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RENEWAL THEORY FOR FUNCTIONALS OF A MARKOV
CHAIN WITH GENERAL STATE SPACE!

By HARRY KESTEN
Cornell University

We prove an analogue of Blackwell’s renewal theorem or the ‘‘key
renewal theorem’’ and the existence of the limit distribution of the residual
waiting time in the following setup: Xo, X1, - -+ is a Markov chain with
separable metric state space and uo, 1, - - - is a sequence of random varia-
bles, such that the conditional distribution of u;, given all X; and ui, [ + i,
depends on X; and X1 only. Here the V, = X0 u;, n 2 1, take the role
of the partial sums of independent identically distributed random variables
in ordinary renewal theory. E.g. the key renewal theorem in this setup
states that lims—e E{37_; 9(Xa, t — V)| Xo = x} exists for suitable g(-, ¢),
and is independent of x.

1. Introduction and statement of results. Let X, X|, - .- be a Markov chain
with general state space S, on which a o-field &7 is given. We assume that it has
stationary transition probabilities and denote them by

PY(x, A) = P{X,,, € A| X, = x};
P(x, A) will be written for P'(x, A). We consider a setup where at time n a (real
valued) random quantity u, is picked, whose distribution depends only on the

state of the underlying Markov chain at times n and n 4+ 1. More precisely, for
each fixed x, y € § and Borel set 4
Plu,e A1 X, =x, X,y =y, X;j#=n,n+ 1,u;,j+n} = F(A|x,y)
for some probability distribution F(-|x, y), independent of n. Note that this
permits F(d4 | x, y) to be concentrated on one point. In other words u, is allowed
to be a deterministic function of X,, X,,,. As usual, we take as our basic prob-
ability space the space Q = [];5, (S x R) with the o-field &~ = [[,2, (& x %),
where . is the collection of Borel sets of R. The X, and u, are taken as coordi-
nate functions, i.e., if @ = {(0/, ")}z then X,(0) = 0/, u,(0) = 0. We
write P, for the measure pertaining to “paths” with X; = x, so that our basic
assumption states that for 4, ¢ & B, e <&
Pi{X,eA,0<i<nueB,0<i< n
(1'1) = IAO(X) SAl P(x,dy,) - - SAn P(y,_1 dy,) SBO F(d2,| x, y1)
X SBl F(d31|)’1, yz) e SB,,_l F(dzn—ll.y'n—l’ )’n) .

E, will be the expectation operator w.r.t. P,.
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356 . HARRY KESTEN

Throughout this paper the following standard assumptions will be in force even
though we shall not repeat them: For fixed x, P(x, «) is a probability measure
on & and for fixed 4, € &, B, € <&, the probability in (1.1) is an .~“measurable
function of x. We shall also make frequent use of the Markov property

P{X,eA,ueB,n<i<n+m|X,0<i<nu0=<j<n}

=Py (XieApu,€B,,,0<i=<m} a.e. [P],

9

without explicit reference. This property is immediate from (1.1).
Here we are concerned with renewal theorems for the sums

(12) Vn = Z;‘;ol u; (Vo = 0) .

Our main results (1.20) and (1.16) are generalizations of Blackwell’s renewal
theorem or the equivalent key renewal theorem (see [9] pages 360-363 and [23]
page 247) and the limit distribution of the residual waiting time in renewal theory
(compare [9] page 369, 370 and [23] page 260). Renewal theorems for V, have
already been considered in [3], [4], [12], [15], [16], [21], [22], [27]; (see also
some of their references; for related results see [5] and [25] Chapter X). If {X,}
visits some point s, € S infinitely often with probability one (e.g., if S is countable
and {X,} recurrent), then one can reduce the renewal theory for V, to standard
renewal theory by Doeblin’s trick of looking at the excursions between successive
visits by X, to s, (see [4], [21], [22] and [27]). Noncountable S is harder to deal
with, but has been considered by? Orey [15], [16] Runnenburg [21], Jacod [12]
and Zaslavskii [28]. All these papers assume that {X,} is Harris recurrent and,
with the exception of [28], », = 0. [15] and [21] even make several further
restrictions and we cannot understand the proof of [28] at all. In particular the
definition of “non-arithmetric” in [28] does not seem to be the appropriate one
and the use of selection principles in Lemma 2 and Theorem 5 seems unjustified
because one may need different subsequences for different (a, I') (see [28]). (There
are also some errorsin [16] page 392 L 1-7 f.band [12], Theorem 1 and Proposition
8. These errors have been corrected by the authors (private communication) and
the correction to [12] will appear.) However, in the application discussed below
there are interesting cases which have neither Harris recurrence nor #, > 0. We
have therefore adapted our conditions to this application. We do not insist on
u; = 0 but assume throughout that?

(1.3) = lim,_,, L V, exists and is constant a.s.,

n
(i.e., a.e. w.r.t. P, for every x) with 0 < a < oo. Only in Section 4 do we take
a < 0. We indicate there how one can sometimes apply an exponential trans-
formation familiar from the theory of random walk (see [8] or [9] Chapter X1.6)
to change the process with a < 0 into a new one with positive drift i.e., with

2 We are grateful to Professor Cinlar for pointing out references [12] and [16] to us.
% a.s. stands for almost surely, i.e., of P, measure one for all x ¢ S.
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a« > 0. We also indicate how this can be used to find the asymptotic behavior
(t — o0) of

(1.4) P{max, ., V, > t}

when a < 0. u, is also taken to be non-lattice, by means of the aperiodicity
condition 1.3 below. S could be countable, but our main interest is in the case
where it is not. Harris recurrence is replaced by the unpleasant continuity con-
dition 1.4. Still our proofs are very similar to those in [12], [17], [21] as well as
the proof of the renewal theorem in [9] Chapter XI.2.

We now describe the application which motivated this paper and is our only
excuse for giving yet another generalization of renewal theory. Consider the
difference equation

(1.5) Y, =MY,..,+ 0Q,, n

v

1,

where Y, and Q, are column vectors of size d and M, are d x d matrices. As-
sume that the M, and Q, are random and such that {M,, Q,},,, are independent
and identically distributed. For any d-vector y = (y(1), ---, y(d)) (row or
column) put

I ={ZL o))
and for any d x d matrix m
[[m|| = max,_, [my| .
It is known ([10], Theorem 2) that if

Elog* ||M)|| < oo,
then

a, = lim '11 log ||M, --- M,|| existsand is a constant < co w.p. I.

It is not hard to show that if a, < 0 and if E|Q,|# < oo for some 8 > 0, then the

series
R = Z::l Ml tee M’n—-lQ'n

converges w.p. 1 and the distribution of the solution Y, of (1.5) converges to
that of R, independently of Y,. Questions about the tail of the distribution of
R reduce to the study of

(1.6) P{max, |xM, --- M,| > t}

for large ¢ and fixed unit vectors x. But (1.6) is the same as (1.4) if we choose
for {X,} the Markov chain defined on the unit sphere in R? by

X, = |xM, .- M, |7} (xM, .-- M),

and
u, = lOg »Ix,%,' Mz+1|
i lle . le

Indeed, for this choice
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and our theorems yield under certain conditions that if «; > 0 and & > 1, then*

lim,  Eg{n=0:t < |xM,-.- M,| £ th} =

n—oo

log &
1 ,’
also, if a, < 0, then
P{max, ., |xM, - -+ M,| > t} ~ K(x)t™*
for suitable x > 0 and 0 < K(x) < oo, with K(x) > 0 for some x. The details
will be worked out in [13]. Note also that the recent work of Arjas [1] yields
an expression for the Laplace transform of (1.6). It is not clear to us, however,

how to use Arjas’ work to derive our asymptotic result.
We conclude this introduction with some notation and an explicit statement

of our theorems.

(1.7) N(t)=min{n 2 0: V, > 1} (= co if nosuch n exists),

(1.8) W)= Vye — t,

(1.9) Z(t) = Xy -

W(f) and Z(¢r) are defined on {N(f) < oo} only and P{Z(t) e 4, W(t) e B} will
always mean P{N(t) < oo, Z(t) € A, W(t) € B}. Similarly E, f(Z(t), W(t)) stands
for the integral of f(Z(t), W(t)) w.r.t. P, over {N(t) < oo} only.

(1.10) C,={xeS: PV, = mk™ forall m = k} = i}, k=1,
and C, = @.

DEerINITION 1. A function g: § X R — R is called directly Riemann integrable
if it is & x <& measurable and satisfies

(1) D, Siwa (k + Dsup{lgex, 0] xe Gu\Co [ S 1S 1+ 1) < oo,

and if for every fixed xe S and 0 < L < oo the function ¢t — g(x, 7) is Riemann
integrable on [— L, +L].

