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SOME RESULTS ABOUT MULTIDIMENSIONAL
BRANCHING PROCESSES WITH
RANDOM ENVIRONMENTS!

By NORMAN KAPLAN
University of California, Berkeley

A multidimensional branching process with random environments is
considered. Two results are proven about this process. The first proves
that all nonzero states of the process are transient. Since the process in
question is not Markov, the proof of this result is more involved than in
the classical case. Our second result deals with the extinction of the pro-
cess when we are in the critical case. We prove as in the classical theory
that extinction occurs w.p. 1.

1. Introduction. Let {Z,() = (Z,)Q), - -+, Z,?({))}nz0 be a p-dimensional
(p = 2) branching process with random environments (MBPRE). The process
can be described as follows. Assume given a stationary ergodic sequence {(,},z,
of “environmental” random mappings. For a.e. realization of this process is
associated a sequence {¢; (s) = ($z,(5), - - *» ¢Z,(5))}az0 Of vectors of p-dimensional
probability generating functions (pgf vectors). When conditioned on the {{,}
process, the {Z,} behave as a p-dimensional temporally nonhomogeneous branch-
ing process where the number of offspring of type j produced by an individual
of type i in the nth generation is governed by ¢} (s).

This process was first introduced by Athreya and Karlin [1], and the reader is
referred to their paper for a detailed discussion of the construction of the process
for the case p = 1.

The purpose of this paper is twofold. First we will show that all nonzero
states are transient. Using this result, together with a result of Athreya and
Karlin [1], we will give necessary and sufficient conditions for the extinction of
a MBPRE.

2. Preliminaries and statements of results. We start by introducing the fol-
lowing notation:

X = set of p-tuples of nonnegative integers

e; = (0,5 0y55 +++,0,;) .1 <j<p, 0, the usual delta function
Cc=10,1]7; Cc' =10, 1)

Rs=(s,---,5); s€[0,1] -
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[We will write 0 for RO and 1 for R1.]
s = [T, 8% seC,jeX.
An explicit construction of the environmental process can be done in a manner
identical to that in [1], with the obvious modifications being made for the in-
creased dimension. The details will be omitted. We will therefore, assume that
there exists some probability space (Q, &, P) and a discrete time stationary

ergodic stochastic process {{,},., defined on it such that we can associate to each
realization { of the {, process a sequence of pgf vectors {¢; (s)} where

Pe,(5) = (B,(5)s -+ -5 BL,(5))

$t(8) = Xjex b'(Ca)s seC.
Furthermore, we will assume that w.p. 1 the pgf vector, ¢.(s), has components
$.(s) whose coefficients satisfy

(i) 0 =68 + X200 <1, and
(i) 09 (5)[08;li=1- < 05 L =J = p-
It is convenient at this point to introduce several g-algebras. (If ¥ is a col-

lection of random variables, then ¢(¥) is the smallest g-algebra generated by
Z.) Let

and

FQ) = a(Co &1 ++°)

Fn(é)za(zo,zp””ZmCo,Cp"') ngl
It follows from the description in Section 1, that w.p. 1
2.1  E[Fen | F (O} = 6, ()" seConzl

An immediate consequence of (2.1) is

LemMA 2.1. With probability 1,

(2.2) E{stwt1| Z, = e; FQ)} = $t(65,(- -+ 90,095 seC.
A direct implication of Lemma 2.1 is that when conditioning on the entire en-
vironment, { = ({y, {,, - - -), the process behaves like a temporally nonhomogene-
ous branching process and therefore, the lines of descent are independent subject

to conditioning.
The first objective of this paper is to prove the transcience of all nonzero states.
We introduce the following notation:

) 0 ) ) 0? )
D¢t (s) = TR $z,.(9) 3 D;. ¢t (5) = TR #%,.(5) »
i 5 08y,

SGC, 1 éi,j,kép-
Define the matrices:

Mc,,(f) = (D; 9, (Dhsi,isp > Mf:n(l) = A_’[c,, .
Yo(s; §) = IIi Me ()5 Ya(1,0) = Yo(©)
forn >0, seC.
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Let A = (a;;),;,j<, be any matrix, A’ is its transpose; ||4|| = max, .., >%_,|a;;|

max [4] = max,g; ;, |a;,]; min [4] = min,, ;, |a;,|

B[ A] = max [A4]/min [A].
For u any row vector, we write as usual # > 0 if all components are positive and
u = 0 if all components are nonnegative. Similarly for two vectors  and v we
write ¥ < v if v — u > 0 and so on. Similar comments hold for matrices. If u
and v are two vectors then (u, v) = >7_, ,v,. We now state Theorem 1.

