus for every probability
measure ¢ £ 4,

SUPyzo | an=o KPP, ) — (§ fd2[§ g dA) 300 P, )]
= supy || 2h= PA]. < oo .

Thus 0, (uP", Y28 o {uP*, g — \ fdA/§ gdi. By Lin [11] there exists a
special set A such that }7_, uP"(A)/3;7_o vP"(A) — 1. The theorem follows by
applying our result first to ¢, fand 1, and then to v, 1, and g.

REMARK. When P is given by a transition probability with the Harris con-
dition, the theorem was proved (probabilistically) by Metivier [12]. However,
using the previously known ratio limit theorem his result can be obtained as
in our proof. (Note that his proof is based on Neveu’s work [15], so separa-
bility of (X, };) was implicitly assumed.)

CorOLLARY 3.3. Let P be Harris, with o-finite invariant measure 2. Then there

exists a probability measure p ~ A, such that A(A) < oo if and only if for every
B C Ay Y¥g pP(B)/ 5o P*(A) converges.

Proor. Since P is Harris, so is P* (see [7]). By Proposition 3.1 there exists
a bounded function # > 0 a.e. which is special for P*. Let dp/d2 = h (we may
and do assume § #dA = 1). Then if A(4) < oo, we have for B C A that

lim, ., 2202, pP"(B)[ 2000 #P"(A)
= limy_., 2300 {1, P¥*h)[ 3000 (14, P¥*h) = A(B)[A(A)

by applying the previous theorem to P*.
For the converse, it can be proved that

W(B) = limy_o, 3100 pP"(B)] 200 11P"(A)

(which is a measure by the Vitali-Hahn-Saks theorem) is invariant for 7, P,
(similar to the proof in [9]).

REMARK. In [8] it is indicated that not every p ~ 2 will necessarily satisfy
the conclusion of the corollary (when A(X) = o). )

The remainder of this section deals with some results which use the special
functions.

THEOREM 3.5. Let P be Harris with invariant measure 2, and let f ¢ L,, satisfy
§fdi = 0 and |f| special.
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(i) If AX) = 1 and P has period d, then lim,_, > ¥t P*f(x) exists a.e., for
fixed 0 < r < d.

(i) If A(x) = oo, then for every wveL(m) with Yvdm =0 the limit
lim,_, 35, <v, P*f) exists.

Proor. (i) By Proposition 3.1 f=(/— P)g for some g € L., hence > ¥4 P"f=
g — PY¥¥+rg. Since g € L., we have that PY¢+rg converges a.e. [7].

(i) Againf = (I — P)gand ||23_, Pf||. < 2||9]||. for every N. Fix v e L,(m)
with { vdm = 0. Let N, be a sub-sequence such that };¥i, (v, P"f) converges.
Define a linear functional on L,(m) by a Banach limit (and represent it by
heL,): <u, by = LIM{X ¥, (u, P"f>}. Then

Cu, (I = PYiy = (I — P), by = LIM {35, Cu(l — P), Pf)
= LIM{Ku, f) — Cu, PYf3} = Cu, f)
Since P*f(x) — 0 a.e. (by [7] we have P"1 ,(x) — 0 a.e. when A(4) < co. But
|f] €L, N Ly(A)so that for every e > 0, 4 = {x: |f|(x) = ¢} has finite 2 measure,
and P"|f| < ¢ + ||f||l.P"1, — ¢. Hence |[P"f| < P*|f]| — 0 a.e.).
Thus (I — P)h = fand h = g + const. Since { vdm = 0, we have

limyy, %35, v, P'f) = (v, By = <v, g},
so that the limit does not depend on {N,}, and the convergence is proved.

COROLLARY 3.4. Let P be Harris, and A(X) = oco. Let fe L, with |f| special
satisfy § fdA = 0. Then Y N_) P*f(x) converges a.e. if and only if for some 0 <
u e L(m) (with § udm > 0) 33, (u, P"f) converges.

ProoOF. (i) Assume 37, P*f(x) converges a.e. Since |3V, P*f(x)||. < K
for every N, we can apply the bounded convergence theorem.

(if) Assume Y ¥_, (uP", > converges for some u € L,, { udm =+ 0. Then from
the theorem we have that 3;7_, (uP", f> converges for every u e L,(m). The fact
that 37, P"f(x) is a Cauchy sequence a.e. can now be proved using the
(standard) technique of ([11] page 364).

CoROLLARY 3.5. Let {p{}’} be the n-step transition probabilities of an irreducible
chain.

(i) If the chain is positive-recurrent with period d, and invariant probability {2},
then for every four points i, j, k, t the limit lim,_, > ¥ {2, p» — 2, piw'} exists
0= r<ad).

(ii) If the chain is null-recurrent with invariant measure {2;} then for every four
points i, j, k, t the sequence Y N_ {2, (p» — pi¥) — A;(p’ — piw)} converges.

Proor. The operator P induced by p{ is Harris, and so is P*, and finite sets
are special. (i) follows from applying Theorem 3.5 both to P and P* (which
have the same period). (ii) follows from Theorem 3.5.

REMARKS. 1. (i) is proved by Orey [16] using generating functions (even abso-
lute convergence is shown). See also Chung ([4] pages 66-69).
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2. (ii) is proved by Chung ([4] page 69) only with r = j and with certain
restrictions, but there the limit is also identified. Orey [16] shows that even
for a chain the conditions of Corollary 3.4 may not be satisfied.

THEOREM 3.6. Let P be conservative and ergodic with invariant probability measure
A. If the space{V € Ba(X, Z, m): {V, Pf) =KV, f) for f e L.} of finitely additive
invariant measures (charges) is separable, then P is Harris.

Proor. Given a pure charge ¥V, we can find sets 4, with V(4,) = 0 and
A(A) > 1 — e, for every ¢ > 0 (see [7]). If V, is a dense sequence in the space
of invariant charges, then V, = a;2 + V,; with V,, a pure charge. Find 4, such

that V(4,) =0 and A(4,) =1 — 2%, Let 4 = N2, 4,. Then 2(4A) =1 —¢
and ¥V, (A4) = 0 for every i. For B C A we put f = 1, — (A(B)/]A(A))1,. Then
Vi(f) = 0 for every i and therefore V(f) = O for every Ve Ba(X, Z, m) with
VP = V. Thus ||[N-! 35} P*f||.. — O (by the Hahn-Banach theorem). By the
ergodic theorem N—* Z;V:ol P*1 ,(x) — A(A) a.e. and by Egorov’s theorem there is
a set 4, C A such that this convergence is uniform. Let B C 4, C A. Forxe A4,
we have N=! 31 0-4 P11 p(x) = (A(B)JA(A))N-* V-2 Pl ,(x)—8 = A(B)(1 —d)—d if
N = Ny(0). If 6 is small enough, ¢ = A(B)(1 — d) — d > 0 and Y7} P"l, =

cl, for B C A4,. By Horowitz [10] (/,, P, is quasi-compact and) P is Harris.
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