Definition 1 déscribes the class of functions for which we shall prove the key
renewal theorem (see (1.20); see also Remark 2 for some comments to this
definition).

DEerFINITION 2. If f is any function ffom ]2, (S x R) into R and § > 0, then
fa(xo’ Vos Xp5 Vps =+ *)

(1.12) = lim,_,, sup {f(yo’ Wos Yis Wiy +++) 2 d(Xy, ;)
+ v, — w,| <0 for i < n}.

Note that f? is automatically measurable w.r.t. [[2, (& x ).
Our principal conditions follow.

4 #{C} denotes the number of elements in C.
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ConbpITIONS 1.

I.1. S is a separable metric space with distance function d(., -)and . is the
o-field generated by the open sets. There exists a probability measure ¢ on &
such that
(1.13) o(A) = ¢P(A) = § o(dx)P(x, A), Ade S,
and such that
P{X,cA forsome n}=1 forall xeS andopen A with ¢(4)>0.

1.2.
§ 9(dX)E |us| = § @(dx) § P(x, dy) § || F(d2|x, y) < oo,
a = § p(dx)E u, = § ¢(dx) § P(x, dy) § AF(dZ|x,y) >0,
and
lim .1_ V. = a a.s.
n

n—r00 n

I.3. There exists a sequence {{,} C R such that the group generated by {{,}
is dense in R and such that for each {, and § > O there existsa y = y(v, d) € S
with the following property: For each e > 0 there exist an 4 € & with ¢(4) > 0
and integers m,, m, and v € R such that

(1.14) Pld(Xp,7) < & |V — 7| £3) >0,
as well as
(1.15) Pz{d(X,,Lz, y) <, |Vm2 —t—=¢|g0}>0,

whenever x ¢ 4.

I.4. For each xe S, 6 > 0 there exists an r, = ry(x, d) > 0 such that for all
functions f: T[;5, (S x R) — R for which f(X,, V,, X;, V;, - --) is an & meas-
urable function, and for all y with d(x, y) < r, one has

Exf(Xm Vo, X1, Vi - ) = Eny(Xo’ Vo, Xy Vi - +0) + ésup lfl
and
Euf(Xo’ Vo9 Xv Vv v ) é Ezfa(Xo’ Vo’ X19 V19 v ) + ) sup |fl .
In Section 3 we prove that Z(¢) and W(r) have a joint limit distribution.

THEOREM 1. Assume Conditions 1.1-1.4 are satisfied. Then there exists a finite
measure ¢ on 7, defined in (3.10), such that for every bounded and (jointly) con-
tinuous function f. S x (0, co) — R one has for each fixed x € S

(1.16)  lim,_.. E, f(Z(1), W(1) |
= a7 §5 P(dY) Ssxi0,0 P KXoy € 42, Vi) € dA) Socusa [(2, 5) ds
In particular, for w = 0

(1.17) lim,_ ., P{W(t) = w} = a™* § ¢(dy) $150 (A — W)P{Vy o €dA}.
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Also, if A e & satisfies®

(1.18) § o(dy) $150 AP [ Xy (o) €0A, Vi, €dA} =0,

then .

(1.19) lim,_., P{Z(t) e A} = a=* § ¢(dy) §150 AP {Xy(o) € A, Viyo € dA}.
Section 3 also contains the following key renewal theorem.

THEOREM 2. Assume Conditions 1.1-1.4 are satisfied. Then for every jointly con-
tinuous function g: S x R — R which is directly Riemann integrable and every x ¢ S
(1.20)  lim,_., {35, 9(X, £ — Vo)) = a7 §s o(dy) §2 9(, 5) ds -

REeEMARK 1. Once we have (1.16) for bounded continuous functions f it can
of course be extended to functions f for which there exist bounded continuous
functions f,* such that f,- < f < f,* and \

lim,_, @' § $(dy) §sxi0,0 Pl Xwvio) € 25 Vi) € dA} §ocass f2*(2, 8) ds
= a7 § §(dY) Ssxio,e Pl X €42, Vo € dA} §ocos: f(2, 5) ds .
A similar remark applies to (1.20). In this way one can show for instance that

(1.20) holds when g is directly Riemann integrable, and such that the family of
functions {x — g(x, 1)}, is equicontinuous.

REMARK 2. If (1.3) holds with & > 0 then
S = Ui G
and Definition 1 extends Feller’s definition of direct Riemann integrability ([9]
page 362) and Orey’s of class .7 ([17] page 950) which correspond to the case
where the underlying Markov chain {X,} is trivial, i.e., where S is a one point
set. However, in the case where S is countable, (1.11) is more stringent than
the convergence of the sums (3.2) and (3.3) in [4]. Cinlar’s definition ((3.1) in
[4] or Section 4 of [3]) of direct Riemann integrability would replace (1.11) by
the weaker condition
§ p(dx) Do sup g O] L= 1< 14 1) < oo

where ¢ is an invariant measure for {X,} as in (1.13). However, our proof of
Theorem 2 only works with the more stringent condition (1.11) and we cannot
follow the proof of (27) in [3] (specifically we do not understand the estimate
following (32) in [3]). We point out though, that if there exist A > 0 and
0 < p <1 for which

FO—|x,)=0, FA—-|x,y)<1-p
for all x, y e S, then (by a simple comparison with binomial variables)
PV, < impA for some m = ky}
< Pfat most impu, with i < m exceed A}

é Z::ko Zléﬁmp (T)Pl(l - P)mil ’ X e S.

5 We write A for the closure of 4, A for the interior of 4, and 34 = A\A, the boundary of A.
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If we take k, > (3pA)~" so large that the last sum is less than 1, then every x
belongs to C, and (1.11) is implied by

(1.21) osup{(9(x, 0):xeS, I<t<1+ 1} < .,

Thus, if the u, are positive in a uniform way then (1.11) may be replaced by
(1.21). In particular this is permissable when u, > A > 0 a.s.

The continuity condition 1.4 is not too hard to check in the matrix example
discussed above when the matrices M; have positive entries. However, it seems
awkward in general and hard to check in practice. If the M, can have negative
entries, and conceivably in other applications as well, alternative conditions are
more useful. We give such a set of conditions and the corresponding theorems
below. Conditions Il require even more than Harris recurrence of {X,} in that
¢ in IL.1 is assumed to be a probability measure; Orey in [16] and Jacod in [12]
allow infinite invariant measures . Theorems 3 and 4 can be obtained from [16]
and[12]. They can also be proved by methods of this paper; only Section 2 needs
changes whereas Section 3 simplifies considerably with Conditions II in the place
of Conditions I.- The reader should also notice that the continuity requirements
on f and g for (1.16)—(1.20) are considerably weakened in Theorems 3 and 4.

ConbitIons II.

II.1. There exists a probability measure ¢ on & such that ¢ = ¢P (i.e., (1.13))
and®

(1.22) lim, ., |[|[P"(x, ) — ¢(+)|| =0 foreach xeS.

I1.2. Same as 1.2.

I1.3. There exists a sequence {{,} C IR such that the group generated by {{,}
is dense in R and such that for each {, and 6 > 0 there exist A, € & and integers
my, m, > 0 satisfying

p(4,) >0 and for each xe 4]
(1.23) {smin (P{X, edy,r —d <V, <7+ 3}
PX, edyt+( —0<V, <c+0 +3)>0.

THEOREM 3. Assume that Conditions 11.1-11.3 are satisfied. Then (1.16) holds
for every bounded, & x <% measurable function f: S x (0, oo) — R for which t —
f(x, 1) is continuous for each fixed x. Also (1.17) holds, and (1.19) holds for every
Ae S

THEOREM 4. Assume Conditions 11.1-11.3 are satisfied. Then (1.20) holds for
every directly Riemann integrable function g: S x R — R.

8 |lv|l denotes the total variation of the signed measure v. If u(S) = 0, as is the casé for the mea-
sure in (1.22) then one easily sees that ||v]| = 2supse o v(A).

" The integral in (1.23) equals P,,{X,,‘1 €S, 1 =0 < Vm <7+d}+ Po{Xmye St + 8, —d <
Vmg, < v 4L + d}, where S+ is the subset of S on which PoXm et —4d: < Vm, <7+ 8} —
Po{Xm,e", 7+ £ — 6 < Vm, < 7+, + 8} is a positive measure and S- = S/S* (see [19] Chapter
11.5, especially problem 31).
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2. The Choquet-Deny lemma. In this section we prove the analogue for our
situation of the Choquet-Deny lemma (see [14] Section VIIL.6) which figures
prominently in the proof of the renewal theorem in [9] (see Lemma X1.2.1 and
Corollary to Lemma X1.9.1) as well as in [12] and [28]. As in'[12] our proof
closely follows the proof of Theorem 3.1 of [17].