THEOREM 1. Let {Z,},., be an MBPRE. Assume that there exist constants
C, D > 0 such that

0<C=smin[M,] <max[M,] <D<

and
0 < max,g; ; <, Dy 9E,(1) = D w.p. 1.

Then,
Pllim, ., (Z,, 1) = 0|2 = 1; FC)}
+ P{lim,_, (Z,,1) = o ||Z| = 1; F&} =1  w.p. 1.
Athreya and Karlin [1] proved Theorem 1 for the case p = 1. In the course

of their proof they needed a result of Church [3]. For our purposes we need to
prove the following generalization of Church’s result.

THEOREM A. Let {f,(5)}.zo be a sequence of pgf vectors. Assume there exist
constants C, D > 0 such that for alln = 0

C<D,f(1)<D and O0<D, ,f1)<D 1=<ijk=<p.

Let hy(s) = fo(fi(- - - fu(5))). Then
(a) lim,_, &, (Rs) = g(s) exists for all s€[0, 1)
(b) Either g(s) = g(0) for all s € [0, 1) or g(s) is strictly increasing (component-
wise) in [0, 1).
A proof of Theorem A can be found in [7].
Theorem 1 is proved in Section 3.
We now turn our attention to the problem of extinction. To fascilitate the
statements of the results, we introduce the following notation. Let,
B={v: Z,(0) =0 for some n},
90 = P(B|Z, = ¢; F(O)},
9€) = (¢'C)> -+ g7(Q)) - 4
B is referred to as the set of extinction and ¢({) as the vector of extinction prob-
abilities.
It follows from Lemma 2.1 that

(2-3) ¢'(%) = lim, . 6t (e, (- - 9¢,(0)) l=i<p.
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An immediate consequence of (2.3) is

(2.4) 9(8) = 6¢,(9(T0)) w.p. L.
with T denoting the shift operation:
TC = T(Co, Cp c ) = (Cv Cz, . ) .

If we assume that the environmental process satisfies the conditions of Theorem
1, then we can conclude from (2.4) that

ProrosITION 2.1. The sets
{{:q@ =1} and {L:gq(T0) =1}
coincide modulo a set of measure 0. The same is true of the sets
{:9@ <1} and  {{:q(T0) <1},
It follows from the ergodicity of T that
2.5 Pf:gqd=1=0 or 1 and P:q¢l <1}=0 or 1.

The conditions of Therom 1 also imply that if ¢%({) < 1 for some i, then
¢i(€) < 1 for all i. It therefore follows that

(2.6) Pl:q&) =1 or Pl:qd)<1}=1.
In order to determine conditions under which of the two cases of (2.6) are

valid we must first discuss some facts about products of matrices. Furstenberg
and Kesten [4] proved the following theorem.

THEOREM B. Let {X, },., be a stationary ergodic sequence of random mappings
with values in the set of p x p matrices. Assume E{log* || X|||} < oo, (for any posi-
tive number a, log* a = min (0, log a)). Then,

lim,,_,wl log ||TI7=s Xi|| = = exists w.p. L.
n

and

. 1
lim,_.., - E{log || 123 X[} = =

Consider the matrices {M{ },.,- 1f we assume the conditions of Theorem I,
then we may apply Theorem B and conclude

lim, ., L log |[Y.()|| = = exists w.p. 1.
n
Athreya and Karlin [1] proved the following result which gives sufficient con-

ditions for when P{{: ¢({) < 1} = O or 1.

Tueorem C. Let{Z,},., be an MBPRE with the associated environmental process
satisfying the conditions of Theorem 1. Also assume that E{—1log (1, 1 — ¢ (0))} <
oo. Then, 4

1<0=PCt:qd)<1}=0
r>0=Pl:qd) <1}=1.

and
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Theorem C is not that surprising for in both situations we know exactly how the
mean matrix behaves, i.e., if 7 < 0, then ||Y,({)]| converges to 0 and if = > 0,
then ||Y,(£)|| converges to co. The case of interest is what happens if = = 0,
That is the content of the next theorem.

