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ON LEBESGUE-LIKE EXTENSIONS OF FINITELY
ADDITIVE MEASURES!

By LesTER E. DUBINS
University of California, Berkeley, California

Dedicated, with a deep sense of loss and wonder, to the memory of a searching,
pioneering, open, totally honest, generous, courageous, controversial man, a
gaod friend, my friend, my teacher, my colleague, Leonard Jimmie Savage.

Those measures that can be extended in the spirit of Lebesgue to all
open subsets of some topological spaces include not only the usual count-
ably additive measures, but also a large class of purely finitely additive
measures that have arisen naturally in the theory of finitely additive
stochastic processes.

0. Introduction. Let F,, F,, - .- be a countable number of discrete topological
spaces and let H be their Cartesian product in the usual Cartesian-product to-
pology. An open subset of H whose complement is also open is finitary, and a
finitely additive probability measure defined on the field of finitary subsets of H
is finitary.

To illustrate, if each F; is a finite set, then H is compact, and a subset of H
is finitary if, and only if, it is a finite dimensional cylinder set, which helps
explain the terminology.

Finitary probability measures for compact H will be called elementary. As is
easily verified, every elementary probability measure is countably additive on
the field of finitary subsets of H. Hence they can be, and usually are, extended
so as to be countably additive on the Baire subsets of H. What are the advantages
of this extension over the elementary finitary measure? over other possible finitely
additive extensions? and does the possibility of this extension really require that
the finitary measure be countably additive?

For a moment, specialize still further, and let each F; consist of two points 0
and 1, and let ¢ be a fair coin, that is, a probability measure on the finitary
subsets of H that assigns to each sequence f;, - - -, f, (or rather to the finite di-
mensional cylinder set determined by f,, - - -, f,) a probability that depends only
on n (and hence is 2-"). Let S, be f; + --- + f,. The usual law of large num-
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bers is:
@) The event E that S,/n converges to 4 has probability 1.

As is easily seen, E is not a finitary event, and (L) is not valid for every finitely
additive extension of a fair coin ¢. Indeed, for each p, 0 < p < 1, there is an
extension that assigns E probability p. As is very well known, among the ex-
tensions of ¢ for which (L) is valid is the countably additive extension 4 of o.
Since the A-probability of events such as E are determined by the o-probability
of the (denumerable number of) finitary events, (L) should be translatable into
an assertion about the o-probabilities of finitary events. Indeed, for 2, (L) is
equivalent to

@) For every ¢ > 0, there is an integer N such that, for each positive
integer k ,
0) Prob[EIn:ngn§N+k, and %‘—%>e}<e.

For a moment, call any extension of the fair coin ¢, a Fair coin. As (L') does
not depend on the probabilities of any events other than finitary ones, it is uni-
versally valid, that s, it is valid for a// Fair coins, and not merely for the countably
additive Fair coin 2, as was brought home to me by Bruno de Finetti through
L. J. Savage. Moreover, the validity of (L’) is not impaired even if one does
not share the unconfirmable belief that, for a real-world coin, S, /n must converge
to a limit. Furthermore, (L') is finitistic and useful, especially if N = N(e) is
given constructively, as it surely can be. Finally, (L’) is suggestive of further
research, e.g. what is the best N(e)? or which is a good, simple N(e)?

To me, it is noteworthy that those who search for probabilistic limit laws that
are general, that is, that are not restricted to countably additive, measurable
situations, are led to formulations such as (L) which are of the same nature as
those to which constructionists are led [2].

What has just been illustrated by the example of the law of large numbers
seems to hold for most, if not all, the usual limit laws, and for the same reasons.
Thus, for the most important purposes of probability, there seems to be no im-
portant need to extend finitary probabilities beyond the field of finitary sets.
Yet there may be some justification in doing so. For, countably additive formula-
tions such as (L) have one advantage over their universally valid counterpart
(L). They seem to be linguistically simpler. There may therefore be some in-
terest in seeing whether other finitary probabilities, (including those that are not
countably additive) do not have, among their extensions, a special one, that in
the particular case of countably additive probabilities, reduces to the usual count-
ably additive extension.