LEMMA 1. Assume that Conditions 1.1-1.3 are satisfied. Let H: S x R be a
bounded function which satisfies

(2.1) lim, ., |H(x, t) — E,H(X;, t — u)|
= lim,_, |H(x, t) — § P(x,dy) § F(dA|x, y))H(y,t — 2)| = 0
plus the continuity condition
(2.2) limy . ;10 SUPy_pi<s [H(x, ') — H(y, t")] = 0
for each fixed x € S. Then any sequence {t,},,, C R with t, — oo contains a sub-
sequence {1, Y., for which
(2.3) lim,_, H(x, t, + 5)
exists and is independent of x and s.

Proor. Let {t,} with 7, — co be given. Since the family of functions {(x, s) —
H(x, t, + 5)},: is equicontinuous (by (2.2)) and S x R is separable, we can by
standard diagonal selection methods (compare [20] Theorem 7.23) find a sub-
sequence 1, such that

G(x, s) = lim,_,, H(x, ty, + s)
exists for all (x, s) € S x R. By (2.1) G satisfies
2.4) G(x,s5) = E,G(X,, s — uy)
= { P(x, dy) § F(dA|x, y)G(y, s — 2) .

In addition G is bounded and satisfies (2.2) with G replaced by H. Since s —

G(x, s) is continuous it suffices to show that
G,(x, 8) = §t2 G(x, s + rh(r)dr

is constant for every continuous function #: R — R with compact support.
Again (2.2) and (2.4) hold with H, respectively G, replaced by G,, and one easily
sees that G, even satisfies '

(2.5) lim, | SUp, SUp,,_y <5 |Gu(x, ') — Gy(x, 1) = 0.

For the remainder of the proof we fix 4 and drop the subscript #. Thus we want
to prove that a solution G of (2.4) which satisfies (2.2) and (2.5) must be a con-
stant. Let {{,} be as in 1.3 and consider the random variables

Rn(s) = G(Xn’ §— Vn) ’ Zn(s + Cv) = G(Xn’ s + Cv - Vﬂ)

and
A5, v) = 2,(s + L) — 4,(5) -
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Each of these is measurable w.r.t. %, the o-field generated by X;, 0 < i < n,
and u,,0 < i < n — 1. By(2.4), each of the sequences {2,(5)},z0s {4a(s + £,)}nzos
{A,(s, v)},5, is even bounded .%", martingale under each of the measures P,.
Thus for all (x, s) e S x R they converge a.e. [P,]. Now let ¢ be as in 1.1 and
assume that for each v > 1, k > 1 there exists an x = x(v, k) in the support of

¢ for which

2.6 P, {|limn_m AGs,v)| < %} >1 - % forall seR.
Then for this x, we have for all se R

|G(x, s 4 £,) — G(x, 3)|
2.7) = |E, Ay(s, v)| = |E.{lim,_.. A(s, »)}|

1 . 1
g. 7 + 2 Supy,w IG(_)/, w)IPx {Ihmn—ow A’n(s’ V)l > —k—}

< o (14 25up, 4 |60, W)

Moreover, since x € supp (¢)
2.8) go{zeS:d(z,x)<_’:_l}>0 forall mx>1.
(See [18] Theorem 11.2.1). Thus, if we put
(2.9) W, = W, (x) = {ze S: d(z, x) < _;n_} ,
and
(2.10) T, = T,(x) =min{n = 0: X, € W,(x)},
then
(2.11) PiX, eW,) = P(T, < o} =1

for all ze S (by virtue of (2.8) and I.1). The optional sampling theorem (see [7]
Theorem VII.2.2 or [14] Theorem V.28) now implies for all (z, s) € § x R

G(z, 5) = E,(s) = E,;_(s) = E,G(X, ,s — V, ),
and, hence by (2.11) ,
1G(z, ) = E.G(x, 5 — V)| < SUPycar,aycmm1 SUP, |G(¥', 1) — G(x, 1)| -
As m — oo the right-hand side of this inequality tends to zero so that
(2.12) G(z, s) = lim,,_, E.G(x,s — V, ).

From (2.7) we then obtain

1G(z, 5 + €)= Gz, )| S lim, o EJG(x, 5 + £, — V) — G(x, 5 — Vy)|

1
< - (1+2sup,,, [G(y, w))) -
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Since we assumed (2.6) for all k = 1 and v > 1 this would imply

G(z,s + ) = G(z, 9), zeS,seR,v=1,
and then also :

G(z, s + X) = G(z, 5)
whenever X is a finite sum of the form

v

xrt,, r, integral.

But these sums are dense in R, so that we would obtain with the help of (2.5)
that G(z, s) is independent of s, for each z. In particular, the right-hand side of
(2.12) would be independent of s, so that G(z, s) would be independent of z and
s (by (2.12)). The proof has therefore been reduced to finding x(v, k) € supp (¢)
satisfying (2.6), for each v, k > 1.

We now assume that for some v,, k, = 1 there does not exist an x(v, k) € supp (¢)
satisfying (2.6) and derive a contradiction from this. Fix ¢ > 0 such that

(2.13) SUP, o5 SUP <y G2, ) — G(z, )] S (17ky) .
Such a ¢ exists by (2.5). Next, fix y = y(v,, 0) as in 1.3 and ¢ > 0 such that
(2.14) SUPuz yy<e SUP e —ej<s |G(2, U') — G(y, )| < 2(17k,)" .

Such an ¢ exists by (2.2) and (2.13). We also choose 4 with ¢(4) > 0, m,, m, and
z such that (1.14) and (1.15) hold for all xe 4. We can find 7, > 0 such that

A, = {x € A: left-hand sides of (1.14) and (1.15) are > 7,}

satisfies ¢(A4,) > 0. Finally we define the measure £ on .&% by

£(C) = § p(dx)P,(C) , Ces .
The measure ¢ is invariant under the shift on Q by virtue of (1.1) and ¢P = ¢
(see (I.1)). Thus, by the ergodic theorem ([11] page 18)
(2.15) L=lim, . 1 SI,(X) existsae. [£]

n+41 0
and
§odx)§ LdP, = § Ld¢ = § I,(X,)d¢ = ¢(A4,) > 0.
In particular
§L>0}>0.

By the martingale convergence theorem ([7] Corollary 1 to Theorem VII.4.3 or
[2] Corollary 5.22)

Py {L>0}=¢L>0]7,}-1 (n — o0)
a.e. [€] on the set {L > 0}. Thus, for some large n
1
2.16 P, L>0=1—_— 0.

But the distribution of X, under ¢ is just ¢, and any sample path with L > 0
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visits A, infinitely often so that (2.16) equals®

, 1
(2.17) go{xes. P{L>0}>1— Ek_}

0

< {xes: P(X,e4 io} =1 _L} .
2k,
(2.16) and (2.17) show that there exists an x, € supp (¢) for which
. 1
2.18 P {X,eA, io}=1— _—_.
(2.18) e dy o) 21— o

By assumption, when (v, k) = (v, k,) then (2.6) fails for all x e supp (¢) and in
particular for x,, so that there must be an s, ¢ R for which

. 1 1
(2.19) P, {|hmw A(se vo)| > k_o} >
(2.18) and (2.19) together show that
. . 1 1
P, 41X, €A, i.o. and |lim,_, A (s, _}2_.
afXoed io. and fim A > 2ok

Since each of 2,(s, + ¢,,) and 1,(s,) converge a.e. [7.,] there must exist two closed
intervals J, and J,, at least a distance (4k,)~! apart, and an m, for which

(2.20) P,{X,e A4, io., GX,, s+, —V,)eJ and
G(X,, s, —V,)eJ, forall r=m}>0.
Again by the martingale convergence theorem we have for n — oo, n = m,
PiG(X,, s, +(,,—v—V,)eJ, and
G(X,, sy —v—V,)elJ, forall r= 0}
(2.21) evaluated at  (x, v) = (X,, V,)
= P, {G(X,, s, +{,,— V,)eJ, and
G(X,,s,—V,)eld, forall r = m| 5,} -1

a.e. [P, ] on the set

{G(X,, 5 +C,—V,)eJ and G(X,, 5, — V,)eJ, forall r = my}.

(2.20) and (2.21) finally show that there exist a zye Ayand s, = 5, — v, for some
v in the support of the distribution of some ¥, for which

(2.22) P {G(X,, s, + L, — V,eJ, forall r=0}=1— 4,
P {G(X,, s, — V,)eJ, forall r=0}=1— }y,.