THEOREM 2. Let{Z,},.,be an MBPRE with the associated environmental process
satisfying the conditions of Theorem 1. Then,
7Z'=0=>P{C.q(c-)= 1} =1.
So we see that, modulo certain regularity conditions, the value of r is the
critical value for the extinction problem. That this should be so, is not that

unexpected, in view of what = turns out to be in the classical model. In this case
M equals some constant matrix, say B, w.p. 1. Thus,

lim, .. L log||B*| = = .
n

However, we recognize « to be the log of the spectral radius of B, which if B is
a positive matrix, is equal to the log of the largest eigenvalue of B. From the
classical theory, we know that extinction occurs iff the largest eigenvalue is less
than or equal to 1, or equivalently whether = < 0.

The proof of Theorem 2 is given in Section 4.

3. Proof of the transience of nonzero states. Our goal is to prove:
(3.1)  Plim,_. (Z,1) = 0|z, = 1; F)
+ P{lim,_ ., (Z,,1) = oo ||Z,| = ; F{)} =1  w.p. 1.
By the Borel Cantelli lemma, it is enough to show that for each 1 < i < p and
for each positive integer K,
(3.2) A(K) = D5 Pl S (Zo ) S K| Z = e FO} < oo wop. L.
The remaining part of this section will be devoted to proving (3.2). Set
7a(5, €) = e (Pe,(- - $¢,_,(Rs)))
(s, £) = Rs 0<s<lL,nx>1.
Thenfor0 <s<land1<i<p,
Pl <(Z,,1) < K|Z,=e; F(C)}
< 5K DKL SP(Z,, 1) = ]| Z, = e FO)
< s7%(m, (s, ) — 7,(0, §), 1).
So to prove (3.2), it is sufficient to show
(3.3) Yo (mi(s, &) — 7;0,8),1) < o0 . w.p. 1.
Since the terms in the sum in (3.3) are all positive, the convergence in (3.3) is
equivalent to the convergence of lim,_, 2k (74, C') — m,;(0, C'), 1) for any n.
For the present fix n. Then,

1;'17;4-1 (ch(s’ C) - ch(o’ C-)’ 1) - Z?;l WJ(C.)
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where

w0 = Zisur (my(s, §) — 7,0, 8), 1) .

By the Mean Value Theorem for p-dimensions and the monotonicity of the pgf
vector, we conclude that

(34 (m(s, §) — 70, §), 1) < plITTEes Me,_(mioils, TO)] -
The assumptions of Theorem 1 imply that ||M, || < pD w.p. 1 and without loss
of generality we assume pD > 1. It follows that for jn + 1 <1 < (j + Dn,

(3:5) ([ Me,_(miils, T ]
< [pDT~™ILi=s 1T M, ((moeilss T} -

[rP(©) = maX gz [[Tlia M, (7;-i(5, )|l » rz1.
It follows from (3.4) and (3.5) that

wi(&) < pl X (PDYUTTi, f,™(T9-7"0)}

5 Wi0) S pLE = (PDYHE o1 Tl f™(T70)}
(3.3) will therefore be valid for those sample paths, {, such that

G,(§) = limsup, . {% Tins log [T 5001} < 0.

Define:

and

To complete the proof of the Theorem, it is enough to show that the set
Ql = {C‘ infnzl Gn(é) < 0}
has probability 1. The next set of lemmas will accomplish this. For the re-

mainder of this section, we assume that the conditions of Theorem 1 are in effect.
It has already been noted in Section 2 that for s € [0, 1),
lim,_, 7,(s, §) = g(s, {) exists w.p. 1.
The next two lemmas will show that either (3.1) is valid or w.p. 1, g(s, ) =
9(0, ), s€]0, 1).
LemMmA 3.1. Either (3.1) holds, or for some n,,
(3.6) P{C: [Tt 78 (0,8) >0} > 0.

Proor. Suppose (3.6) is false. Then for every n, P{: T]7_, 7,0, {) = 0} = 1.
This implies that P{C: T2, ¢'({) = 0} = 1. It follows now by stationarity that
the set . o

Q= {{: T[7.,94(T"E) = 0; n = O}
has probability 1. We will show that (3.1) is valid for a.e. {€Q'. Choose a
e Q and assume Z, = ¢;, 1 < i < p. Define the following subsets of the inte-

gers {1,2, ..., p}. i i
Au8) = {i ¢1(T"C) = 0} n=0.
Since £ e ', we know that 4,() = @ for all n. On the {Z,} process, define the

function: '
nZ,) = ZieA“(E) z,}.
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Our first step is to show

(3.7) P{NZ,) 2 W Zur)| Zy = e FQ)} = 1 nxz1.
Letje A4, ,(§). It follows that
(3.8) Pin(Z,) = 1|Z,,=e; FQ}=1.