Among the finitary probability measures there are some that are easier to work
with. If ¢, is a probability measure defined on (all) subsets of F, and, for each
partial history p = (f}, - -+, f.), o(p) is a probability measure defined on all
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subsets of F,,,, then g,, together with ¢(+) determine a finitary probability meas-
ure under which f, is distributed according to g,, and ¢(p) is the conditional
distribution of f,,, given p. This measure is also designated by ¢, and is called
a strategic measure.

2. Genesis of this paper. I quote from unpublished notes, dated September
3, 1962, written jointly with L. J. Savage.

“We suspect that (strategic measures) ¢ can be so extended that usual limit
theorems, such as the martingale limit theorem, become literally true for stra-
tegies, that is, there may be a limit function to which the martingale converges.
As a step in this direction, we have fairly well convinced ourselves that the inner
measure of open sets leads to a consistent extension of the integral to finite linear
combinations of the indicator functions of open sets. The fact behind this seems
to be that in the present case, a closed-open set contained in the union of two
open sets is the union of two closed-open sets, one contained in each of the open
sets. We suspect that there may be a recapitulation of the Baire theory of func-
tions and, in particular, that the limit function of some, or possibly all, uniformly
bounded functions of the past will be integrable with respect to ¢, with integra-
tion interchangeable with the taking of limits.”

Much of the conjecture quoted above has already been verified. Namely, if
the Lebesgue extension A of a finitary probability measure ¢ is defined as the
restriction of the inner measure of ¢ to the open-subsets-of H, 2 is indeed addi- -
tive and can be extended in one, and only one, way to be a probability measure
A’ on the smallest field of sets that includes the open sets, as will be shown below.
Of course, 2, like any probability measure, can be completed by extending 2’
to all those sets whose inner and outer A’-measures are equal. One strong, though
not the only, way in which the quoted conjecture might come to pass is for all
Baire subsets of H to be in the completion of A’, which is known to be the case
if each F, is a finite set. Recently, Roger Purves and William Sudderth have
taken the important and difficult step forward of showing that, for strategic
measures, every G, is in this completion. Their success motivated me to develop
the aforementioned joint notes with Jimmie Savage and offer this paper.

What is presented below is in somewhat greater generality than what is neces-
sary for the particular application which is the focus of attention above.

3. An abstract Lebesgue-like extension theorem. This section gives a neces-
sary and sufficient condition on a pair of lattices L and L’ of subsets, including
the emply subset, of a set Q so that, for every finitely additive measure ¢ on L,
the restriction to L’ of the inner measure of ¢ is a measure on L'.

Since every distributive lattice is isomorphic to a lattice of sets ([1] page 140),
the material of this section can plainly be carried over to that more general setting.

In this section:

(i) R is the real line, or, more generally, a real-like group, that is, a partially
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ordered, commutative group in which each set bounded from above has a least
upper bound;

(i) Q is a nonempty set;

(iii) A lattice is a collection of subsets of Q that contains the set-theoretic
union and intersection of each two of its members.

(iv) L and L' are lattices that contain the empty set 0.

(V) An R-measure or, more briefly, a measure, on a lattice L is a function ¢
defined on L with values in R which satisfies these three conditions

(1) 0(A) + o(B) = 6(A U B) + a(An B);
) A cC B implies o(A4) < o(B);
and

3) a(0) =0, and, forsome xeR, g(d) < x forall 4.

(vi) The inner measure of ¢ is, as usual, that function ¢, defined for all subsets
E of Q, thus

4) o4(E) =sup[o(d): ASE, AcL].

(The assumptions (iv) that L contain the empty set and (3), that ¢ be bounded
and vanish on the empty set, were made only so as to avoid unimportant com-
plications in the definition of g,.)

If L c L', there are usually many ways to extend a measure ¢ so as to be a
measure 4 on L’. For each such 4, 1 = g, on L’, as is evident. If o, restricted
to L’ is a measure, then it is the least such 4. Thus arises an interest in deter-
mining the circumstances under which ¢, is itself a measure on L’. Plainly, o,
is isotone, that is, satisfies (2), and is bounded, that is, satisfies (3), even with the
same upper bound x as does o.