This, however, is impossible as the following argument shows. Since z, € 4,

Pld(Xny y) <& Vay— 7 =L, | S0} Z 74,

8 i.0. stands for ““infinitely often”’.
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which together with the first inequality of (2.22) implies
(2.23) P {G(Xpy 8 + Ly — Vi) €1
(X Y) < & Vg — 7 — L < 3} = d10 >0
In turn (2.23) implies
G(x, s, —w)eJ, for some x with d(x,y)<e¢ and |w—17/ <9,
and then, by (2.14)

(2.24) min {|r — G(y, & — 7)|: reJ} < 2

17k,

In the same way the second inequality of (2.22) together with
on{d(Xml’ y) <e !le - Tl = 5} = 7o
implies

(2.25) min {|r — G(y, 5, — 7)|: re ) = —2

17k, ”’

and (2.24) together with (2.25) contradict the fact that J;, and J, are at least a
distance (4k,)~* apart. ]

COROLLARY. Assume that Conditions 1.1-1.3 are satisfied and that H satisfies the
conditions of Lemma 1. If there exists a measure p on & x % of total mass

(2.26) 0<p< oo,

and such that

(2.27) im, ... Yoxg H(z t — W)o(dz, dw) = B ,

then

(2.28) lim, ., H(x, f) = _f_ forall xeS.
0

Proor. Let x, and ¢, — oo be such that
(2.29) B* = lim,_, H(x,, t,) exists.
By Lemma 1 we then have along some subsequence of the 7,
H(z, t, — w)— B*, (z,w)eS x R
and, hence by the dominated convergeﬁce theorem
§sxr H(z, 1, — W)p(dz, dw) — p,f* .
Thus g* = p,~'g for any x, and ¢, satisfying (2.29). []

3. The renewal theorem. In this Section we prove Theorem 1 and 2, by ap-
plying the Corollary to Lemma 1 to suitable functions H. V,, N, W and Z are
still as in (1.2), (1.7)—(1.9) and, as in (1.13), ¢ is an invariant measure for the
underlying Markov chain {X,}. W(¢) is clearly the excess of the first jump of V',
across t, and Z(7) is the state of the underlying chain {X,} immediately after the
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jump which takes V¥, across t. W(t) is often called the residual waiting time

(compare [9] page 188). We shall also need the ladder indices v, for the sequence
{V.}uzo- These are defined by :
3.1) v, =0,
vig=min{n>v:V, >V, } (= co ifnosuch n exists).
It is easily seen that v, = N(0) and that N(f) must be one of the v,. Moreover,

{X, }izo is @ Markov chain under any of the measures P,. For fixed k and B the
conditional probability

3.2) Plv,,, —v, =k, V

l Vi+1

— Vyie By, vy, - -0,y

uj’j <y, uu,’+k+l’ =0, X»k’ k= 0}
can be taken as a function of the values of X, and X,  only.

Merely as a tool for proving the first lemma we also have to introduce a two
sided process {X,}, u,*} . <. = {X,} (@), 0, } (0%} _wcne... We define this as the
process of coordinate functions on the probability space {Qf, & ¥, P¢}, where
QG =Je(SxR), F*=][i"u(¥ x F). If o ={0]1), 0, 2)} wincwos
then X, *o*) = w,X(1), u,Y(0*) = 0,%2) and P* is determined by

PXi ,eA,0<i<nu,,eB,0<in}
(3.3) =4 o(dxo) § 4 P(Xg, dxy) - -+ § 4, P(x,y, dx,)

X 5, F(dAy| Xo X1) § 5, F(dAy| X05 X5) -+ - § 5 F(dA, 1| X4, X,)
for 4,€ &, B, e <% and any integer k. The above construction of a two sided
process is of course standard (see [2] Section 6.1 or [7] page 456) as are the fol-
lowing facts: {X,*, u,*}_. ... is a stationary Markov chain,

3.4 PiX} ,eA,0Zi<nu,,eB,0<i<n}
= S go(dx)Pz{XieAuO SisSnueB,05iL n},
and in particular
(3.5) PHX, e A} = ¢(A).
Finally for any set Ce [[7., (& x %)
(3.6)  PH{{Xi,0 thiihzo€ CI XA 0 < kyuy, J < K}
= P {{X,, u,},s € C} a.e.on {X*=x}.
In analogy with (1.2) and (3.1) we now define
Vn“ = ZZL;OI ui“ lf n > 0 ’
(3.7) =0 if n=0,
= _Z;inuix if n<0,
and ladder indices for the sequence V*:
(3.8) v =max{n < 0: V,} >sup,., V;#} (= —oo ifnosuch n exists),
viga=min{n > v : V. > Vfi} (= oo if nosuch n exists) .



368 HARRY KESTEN

Note that for all n, < n,
(3.9) Dinysicng Ui = Vi, — Va, -

Also v, is the index of the last strict maximum of V,* n < 0, and v for i > 0
is defined w.r.t. v, in the same way as v, w.r.t. v,. Lastly we define the measure
¢ on & by

(3.10) P(A) = Pyt = 0, Xfe A} = PHsup,, V,} < 0, Xjte 4},
for A e S
LemMA 2. If Conditions 1 hold, then

(3.11) Py, < 0} =1, xeS$,i=0,
(3.12) Pooo <vf < mp < ooe <vf< oo} = 1, iz0,
(3.13) g= Pyt =0}>0.

¢ is an invariant measure for the Markov chain X,,0 = X,, X~1’ Xuz, coe, e,
(3.14) § (dy)P,{X,, € A} = §(4), de .
Lastly

(3.15) § $(dy)E,{} = 1

and

(3.16) § JADE,V,, = a.

REMARK 3. Let T be the shift on @, i.e., (To?),(j) = vk, (j), and let
QfF = {o*: vt = 0}.

Then (3.14)—(3.16) are equivalent to statements about the expected length and
distribution of the excursions between successive visits to Qg by the stationary
process {T"®*}_.<,<.- In this context these results are known and usually dealt
with under the “Poincaré recurrence theorem.” Much of the proof below is a
transcription of [26] and [2], Section 6.9.

Proor. By 1.2
(3.17) Pz{V"—-)a>0}=l, xes,
n
and hence (see (3.4)) also
(3.18) P#{l’ﬁ_»a>o}=1.
n

Clearly v, < oo on {V, — oo} so that (3.11) follows from (3.17). Similarly (3.12)
will follow from (3.18) once we prove

(3.19) Pyt > —oco} = 1.

However, from the stationarity of {X,f, «,% and Birkhoff’s ergodic theorem it
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follows that
k3
tim,__ V% = lim,_ — L v
n

n—oo
n

exists a.e. [P¥]. Moreover, the distribution of ¥#, is the same as that of —V}_,,
so that, by (3.18)
#
Vi, = —a} =1.
n

Pt {nmw

In particular V¥, — —oco and there exists a maximal 0 < n < oo such that
Vi, =sup,g V. —vf equals this index n, so that (3.19) indeed holds. (3.13)
is also immediate from (3.19) because
1= Pyt > —oo} = X0, Pt = —n} = 205 PH{VE, > sup,c, V)
= Yie PHV} >sup, Vil = Xr.q-
Because the process {X, %, u,*} ., .. is invariant under the shift the left-hand side
of (3.14) equals
s P:{Supn<0 Vn# < 0’ XO# € dy}Pu{Xul € A}
= P{sup,, V,} <0, Xi.e 4} (see (3.6))
(3.20) = Yo PHsup,., V,*<0,X e A, Vi >0, but
Vi<0 for 0 <<k}
= Y PHsup; (V4 — V) <0,X*ed, —Vi, >0, but
Vi,— Vi <0 for 0 <l <k}.
The kth event in the last member of (3.20) is just the event where X;*e 4 and
the smallest index at which sup,_, V,# is taken on is —k and

sup;, V;# < max (sup,._, V5 V¥, max, ., Vi) =Vi, <O0.

Thus these events are disjoint and their union is
{Xfed,sup,,V;# < 0,3k =1 with sup,__, Vi< Vi,
But
P{3k = 1 with sup,. Vi< Vi}=1
for the same reason as (3.19), so that the last member of (3.20) is precisely
PHXyt € A, sup,o, V1 < 0} = §(4) .
This proves (3.14) and the proof of (3.15) is quite similar (compare also [26] and
[2] Proposition 6.38):
VP@)E,(m) = Xk § PHsup, V' <0, Xite dy}P,{v = k}
= D kPHsup, V<0,V <0,0< <k, V> 0}
= X NE PHsup, {V — VE} <0, Vi, — V3, > 0, but
Vi,— Vi, 0 for 0 <<k}
= X0 Zma Pyt = —ruf=m} =1.
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To prove (3.16) we appeal once more to the ergodic theorem. Let x(+) be the
probability measure on (Q, %) defined by

1 .
HE) = - S $ERLO). Ce.s,
and consider the following functions on (Q, &"):
(3.21) Li=@m—vpV, —Vip X0 j=0.