If (3.8) was not true, then necessarily by the Markovian property of the process
gé(T"{) > 0 and this violates the fact that j € 4,_,({). (3.8) together with the
definition of the process implies (3.7). Thus, P{y(Z,) is increasing | F({)} = 1.
We next show

(3.9 Pllim, . 7(Z,) = | Z, = e; FO))
+ Pllim,_, 7(Z,) = 0| Z, = e; F(O)} = 1.
Since 7(Z,) is increasing, we know that lim,_,, »(Z,) exists. All we need do to
verify (3.9) is prove
P{lim, . 7(Z,) = K|Z,=¢; F{)} =0 forany K> 0.
Since 7(Z,) is integer valued, lim,__ 7(Z,) = K implies that (Z,) = K for all n
sufficiently large. However,
P{y(Z,) = K forall n = M|Z, = e; FO)} = T[5eusi R,
where
R, = P(Z)=K[1(Z) =K M<j<n—1,Z,=e; FQ)}.
Using (3.8) it is not difficult to see that
R, < Pfeach of the K particles of type belonging to A,_,({) must
produce exactly 1 particle}

< [max, g, [ 218 67,(L-)])* = a(C,mn) -

Our assumptions on the environmental process imply that E{log a({,)} < 0. Itfol-
lows then by the ergodic theorem that []7_, a({,) = O w.p. 1. This proves (3.9).
We next observe that

(3.10)  P{liminf, . |Z,| > 0;9(Z,) =0 all n|Z,=e; F{Z)}=0.
To see this we argue as follows.
P{lim inf,_ |Z,| > 0,9(Z,) =0 all n|Z, = e; F©)}

< P(p(Z,) =0;|Z,] >0 all n|Z,=e; F())
s 7S

where

S,=PnZ,)=0|7(Z)=0,|Z]>0,1<j<n—1,Z,=c¢; FQC)}.
Let
0={0=(,---,0,):0,=0 or 1 and at least one 6, = 0}.
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It follows now from the definition of the process that

S, = max, g, [Max,.q ¢t _ (0)] = B(C4-s) -

Using the assumptions of Theorem 1, it is easy to show that E{log 5({,)} < 0.
It follows again by the ergodic theorem that

7 AC) =0 w.p- L.
This proves (3.10). (3.9) and (3.10) imply (3.1). []

Without loss of generality we will therefore, assume for the remainder of this
section that for some n, (3.6) is valid.

Lemma 3.2. P{L: g(s, &) = 9(0, {) for s€[0, 1)} = 1.

Proor. It was shown in Section 2 that w.p. 1, g(s, C) is either a constant func-
tion of s, or is strictly increasing in s. It suffices therefore, to show that there
exists an ¢ > 0 such that

(3.11) PL:9(0,0) =96 Q) =1.
It follows from (3.6) that for some integer n, there exists an ¢ > 0 such that
P¢: 7} 0,8) >, 1 <i<p}>0.

Using the ergodic theorem, we deduce that w.p. 1 there exists an increasing
sequence of integers, {n,}, depending on the sample path, such that for all n,,

7,0, T"C) > ¢ l<igp.
It follows that
(3.12) Tain(05 ©) = 7, 1(6 0) -
(3.12) implies (3.11). ]
COROLLARY 3.1.

lim, .. ™€) = [IT1525 Mc,(a(T+0)|| w.p. L.

Proor. Immediate.

It is convenient to introduce somne additional notation. Let

P, = TI328 M (9(T7+0))

9,(6) = log || P, Q)" nzl
It follows from Corollary 3.1 that
(3.13) lim, . _’11_ log /,™(€) = (%) . w1

It is also easy to see that the assumptions of Theorem 1 imply

(3.14) E(supis: (log*[fu(6)]"")} < o0 -
We now state two simple lemmas from probability theory. The proofs of
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these results are very similar in spirit to the proof of Lemma 6’ in [1]. There-
fore, the proofs will be omitted.

LEMMA 3.3. - Let T be a measure preserving tyansformation. Assume that f, — f
w.p. 1 and E{sup,., f,*}. Then w.p. 1,
limSup, .. - Tjeo AT < EU* 1) = B A 111)
n

where 1 is the g-field of invariant sets under T.