Say that (L, L’) has the Lebesgue-extension property if, for every measure ¢
defined on L, the restriction of ¢, to L’ is a measure on L',

If, for every K, A,, A, with Ke L, A,eL’,i=1,2, and K C 4, U 4,, there
exist K;e L, i = 1,2 such that K; C 4, and K = K, U K,, then (L, L') has the
allocation property.

THEOREM 1. A necessary and sufficient condition for a pair of lattices (L, L) that
contains the empty set to have the Lebesgue'extension property is that it have the
allocation property.

PRroOF oF THEOREM. Suppose (L, L) has the allocation property. Let ¢ be a
measure defined on L, and let 4 be the restriction of ¢, to L’. Plainly, 4 is isotone,
that is, 4 satisfies (2) on L’, and 2 is bounded from above, that is, 4 satisfies 3)
on L’. What must be seen is that 1 is a valuation, that is, that it satisfies (1) on
L.

Let A and B be in L’. To see that

(5) HA U B) + A0 B) S (A) + A(B),
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it plainly suffices to show:

(6) o(K) + a(J) =< 4(A) + A(B)
for all K and J in L such that
@) KcAuB and JcAnB

Since (L, L’) has the allocation property, there are elements K, and K, of L
whose union is K U J for which K;  Aand K, C B. By replacing K; by K, U J,
it may be assumed that J ¢ K, n K,. Therefore,

o(K) + a(J) £ o(K U J) + a(J)
(®) < a(K, U K;) + o(K, N K)
= o(K) + o(Ky)
< A(4) + A(B).
where the penultimate inequality holds because of the assumption that ¢ is a
valuation. To show that

©) HA U B) + (AN B) = AA) + A(B),
it suffices to see that
(10) A(A U B) + A(An B) = o(K) + a(J)

for all K and J in L for which K — 4 and J c B. Plainly, the right-hand side
of (10) equals ¢(K U J) + o(K n J), which is clearly majorized by the left-hand
side of (10). This completes the proof that 2 is a measure.

Now suppose that (L, L') is a pair of lattices which does not enjoy the alloca-
tion property. Then there exist K, A4,, 4, with Ke L, 4,e L', and K C 4, U 4,
such that if K, e L, i = 1, 2 with K; c A4,, then K, U K, is not K. What must
be seen is the existence of a measure ¢ on L for which the restriction of o, to
L' is not a measure. For this, the following preliminaries are useful.

Preliminaries to the remainder of the proof of Theorem 1. As usual, an ideal in
a lattice L is a subset / of L such that both 4 U Band 4 n C are in  whenever
A and Bare in [ and Ce L. The following two simple lemmas are perhaps well
known, but knowing of no reference, I give their proofs.

LemMmA 1. If M is a maximal ideal ‘in a distributive lattice L, Ae L, Be L,
AN Be M, then A or Bisin M.

PROOF. Suppose 4 is not in M, and let J be the ideal generated by M and A.
Then Be J, since Jis L. So B < EU A4 for some Ec M. Hence, B< EU (AN B).
But E U (4 n B)isin M, hence so is B. '

A zero-one measure on L is a measure that assumes both 0 and 1 as values,
and no value other than 0 or 1.

Plainly, the set of elements of measure 0 is an ideal in L. As contrasts with
the special case in which L is a Boolean algebra, even if the measure is a zero-
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one measure, this ideal need not be maximal, as easy examples show. However,
the converse does hold, namely:

LEMMA 2. If M is a maximal ideal in L, a lattice of sets, then there is one, and
only one, zero-one measure which has M for its ideal of sets of measure zero.

Proor. Let 6(4) = 0 or 1 according as Ae M or AeL — M. That ¢ is a
measure is immediate from Lemma 1. That there is no other zero-one measure
o with M for its null sets is obvious.