From the fact that (3.2) can be taken as a function of X, and X,  only, and
from (3.14) it follows that {L,},,, is a stationary Markov chain on {Q, &, p},
and thus by the ergodic theorem ([11] page 18)

(3.22) lim, % =p and lim,_. LV, =7
n n "
exist a.e. [¢] and
1 1
(3.23) § B = ()= S YAE =

§ 7 dp = %W(dy)Ey V.-

Note that we may draw these conclusions for V, even before we proved (3.16)
because V, . — V, > 0 by definition (see [2] page 116 for the proper truncation

Yit+1
argument). By virtue of (3.17)
14

n

. V .
lim 'n = lim,_,,

Nn—00

=« a.c. [[1] .
n

n

Together with (3.22) this implies y = af. But then (3.16) follows from (3.15)
and (3.23). [0

In Lemma 2 we showed that the L, j = 0, of (3.21) form a stationary Markov
chain on {Q, &, u}. We now use this to construct a stationary process
{Z*(t), W*()},, in continuous time. The interpretation of Z*(f), W*(r) is the
same as that of Z(), W(f) (see beginning of this section) except that now we do
not necessarily start the process off as if we just had a ladder index. We permit
arbitrary initial values (z, w) € § x (0, o) for (Z*(0), W*(0)). The initial state
(z, w) corresponds to a situation where the process ran already for some time
before our time zero, and at time zero the remaining excess of the V', process is
w, and this excess will decrease linearly till the time of the next ladder index, i.e.,

Wity =w—1t, 0w,

The position of the underlying X process at the next ladder index is z, and this
will remain so till the next ladder index is passed, i.e., '

Zx(t) =z, 0<r<w.

From the time w on the starred process will develop as the original Z, W pro-
cess with initial position of the underlying X chain equal to z and the time axis
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shifted by w. Formally, we define w* — (Z*(t, 0*), W*(t, »*)) as the coordi-
nate functions on the space Q* of right continuous functions from [0, co) into
S x (0, 00), F * is the g-field in Q* generated by all the coordinate functions
w* — (Z*(1, 0*), W*(t, ©*)), t 2 0. The measure on & * corresponding to
paths starting at (z, w) is defined by

Q,..{Z*(t) =z and W*(t)=w — 1t for 0 <t < w and
(3.24) (Z*(w + t), W*(w + 1)) € E;, 0 £ i < n}
= P{(Z(t,), W(t))€ E,0<i < n}

fort, =0, E,e Z x &, 0 <i < n. Inparticular

(3.25)  Q,.{Z*() =1z and WX(f)=w—1t for 0 <t <w}j=1.

The next two lemmas give an invariant measure for the (Z*, W*) process. This
measure in question is obtained heuristically by assigning to the set {Z*(0) € 4,
W*(0) < s} a value proportional to®

— Vyi, 5); X, . €A}.

Yi+1 i+1

lim, ... % N=1§ g(dx)E min (V
This should correspond to the expectation of
lim,_.., _;. Lebesgue measure of {te [0, T]: Z*(t) e A, W*(1) < s} .

For completeness sake we verify in Lemmas 3 and 4 that this guess yields the
correct answer, but the reader should notice that this distribution has been derived
in several places when § is countable. For uncountable S it is given in [16]
without proof and in [12] with a proof using Harris’ recurrence of {X,} (see
Theorem 2). Our proofs of Lemmas 3 and 4 are quite similar to [21], Theorem
3.1.1 and make use of the function

(3.26) Rz, A,)=E#{iz0: X, eV, <1
=X PfX,,edV, =1}, zeS, Ae”.
Note that R(z, 4, f) = 0 for t < 0 since ¥, = 0. Also, without restricting 4 we

do not know a priori that R(z, 4, t) < o. However, if we put

p,={xes:p v,z ezl
n n
then, every time X, takes a value in D,, there is a conditional probability of at
least n=* of ¥, =V, + n~'. A simple adaptation of the argument in [24]
therefore shows for any 4 C D,

(3.27) R(z, A, f) < R(z, D,, 1) < 1 + n(nt + 1).

® For any set of conditions &, E.{f, )} denotes the integral of f w.r.t. P, over the set where
& is satisfied, i.e. E;{f; ¥} = E:{fl). \
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Lemma 3. If Conditions 1 hold, then for any positive & x <& measurable function
[iSxR—->Randt =0
§s 0(dy) Vsxco,000 P{X, edz, V, €dd} §pcus, dw
(3.28) X §pes,est—w R(Z, dX, dT)f(x, t — w — 7)
= V5 $(@y) Sosose S5 ) ds .

Proor. We may assume that 0 < f(x, s) < n and f(x, s) = 0 for x¢ D, for
some fixed n, so that all integrals below are finite. The general case can be reduced
to this by first truncating f(x, s) at n and multiplying it with 7, (x) and then
letting n — co. We introduce

ft(x, 8) = f(x, 5) if s=0.
With this notation we have by a familiar renewal argument
oes,esi—w R(Z, dx, dr)f(x, t — w — 1)
= Ez Z:o:of+(xvi’ t—w— Vv,_)
=fH(z,t—w) +  P{X, €dZ, V, edr}sx R(Z, dx, de")f*(x, t—w—1—7'),
because
E{f'(X,pt—w—V,)|X, =2,V, =} = E,f*(X,,

pl—=w—1t—=V, ),

i=1.
We can therefore rewrite the left-hand side of (3.28) as
§ ¢(dy) § P (X, €dz, V, €dA} Sous AW [fH(2, 8 — W)
(3.29) + § P{X, edZ, V, edr} § R(Z, dx, de’)f*(x, t —w — T — )]
- S ¢(d}’) S Py{le € dz’ Vvl € d/{} Smin(t,l)<w§t dw
X § R(z, dx, do)f*(x, t —w — 7).
In the first multiple integral of (3.29) we can integrate out 2 and then use (3.14).
This changes the first integral to
(3.30) §s9(d2) Sogwze W fH(z, 8 — w) + §sP(d2) § P{X, edZ, V, € dr}
X Soswse AW § R(Z, dx, do)f*(x, t —w — 7 — 7).
The first term in (3.30) is just equal to the right-hand side of (3.28) and the second
term can be seen to be the opposite of the second multiple integral in (3.29) (re-
place w + = by w’; w’ then runs from r to ¢t + = but f*(x,t —w — 7 — ') =
ft(x,t —w — ) =0 for w > tand ¢’ > 0, so that we may restrict w’ to lie
between z and ¢ or equivalently, between min (z, ) and ¢). [J
Lemma 4. If Conditions 1 hold, then for any t > 0, Ae.>” and Borel set B C
(0, c0) we have
(3.31) a ' §s HdY) Sswi,r PAX, €d2, V, € dA}
X Socws2dw Q. w{Z%(1) € A, W(1) € B}
= a_l SS ¢(dy) SZ>0 Py{le € A’ Vv1 S d/{} SwEB,Oéwgl dW .



RENEWAL THEORY FOR MARKOV CHAINS 373

Consequently
(3.32) a' \sPdy)dw § 2., PAX, €dz, V, € di}
defines an invariant probability distribution for the {Z*, W*} prclcess.
Proor. To start with, we note that (3.32) defines an honest probability meas-

ure, i.e., its integral over z € S, w € (0, oo) equals one (by virtue of (3.16)). Now
the left-hand side of (3.31) is just the probability of

(3.33) (Z*(t) e A, W*(1) € B}
when the initial state (Z*(0), W*(0)) is chosen according to the distribution
(3.32). Also, if Z*(0) = z, W*(0) = w with w > ¢, then

Z¥(ty =1z, W)y =w —t,

so that in this case (3.33) occurs only if ze 4, w — t e B. If, however, w < ¢,
then the Q, , measure of (3.33) equals

(3.34) P{Z(t — w)e A, W(t — w) € B}
(see (3.24)). Now W/(t) is defined in terms of N(f) and we already pointed out
(just below (3.1)) that for r > 0

N(t) = vy,

for some i(f). Necessarily i(r) > 0 because V, = V, = 0. We decompose the
event between braces in (3.34) into subevents according to the value of i(t — w) — 1
and V, . . This leads to the following evaluation of (3.34):

Z?:O Sxes,ogz‘ét—w Pz{XvJ' € dX, ij € dT}Pz{le € A’ Vvl + T — (t - W) € B}
= Vses.0scst—w R(Z, dx, d-c)PaD{Xpl ed,V, +7—(t—w)eB}.