LemmA 3.4. Assume f, — f w.p. | and E{sup,.,|f,|} < oo. Let {U,},., be a
monotone increasing sequence of o-fields and let U be the smallest o-field generated
by the {U,},5,. Then w.p. 1,

lim,_., E{f,|U,} = E{f|U}.
It follows from (3.13), (3.14) and Lemma 3.3 that

lim sup,._m% Tiilog f,(T*6-0E) < E{g,*() | 1)} — Efg.~(8) A 1]1,(8)}

where 1,() is the o-field of invariant sets under T". So to prove P{Q,} = 1, it is
sufficient to show that
(3.15) inf s, (B{g,* ()| 1)} — Efg,~©) A 1] 1,O) < 0 w.p. 1.

The collection of random matrices {M, (¢(T"*'C))} constitutes a stationary ergodic
sequence. By the result of Furstenburg and Kesten [4],

lim, ... g,(¢) = lim, .. % log ||P,(&)|| = m,

exists w.p. 1 and

. 1 :
Ty = mfngo o E{log ||Pn(C)||} .

We assume for the present that =, < 0.
Choose m, =2*% k=1,2,.... By the assumptions of Theorem 1,
Efsup,,, 9;.(€)} < oo. Also the o-fields {Z, (C)} are increasing. By Lemma 3.4

lim,,, ., £{95,(C)|2,,(C)} = 0
and
lim,, . E{g; (&) A 11,0} = (—7) A1 >0 w.p. L.
This proves (3.15) and therefore Theorem 1, providing we can show 7, < 0.
The next series of lemmas will do this.

We first state a simple matrix inequality. Let {U,} be any sequence of p x p

matrices and set ¥, = [[723 U;. Then,

LemMaA 3.5.
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We have already noticed that

lim, .. % log || P,(&)|| = 7, w.p. 1.
Applying Lemma 3.5 to the sequence of matrices {Mtn(q(T”“C'))} n = 0 we obtain,
(3.17)  1og|[PDI| < 1 {log p + log BIM¢ (4(TO)]
+ log B[(M;,_(9(T"0))] + log min [P,(O)]} -
From the assumptions of Theorem 1, there exists a constant L > 0 such that
P(C: B[M(q(TC)] < L} > 0.

By the ergodic theorem then,
(3.18) lim inf, __ % log B[M,__(q(T"0))] = 0 w.p. 1.
From (3.17) and (3.18)

lim inf, . }17 log||P,(8)|| < lim inf, . % logmin [P,&)]  w.p. 1.

The next two lemmas prove that
lim inf,_, 1 log min [P,(§)] < 0 w.p. 1.
n

It was shown in the previous section that either P{C: ¢() =1}=1or P{C: ¢({)<
1} = 1. Without loss of generality, we may assume that P{{: ¢({) < 1} = 1.
Otherwise, Theorem 1 would trivially be true.

LEMMA 3.6. Assume the conditions of Theorem 1. Also assume that PiC: 9@ <
1} = 1. Then,

(1 —g(),1) oo (1 —q(),1) _
E{llog a1 = ¢(TH), 1) } < and E{log 1 — ¢(10), 1)} 0

The proof of this lemma is similar to that of Theorem 1 in [1] and will be omitted.

LeEMMA 3.7. Let the assumptions of Lemma 3.6 hold. Then,
lim sup,_.., 1 log min [P,({)] < 0 w.p. 1.
n

Proor. Define, .
(3-19) L) = (P©)-(1 — ¢(T"0)) 1) nzl
T =1 —4q(©)1). '
Using (2.4) and Taylor’s theorem, we obtain

(3.20) 1—g@) =1 — ¢ (e,(- -+ e, ,(@(T"0))
= P,0)-(1 — q(T"0)) + R,(0) nzl
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where R,({) is the remainder term for Taylor’s theorem. It follows that

(3.21) Iy) = Tu@ + Ru©. 1) = TO{1 + (R"(C()c)‘)}

and

Ly = plmin [P,O1 — (10, 1 {1 + (R«@()C)‘)}

Taking logs we obtain

322)  log (1=40)1)
G2 e, 1)

> log p + log min [P,(0)] + log[ L+ (R, (C()c,)l)]

It follows from Lemma 3.6 and the ergodic theorem that

(1 — ¢(T%), 1)

lim,_,, 1 log _U_—M)_ = lim,_,, 1 »—1log =7
no T (1 =q(T"), 1) n (1 —¢(T""%), 1)
=0 w.p. L.
So to prove the lemma it is enough to show that
lim mf,‘_,°° el log {1 + (R,.(Q()C,)l)} >0 w.p. 1.