Proof of Theorem 1 continued. For the existence of the required o, suppose
first that every element of L is a subset of K. Then the elements of L that are
subsets of 4, together with the elements of L that are subsets of 4, generate a
proper ideal / of L. By one of the usual transfinite arguments, among the proper
ideals of L that include 7/ there is a maximal one, say M. As is easily verified,
M is a maximal ideal of L. For A€ L, let o(A) be 0 or 1 according as 4 € M or
not. As accords with Lemma 2, ¢ is a measure. As is evident, ¢(K') = 0 for
every K’ which is a subset of 4, or of 4,. Hence ¢,(A4,) = d,(4,) = 0. On the
other hand, K is not in M, so ¢(K) = 1 which implies that ¢,(4, U 4,) = .
Hence o, restricted to L’ violates (1) and is, therefore, not a measure. The
necessity of the condition is thus established in the special case that every element
of L is a subset of K.

The general case is easily reduced to the special case, thus. Let L* be the
ideal in L consisting of all elements of L that are subsets of K. On L* there
exists, as has just been shown, a zero-one measure ¢ that is 1 on K and 0 on
every element of L* that is a subset of 4, or of 4,. Extend ¢ to arbitrary E ¢ L
by letting ¢(E) be ¢(E n K}. As is now trivial to verify, ¢ is a measure on L,
but ¢ restricted to L’ is not a measure on L’. This completes the proof of
Theorem 1.

When Q is a topological space and L’ is the lattice of open subsets of Q, the
restriction to L’ of the inner measure ¢, of a measure ¢ on L is the Lebesgue-like
extension of .

Incidentally, as is not difficult to verify, if L is the lattice of all finite unions
of compact intervals and L' is the lattice of open subsets of the real line (or of
any finite dimensional Euclidean space) then (L, L’) has the allocation property.
Hence, in view of Theorem 1, the Lebesgue-like extension of every finitely additive
measure on L is a measure. ’

What motivated this note, however, is a different example, which is the concern
of the next section.

4. Extensions of finitary measures. The role of Q in this section is assumed
by H, the Cartesian product of a countable number of discrete topological spaces
F,, F,, ---. A subset of a topological space is clopen if it and its complement
are open.
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PROPOSITION 1. Every clopen subset of H included in the union of two open subsets
A, and A, of H is the union of two clopen sets K, and K, with K, C A, and K, C A,.
Moreover, there exist K, and K, with the additional property of having a void
intersection.

Proor or ProrosiTiON 1. Let F,, F,, ... be the countable number of discrete
factors of H with elements f, f,, - --. Thus ke Hif, and only if, & = (f1, f5 « )
with f; € F,. For he Hand /' € H, and any positive integer n, write & = h’(mod n)
if f, =f/, foralli, 1 <i < n. For each subset 4 of H, define the stop rule t,
thus. For he H, t,(h) is the least positive integer n, if any, such that, for all 4’
for which & = #(modn), &’ € A4; and let #,(k) = oo if there is no such n.

Now let 4 and B be open subsets of H, and let K be a clopen subset of H in-
cluded in the union of 4 and B. Let K, be all # ¢ K such that he Aand t,(h) <
t5(h), and let K, be the complement of K, in K. Verify that K, and K, are clopen.
Plainly, they are disjoint and their union is K. [J

When H is the Cartesian product of discrete spaces, the term “finitary” will
now be used in lieu of clopen. And a finitary measure is a nonnegative, finitely
additive measure on the lattice of finitary subsets of H with values in any real-
like group.

THEOREM 2. The Lebesgue-like extension of every finitary measure on H is a
measure on the lattice of open sets.

Proor. Immediate from Proposition 1 and Theorem 1.

In the special case in which every factor space F, of H is finite and the values
of the measure ¢ are real numbers, the Lebesgue-like extension of o, defined
above, is precisely the usual countably additive extension of ¢ restricted to the
open subsets of H.

The Lebesgue-like extension 2 of any finitary measure possesses one, and only
one, finitely additive extension to the ring generated by the open sets, which is
automatically nonnegative, and so can be completed, as follows from work of
Horn and Tarski [4], and possibly from earlier work of de Finetti and from later
work of Pettis [5].

Whether, for all strategic measures, the completion includes all Baire sets, as
it obviously does in the special case of elementary measures, was an open ques-
tion that has been settled in the affirmative by Purves and Sudderth [6] while
this paper was in print. /
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