Consequently, the left-hand side of (3.31) equals

(3:35)  a' §5P(dy) Seeanso PAX, €42, V, €dA} §icuchumten AW

+ a7 {5 9(dY) Vswao, PulX,, €d2, V, € dA} §ocusming,s) AW

X §esosese—w R(Z, dx, d-r)Pz{Xy1 ed,V, +7— (t —w)e B}.
In the second term of (3.35) we may extend the integral over w from 0 to 2,
because there are no ¢ with 0 < r <t — w for w > r. Thus, by Lemma 3 this
term equals
(3.36) a1 § $(dY) Sosese PoX, € A, V,, — s€ B} ds
= a ' § 9(dy) $150 PAX,, € A, V, €d) Sogygiiogen ds -

Clearly

Sicwstw-ten @ + Sosoztiimses 45 = Yurenosw<adW s

so that (3.36) and the first term in (3.35) add up to right hand side of (3.31). ]

10 Note that B C (0, c0) so that V,, + 7 — (# — w)e Bimplies V, + 7 >t — w.
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LEMMA 5. Assume Conditions 1 hold and let f: S x R — R be uniformly con-
tinuous and bounded. Let H, and H be defined by

(3.37) Hyx, t) = E, f(Z(t), W(t)) if t=0
=0 if +<0,

respectively

(3.38) H(x, t) = § Hy(x, t + s5)g(s) ds ,

where g(+) is some continuous function with compact support. Then H(., +) satisfies
(2.2).

PrOOF. As a first step we show that for fixed x and ¢ > 0 there existsan N =
N(x, €) such that
(3.39) Pig{n:V,e[t—2,t+ 2} =N} < forall +=0.

Let x, € supp (¢) so that (2.8) holds with x, for x, and let ¢ >> 0 be given. Take
ry = ry(X,, ¢) as in 1.4 and define

f(N, k, t, L, yo, Vg, Y1y ¥yy -++) = 1 if gn<k:t—L<Lv,<t+L}=N,
=0 otherwise.

Then for e > 0 f«(N, k, t, L, yy, Vg, J1» ¥y, - - +) = 0 whenever
$fn<k:t—L—-1<wv,<t+L+1}<N. (See Def. 2.)

Consequently, by 1.4 one has for d(y, x,) < r,

(3.40) Pf#n:t—L—1<V,<t+L+1}=N}

lim,_, E, f*(N, k, t, L, Xo Vo5 X3, V3 ++ )

—e + lim,_ E, f(N, k. t, L, Xo, Vo, X;, V3 -+ )

—e+ P f#{n:t— LSV, St 4L} 2 N).

The inequality (3.40) holds for all #, N and L simultaneously. Now put

\a\%

(3.41) T = min {n: d(X,, x,) < r,} (= oo if nosuch n exists).
We shall prove the following string of relations fort —w — L — 1 = 0:
§sx 0,000 0, {Z*t — L — Hed, W*(t — L — 1) edr}
X P A#{n:V,e(—7,2L +2 — 1)} = N}
= Ssx0,0) P{Z(t — w — L — 1)edz!, W(t —w — L — 1) e dz}
X P{#{n: Vye(—7,2L + 2 — 7)) 2 N}
(3.42) =Plgn:V,e(t—w—-L—1,t—w+ L+ 1)} =N}
= Yoxr PAT < o0, Xy e dy, V€ ds)
><Py{#{n:V,,e(t—-w—s—L—l,t—w—s+L+1)}2N}
= —e+ (g PAT < 0, V,eds}
X P,,o{#{n:Vne[t—w—s—L,t—w—s—l-L]}gN}.
The first equality in (3.42) is immediate from (3.24), whereas the second equality
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is just a decomposition w.r.t. the first entry by V, into (t — w — L — 1, o0); no
V,withn < N(t —w— L — l)canliein(t —w — L — 1,1 —w + L 4+ 1). The
first inequality in (3.42) simply comes from ignoring all ¥, with n < T and the
last inequality is immediate from (3.40) and d(X,, x,) < r, on {T < oo}.

We now integrate the first and last member of (3.42) w.r.t. the distribution
(3.32), with (z, w) ranging over S x (0, o). Since the distribution in (3.32) is a
stationary one for the (Z*, W*) process, the integral of the first member equals
fort —L—-120
(3.43) a™ §s P(dy) Ssxo,m PAX, €d2, V, €dl} Socugz dw

X Plg{n:V,e(—w,2L +2 — w)} = N}.
On the other hand the integral of the last member of (3.42) w.r.t. the distribu-
tion (3.32) is of the form

—¢ 4 § MB)P, {#{n: V, e[t — p — L.t — § + L} = N}
for some probability measure M on IR™. It is important to notice that this meas-

ure depends only on the distribution of V,. M therefore may depend on ¢, but
not on ¢, L and N. Thus we can choose L = L(¢) such that

Sipsz—s M) = % -

From the inequality (3.42) we then finally obtain
—e+ 3P {#{n: Ve[t — 3,1+ 3]} = MV}

—e + S|ﬁ|§L—3 M(dAB)on{#{n: V’n € [t - IB - L’ r— ﬂ + L]} g N}
expression in (3.43) + a~' (s ¢(dy) §,5, 11 dw P{V, = w}.
The last term in the right-hand side of (3.44) has to be added because (3.42) is
only proved forw <t — L — 1. Since V,, — oo a.s. as n — oo (see 1.2) we can,
with L = L(e) fixed, find #, = #,(¢) and N, = N(¢) such that the last member of
(3.44) is at most ¢ for t = t,and N = N,. This at last gives
(3.45) P, {g{n:V,e[t — 3,14 3]} = N} < 4e, t=t, N=N,.
This essentially is (3.39) with x replaced by x,. To obtain (3.39) for any x, observe
first, that just as in (3.40) for d(y, x,) < r,
(3.46) P (#n:it—w—L 1<V, <t—w+L+1} =N
> et Pgn:t—w—L<V,<t—w+L}=N}.

(3.44)

IAIA

Thus, with 7 as in (3.41) and x € S arbitrary
Pig(n: Veelt—2,t+2] 2 N)
< Pimax,., V, =t — 2} + (sup P.{Zr €dy, V; € dw}
X Plgn:t—w—-2=<V, <t—w+42} =N}
s Pimax,, V, =1t — 2} + €
+ Ve PAVyedwiP, (n:t —w -3 <V, <t —w+ 3} =N}

11 M(IR) = 1 because T < oo a.s. (by virtue of (2.8) and I.1).
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Since P {T < o} = 1 by (2.8) and 1.1, we now have for N = N¢)
limsup,_ ., P {#{n:V, e[t —2,t + 2] = N}
< ¢ + limsup,_,, P,o{ﬁ{n: t—3<V,<t+3} =N}
< Se.
This implies (3.39) because for fixed x and ¢
Plg{n:V,e[t—2,t+2]} =N} -0

as N — oo (recall P,{V, — oo} = 1 by 1.2). Actually we get a bit more; if we
combine (3.39) with (3.46) with w = 0, L = 1 and x, replaced by an arbitrary
x, we find for fixed x and ¢ and N = N(x, ¢) that

(3.47) Pitfn:V,e[t—1,t + 1]} = N} < 2
forall +=0 andall y with d(y,x) < ryx,e).

With (3.39) established the proof of (2.2) is easily completed. Firstly we can
restrict ourselves to positive f. Secondly, it is almost immediate from (3.38) that

sup, |H(x, t) — H(x,t")] >0 as |t/ —t'|—>0
so that we only have to estimate H(x, ) — H(y,t). Now if {x,, v,},2, is any

sequence in S x R we define n(f), z(t), w(?) in terms of x,, v, in the same way
as N(t), Z(t), W(¢) in terms of {X,, V,}.»0 (see (1.7)—(1.9)). Also we put

f(t, 0, Xoy Vs Xy5 ¥y, - - +) = f(2(2), W(F)) ifno wv,e[t— 30,t+ 30],
=0 otherwise.
H()’, t) = Ey Sz+szof(Z(t + s)’ W(t + s))g(s) ds
= Ey Sz+azof(t + 5,0, Xop Voo X3, Vyy - )9(s) ds
+0supf-E, §xs |9(5) ds,

where |#| < 1 and A is the random set

Then

A(t,0) ={s:some V, e[t +s— 35,4+ s+ 30]}.
Now let 7 < oo be such that g(s) = 0 for |s| > ». Then
Sace |9(5)| ds < sup, [9(5)|60 - &{n: V, e[t — » — 30,1 + 7 + 30]}

Eﬁl SA(t,J) |g(s)| ds
(3.48) < sup, |9(s)|[66N
+ 2P (#{n:V, e[t —n —30,t + n + 3]} = N}].