Observe that

Liog{1+ (R,xc), (&5, 1}

2O} = L og IO

1

n

|

23 1og I'y(©)/T5n(©) -

Again, using Taylor’s Theorem, it is easy to see that

(3.23) 1 — q(T"0) 2 M, (q(T"+0))-(1 — g(T™+0))’ nzl.
This implies that T',({) is decreasing in n w.p. 1. Therefore,
(3.24) Q. =1 w.p.1,n=0.

From our assumptions on the environmental process, the inequality in (3.23) is
strict in each of the components. In particular, there exists an ¢ > 0 and a
d > 0 such that the set

={: (1 — o)1 — 9(€) = M (q(TE)(A — 9(TO))'}

has probability greater than 5. Let I,({) be the indicator function of set E. By
the ergodic theorem,

lim,,_m% St [(TiE) > w.p. 1.
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Also, if T%(€) ¢ E then log [T',(§)/T,..(0)] = log (1 — ¢)*. Therefore,

lim inf, 71; Tzt log T4(8)/Tj4(C) = liminf, %— T I(T9) log-l%%

1 ]5>0 w.p. 1.

1 —¢

= log
This proves the result. ]

The proof of Theorem 1 is now complete.

REMARK 1. If one checks the proof of Theorem 1, carefully, it becomes clear
that, except for one place, all the arguments can be carried out with the condition
of the theorem weakened to

(3.25) Eflog* | M} < oo -
The strength of the condition of the theorem is needed to assert that
(3.26) lim, ., e (P, (- -+ 97, (Rs))) exists w.p. 1. 5€[0, 1).

Therefore, any set of conditions which imply (3.25) and (3.26) will imply the
result of Theorem 1. One such set of conditions is:
There exists constants E and ¢ > 0 such that

max [M ] < E  and 1 — ¢, (0) > Re w.p. L.

REMARK 2. The proof of =, < 0 can be carried out with only assuming (3.25).
An interesting consequence of this result is the following proposition.

PROPOSITION 3.1. Let {¢¢ (5)}nzo be an environmental process satisfying (3.25).
Then the only solution q,(C) (if one exists) of the functional equation

(3.27) $¢,(9(TC)) = ¢o(C) w.p. 1.
satisfying P{C: q(0) < 1} = 1is ¢4§) = q({) a.e.

Proor. Iterating (3.27) we obtain

908) = e (Be(- -+ b, (9l(T™0) Z be (e (- be,,(0))  Wp.l,nz=1.

Let n — co. Then g,({) = ¢() w.p. 1. Using the mean value theorem we now
obtain

(3.28) 1948) — 91 = PIITT3-0 Me, (T w.p. 1.

The collection of matrices {Mcj(qo(Tf“C'))} =0 COnstitute a stationary ergodic se-
quence and we may therefore, apply the result of Furstenburg and Kesten [4].
Thus :

. 1 - R

lim, .., log || I[3= Mc (4dT**0)| = # w.p. 1.
It can be shown using the same techniques to show 7, < 0, that # < 0. It fol-
lows that
(3.29) tim, .., || TT33 Me,(q(T#+ )| = 0 w.p. 1.
(3.28) and (3.29) prove the result. ]
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4. Extinction criteria for a critical MBPRE. We now prove Theorem 2.
The proof is by contradiction. Thus, we suppose that the result is false. It then
follows by the remarks of Section 2 that,

(4.1) PLigd) <1} =1.
Using Theorem 1, together with Fatou’s Lemma, we conclude that (4.1) implies
4.2) lim,_,, [|Y,(0)]] = oo w.p. 1.

In the next series of lemmas we show that (4.2) implies
(4.3) lim,_., E{log||Y, )|} = o .

On the other hand, we prove from other considerations that (4.3) is impossible.
This will give the needed contradiction.

We first prove that (4.2) implies (4.3). To establish (4.3), it is sufficient to

show that
lim, .., Eflog [|Y,(0)|]} = oo .