Now by (3.47) we can pick first N and r/(x, ¢) > 0 and then §, = d(x, ¢) such
that for the right hand side of (3.48) is at most ¢ for all § < 4, d(y, x) < r(x, ¢).
Thus for such ¢ and y with d(y, x) < min (r,(x, 9), ry(x, ¢€)),
(3.49) H(y,t)=esupf + E, §,,.20f(t + 5,0, X, Vo, X, V3, <+ +)9(s) ds

S(+o)supf + E, §opunofP(t+ 5,0, X0, Vi, Xy, Vy, - - -)9(s) ds .

and



RENEWAL THEORY FOR MARKOV CHAINS 377

To estimate f*(t + s, d, x,, ¥, X;, V;, - - -) we distinguish two cases. First assume
v, € [t+ 5 — 20, t 4 5 4 20] for some n. Then for any {x,/, v,"},5, With |v, — 2’| < 0
we have v,/ e[t + s — 30,1t + s + 3] and hence f(t + s, 0, x,/v,, --+) = 0.
Consequently
it + 8,0, x5,V ++-)=0 when some v,e[t + s —20,t+ s + 29].
Next assume no v, €[t + s — 20, ¢ + s + 20]. Then for any {x/, v/},,, with
v/ —v| <dfori < n(t+ s)=min{n: v, >t -+ s} we have
v, Zt+s5—9, i< n(t+s), Vhpey =L+ S+ 0.
Thus, in this case
n'(t+s)=min{n: v, >t 4 s} =n(t +5),
Z'(t 4+ 8) = Xpir = Xngn »
Wt + 8) = Vppn — (T +8) = Vg — (1 +9) .
These observations show that if there is no v, in [t + s — 24, t + s + 2d] and
n(t + 5) < oo, then
[+ s, 0, Xgy Vgy +++)
< sup {f(2/, w): d(Z', z(t + 5)) + |[W — w(t + 5)| < d}
= f(2(t + 5), w(t + 5)) + sup {|f(Z', w') — f(z, w)|: d(#', 2) + |W" — w| < d}.
When this is substituted into (3.49) we obtain
H(y, 1) < (¢ + 8)SUPf + E, Svuno f(Z(1 + 5), W(t + 5)g(s) ds
+ sup (|f(2/, W) — f(z, W)|: d(2', 2) + W — w| < 3} .
Since the only restrictions are ¢ > 0, 0 < dy(x, ¢) and d(y, x) < min (r,(x, d),
ri(x, ¢)), and since f is uniforml_y continuous, this implies
limsup,_, sup, (H(y, t) — H(x, 1)) < 0.
In (3.49) and the following estimates we may interchange x and y so that also
lim inf,__ inf, (H(y, t) — H(x,#)) = 0. 0

Proor oF THEOREM 1. Let f: S x (0, o) —» R be bounded and continuous
and define H, and H as in (3.37), (3.38) with a continuous g satisfying for some
0<n< oo ,

(3.50) 9(s) =0, §g(s)ds=1, g(s) =0 for |s| > 7.
Then H(., ) is bounded and it is easily seen to satisfy (2.1) (check this for H,
first, using the fact that N(f) = min {n: 37! u, > t — ujonu, < t.) Moreover,
because (3.32) is an invariant probability distribution for the (Z*, W*) process
we have for t > 7
a™! s ¢(dy) S Pﬂ{Xul € dZ, Vvl € dZ} SO<wSl dw

(3.51) X §9(s)ds E, , f(Z*(t + 5), W*(t + 5))

=a ' {¢(dy)§ P,,{XV1 edz, VV1 €d} Socusa f(z, W) dw .
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(E,,. f in (3.51) of course stands for the expectation of f w.r.t. Q, ,,.) On the other
hand, by (3.24) and (3.25), the left-hand side of (3.51) can also be written as

at§g(s)ds§ g(dy) § P,(X, edz, V, edi} )
X [Sevecwsaf(ZWw — £ — 8) AW + Soguwgminirsn Ho(2: 8 + 5 — w) dw]
=o(l) +a§g(y)dy§ P{X, edz, V, €dd} §ogusi H(z, 1 — W) dw,

where 0(1) — 0 as t — co. Consequently, if we take
p(dz, dw) = a=* § ¢(dy) dw §,,, P,(X, €dz, V, edi}
on S x (0, ), then
lim,_,, $s.p H(z, t — w)p(dz, dw)
=a ' §g(dy) § PiX, edz, V, €dl} §ocusa fz: W) dW .

Thus, if f is bounded and uniformly continuous, then the corollary to Lemma
1 applies (by virtue of Lemma 5) and

(3.52)  lim__ H(x, 1) = a=* § §(dy) § P,{X, €dz, V, €dl} §ocyzsf(z, W) dW

for all xeS. We apply (3.52) first with f(z, w) = k(w) for some uniformly
continuous function k() which satisfies

0kw)y 1, k(w) =1 if O<w<4y and
k(w)=10 if wx=35yp.
Then, for ¢ > 7 the corresponding H becomes
H(x,t) = § g(s)ds E,k(W(t + 5)) = § 9(s) ds P{W(t + 5) < 47}

= § g(s)ds P,{some V, liesin (t + s, ¢+ s + 47]}

= P{some V, liesin (r+ 7,1+ 37]}

= P{W( + 1) =27}
Thus, by (3.52)

lim sup,_., P{W(t — 7) < 27}
(3.53) < lim,_, H(x, t — 27)
< @ §5 §(dy) §100 PV, € 2} min (2, 57) -
Denoting the last member of (3.53) by ¢,(y) we have
(3.54) lim sup,_,, P{W(t — 1) < 29} < &(n) | 0 as 7|0.
Observe now that
(Wt —n)>2p={no V, liesin (-7, t+ 7]},

and that whenever this event occurs, one has for |s] < 7

Z(t+5)=Z(t —n) = 2(0), W(E+s)=Wt—s.
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Thus the H(x, ) of (3.38) equals
H(x, 1) = E,§ f(Z(t + 5), W(t + 5))g(s) ds
= E, § f(Z(1), W(1) — 5)9(s) ds + 20 sup, , |f(z, w)| PAW(t — 7) < 27}
for t > 5 and some 6 = 6(x, f)e[—1, +1]. Thus for bounded uniformly con-
tinuous f we obtain from (3.52), (3.53) and (3.50)
lim sup, ... |E, f(Z(r), W(1))
— a7 § P(dy) § P X, edz, V, edx} §ocusa f(2, W) dW]

(3.55) = 2sup, , |f(z, w)leu(n)

+ lim sup, .., E.{sup,,s, |f(Z(1), W(1) — )

— f(Z(), wWo)l} -
By letting 5 | 0 in (3.55) we obtain (1.16) for bounded, uniformly continuous f
(recall N(0) = v,). But since S x (0, oo) is a metric space (with the obvious

distance d(x,, x,) + |t, — 1,| between the points (x,, #,) and (x,, t,)) this actually
implies the theorem in full (see for instance Theorem I1.6.1 in [18]). []

LEMMA 6. Let h: S x R —> R be a bounded continuous function such that
h(x, t) = Ofor X ¢ C,j‘o or |t = L for some k, and L < co, where

(3.56) C*={xeS: PV, = mk™ forall m >k} =>1}.
If Conditions 1 hold, then
(3.57) Gx,)=E, o kX, t —V,)

is bounded and (jointly) continuous on S x R.