The random matrices {Y,({)},2, are positive w.p. 1. Therefore, we can apply
theorems of Frobenius [8] and conclude that for k > 1, Y, () has w.p. 1 a
positive eigenvalue 2,(§) and a corresponding right eigenvector U,({) which is
strictly positive. We normalize U,() so that (U,({), 1) = 1. Using the inequality
in Lemma 3.5 applied to the matrices {M, } and the assumptions of Theorem 2,
it is easy to show that:

Eflog 2,(0)} < log p + 2 log (D/C) + E{log [|Y,(C)|l} -

So to prove (4.3) it is sufficient to show that lim,_., E{log 2,(§)} = co. The next
two lemmas do this.

LeMMA 4.1.

lim, .., E {lOg (V8- = g0y, U"(C))} — .
(1 —9(8), Un(©))

Proor. Choosee, L >0. From (4.2) lim,_,,, [[Yn(i)” = oo w.p. 1. By Egoroff’s
Theorem there exists a set H, and an integer N, such that P{H,} > 1 — ¢/2 and
if n > N, then ||Y,({)|| = L a.e. on H,. Using the inequality in Lemma 3.5
applied to the matrices {M, },.,, together with the above remarks, it is easy to
show that for n > N, ‘

(4.4) min[Y, ()] = L/p(D/C)*  a.e.on H,.

Since we are assuming that (4.1) is valid, there exists an a > 0 such that

(4.5) Pl:1—ql) =R} =1 —¢2.

Define F, = {{: 1 — ¢(T"{) = Ra}, n = 1. By stationarity P{F,} =1 — ¢/2.

Also observe that by (2.4) and Taylor’s theorem:

(4.6) (V@) - (1 = q(T*0), () 5 4 w.p. 1.
(I — 9(5), Up(©))
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Set Q, = H, n F,. It follows from (4.4), (4.5) and (4.6) that

(Yu©) - (1 — ¢(T*0))", Up(©)) ap mi .
{log (T‘__q(c)—Uk*(C)) } = E{log {ap min [Y,(0)]}; Q.}
> log {aL/(DJCY}(1 — ¢).

Since L was arbitrary, the result follows. []

LEMMA 4.2.

oo (1= 4(T*D, U - ..
{rog = ¢0, U0) <

Proor. It is not difficult to show that for n > 1

£ {10g 0 =970, WO < gpiog v, 0 + £ {10g @ =970, DY,

SUP,2: | E

1 = 9(%), UQ) 1 —4(©),1
It is a consequence of Lemma 3.6 that
(1 —¢(T"0), 1)) _
E{log(l——q(c'),l)“}_o nx=1.

It also follows from the inequality in Lemma 3.5 that
SUpP,z; E{lOg B[ Yn(c)]} < oo.
The result now follows. [J

Finally observe that
47 Eliog (Ya© - (1 — g(T"0), Uy()
1 B e )

-t s SR

Using Lemmas 4.1 and 4.2 we conclude that
lim,_,, E{log 2,(§)} = oo .

To complete the proof of Theorem 2, we show that (4.3) is impossible. In
view of the inequality of Lemma 3.5, it is sufficient to prove that

(4.8) lim sup, _, E{log (Y,({))u} < oo .

{M{ }.zo is a stationary ergodic process. In their paper, Furstenburg and
Kesten [4] prove that if there exists a constant G such that B[ M ] < Gw.p. 1,
then there exists a constant b and an integer n, such that

(4.9) E{l0g [(Yera(D)u/(Ye(©))ul} = & + O(1 — G2 kzn.
For our problem G = D/C. We show that (4.9) implies (4.8). Let
§¢ = E{10g [(Yi1(8) )/ (Yie(©))ul} kz=1.
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The following identity is valid for n > n,
@10) g T, = o {EIOB (Y@} — EI0B (Y, &I}
From (4.9) and (4.10) we infer that

lim, % E{log (Y,({)")u} = b.
However,

lim, . - E{log (Y,(§))u} = lim, ... . E{log ||, = 0.

Therefore b = 0. (4.9) now becomes
(4.11) E{log [(Yisa(8)")u/(Yu(©))u]} = O(1 — (DC))* kzn.

Sum both sides of (4.11) for k = ny, n, + 1, - - -, n. The left side telescopes and
we obtain

E{log (Y,(§)")u} — E{log (Y, (0))u} = Tien, O(1 — (D/C))* .

From this we conclude that

lim sup,_., E{log (Y,({)"),} < oo .

This concludes the proof of Theorem 2.
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