PROOF. As a first step we prove the uniform bound (in z and ¢)
(3.58) Efn=0: X, eC*tV, St +b <4k + 1+ kb), b=0.
To establish (3.58) we note that if V,e[¢t,7 4 b] and V, , — V, = mk~! and

m > kb, then V, ., ¢[t,t + b]. Also, by the very definition (3.56) and the
Markovian properties of the measures (1.1) we have

PlV,om— V,=Zmk™ forall m=k|Xy, -, X, V,, .-+, V,}
= Py {V, = mk™ forall m>k} =}
a.e. [P,] on {X, e C,*}. Thus, if we define the stopping times
s =min{n = 0: X,e C*, t < V, < t + b}
tm=min{n >z, +k: X,eC*t <V, Zt4+b6,V, -V, <(n—r1)k7}
(r; = oo if no n with the required properties exists), then
(3.59) Plr, < oo|ty -, 7} 2 a.e. [P],

and
#{ngo;XneCk*’té Vnét—i_b}

< Do hiepelni 7 S 0 < i, Vet 1 4 b))
S(k+1+kb) X0z jcen -
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This implies (3.58), since its left-hand side is at most

(k+ 1+ kb) N5y Pe; < o0} < (k + 1 + kb) 5, ()7 (see (3.59)) .
Now let the support of 4 be contained in C} x [—L, +L] and let
M=MtN)y=min{n>N: —L<t—-V, < +1L}
(= o if nosuch n exists) .
An immediate consequence of (3.58) and a first entry decomposition is, for any
yeS, N=0
[EfZ 0y MK, 1 = V)
(3.60) =|§P{M < oo, Xyedz, VyedwlE S 7 h(X,, t —w — V,)}|
< sup,, |A(x, s)|4(k, + 1 + 2k L)P,{M < co}

<TP{t—L<LV,<t+ L forsome n= N},

where
I' = sup, , |A(x, s)|4(k, + 1 + 2k,L) .

In particular G(-, ») is bounded.
Now fix (x, f) € § x R. Then, by (3.60), for |s] < 1and any ye S, N > O and
suitable |0] < 1
Gy, t+5) — G(x, 1)
(3.61) = E, Y3 h(Xp t 45— V,) — E, D25 h(X,, t — V)
+ 6I'P{V, <t + s+ L for some n > N}
+ 0PV, <t+ L forsome n = N}.
Fix y > 0 and N for the moment and take
Si(Xos Vs Xp5 Vys - +) =1 if v, <mQ2y)* forsome me[N,k],
=0 otherwise.
Then by 1.4 for fixed x, 7, 0 < ¢ < 1, N = 27 and d(y, x) < ri(x, ¢)
PV, < m(2y)~* for some m = N}
(3.62) < e+ lim_  E f.5(Xp Voo X1y Vis -+ +)
<e+ PV, — ¢ <m2r) for some m = N}
<e+ PV, <my forsome m = N}.
Thus, if 0 < ¢ < 1 is given, we can first pick N, = N(x, ¢, #) (by 1.2) such that
P, {Vm <m <——i—>_l for some m > NO} <e,
2t + L] + 2 A
and then 7,(x, ¢) such that for d(y, x) < ry(x, ¢)
P{V,<t+ 1+ L forsome m = Ny}

gPy{V <m(_ o

- = <—_—>_1 for some mgNo} < 2.
T\t + LI+ 1
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By virtue of (3.61) and 1.4 we then have for all |s] < 1 and d < ¢ and d(y, x) <
ry(x, 0)
G(y,t+ s5) — G(x, 1)
(3.63) SA4le + E, 3N (X, t + 5 —V,) — E, 2V h(X,, t — V,)
< 4T'c + N,d sup, , |A(z, w)]|
+ E, YNt [A(X,, t +5s—V,) — X, t —V,)].
Since % is continuous it is clear that we can make the last sum in (3.63) small by
choosing ¢ and s small (note N, does not depend on y, s or §). Thus
(3.64) limsup, ., ., G(y,t +5) — G(x, ) < 0.
Similarly, two successive applications of 1.4 yield
G(x,t) — G(y, t + 5) £ 4T'c + N,0 sup, , |A(z, w)|
+ E, SVt (X, t —V,) — (X, t +5-V,)]
< 4T'c + 3N,0 sup, ,, |h(z, w)|
+ Ea: Zf%l [ha(Xn’ r— Vn) - h(Xn’ I+ 5— Vn)]d
(in the last sum the notation [r(X,, V,, - - -)]’ is used for r*(X,, V,, - - -) where r(+)
is the function between square brackets). Thus also
liminf, . ,G(y,t+ 5) — G(x, ) = 0
which together with (3.64) proves the lemma. []

Proor oF THEOREM 2. First we prove (1.20) with g replaced by a function &
satisfying the conditions of Lemma 6. Since A(X,,? — V,) = O aslong as V, <
t — L, a simple decomposition w.r.t. the first entry of ¥V, into (r — L, oo) gives

G(x,t) =\ P{Z(t— Lyedz, W(t— L)y cdw}E, v k(X,,L—w—V,)
(3.65) = § P{Z(t — Lyedz, W(t — L) cdw}G(z, L — w)
— E,G(Z(t — L), L — W(t — L)).
By Lemma 6 the function f(z, w) = G(z, L — w) on S x (0, o) is bounded and
continuous, so that by (1.16) and (3.65)
(3.66) lim,_, G(x, t) = lim,__, E, f(Z(t — L), W(t — L))

exists, is independent of x, and is given by the right-hand side of (1.16). How-
ever, there appzars to be no simple way of evaluating the right-hand side of
(1.16) and we therefore use an Abelian argument to evaluate (3.66) (for another
method of attack see [3], page 389). For the time being take # positive. Then, by
the boundedness of G(., .) (Lemma 6) and the dominated convergence theorem
(3.66) equals

lim, .. § ¢(dx) 7. 13 Gx, 1) ds

1

= limy — Vs QAN E, 2550 8¢ (X 1 — V) di
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(3.67) = timp_. | s p(@9E, T §12 A, 0 ds

1

+ T §s SD(dx)Ex{Zn<M1(T) + Znsuym} §o h(X,, t — V,)dt
1

T s @(dx)E, X %?};"; Sa<—V,n or e>T—V,, h(X,, 5) dS] :

(3.67) holds for any My(T) = M,(T) = 0, but we take M(T) = [a~'eT], My(T) =
[a7}(1 — ¢)T], for some small ¢ > 0. Because ¢ is an invariant measure for the
{X,}, the first term in the last member of (3.67) equals

(3.68)  \so(dx) §*= h(x, 5)ds lim,__, %1_ ([a (1 — &)T] — [a~'eT])

= (1 — 2e)a! {5 o(dx) (2 h(x, 5) ds .
Since A(x, s) = 0 for |s| = L the last term in (3.67) is bounded by

sup, {2 |h(z, 5)| ds - % S § pdx)P{—V, = —L or T—V, <L},

Now
sup, §%2 |A(z, s)| ds < 2L sup, , |A(z, 3)| ,
and since
(3.69) { o(dx)P, { Vs —>a} =1,
n

we have for each fixed e > 0
(3.70) SUPu 1) snsiryr) ) (@X)P{—V, = —L or T —V, < L}—>0

as T — oo and consequently the last term in the last member of (3.67) tends to
zero as T — oo. Clearly

1
T {s p(dx)E, Zn<M1(T) s (X, t —V,)dt

< %Ygsup“ |h(z, $)2L < ca-1 - 2L sup, , |A(z, 5)| -
Finally, by (3.60)
Ex Zn>M2(T) sg h(Xn’ r— Vn) di
é Supz,a |h(Z, S)|2L : za_leT + sg dt Ez Zn>a—1(1+s)T h(Xm t— Vn)
< sup,, |A(z, s)|[4La~ T
+ 4(ky + 1 + 2k, L)YTP,{V, < T + L forsome n = a (1 4 ¢)T}].
Thus
1
7 S QD(X) dx Ex Zn>M2(T) SoT h(Xn’ r— Vn) dt

(3.71) < sup,, |A(z, s)|4La""e
+ 0(§ p(x)dx P{V, < T + L for some n = a (1 + ¢)T}).
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The last term in the right-hand side of (3.71) tends to zero as T — oo by (3.69),
and combining the estimates (3.67)—(3.71) we find upon letting ¢ | 0
(3.72) lim, ., G(x, t) = a™' § o(dx) § h(x, s)ds .

Thus, (1.20) holds with g replaced by a positive function # satisfying the con-
ditions of Lemma 6. The condition # > 0 may be dropped since the above can
be applied to the positive and negative part of & separately.

Now let g be an arbitrary continuous and directly Riemann integrable function
on S x Rand let 2: R — [0, 1] be a continuous function such that A(f) = 1 for
) <L —1, ) =0for |f| = L. Then
(3‘73) IEz Z:;o g(Xm r— Vn) - Eav Z:b°=0 g(Xm r— Vn)l(t - Vn)l

S Dz B 2050 [9(Xas £ — VI i0(t — V5) -

Moreover, by virtue of 1.2 and the definition (1.10)
S = Ui G = U Cen\Cy
so that the right-hand side of (3.73) is further bounded by
Ziizz-2 Zi-oSUp{|9(z, w)[: 2 G \Cp j S w < j + 1}
X Em#{n ; 0: Xneck+1’t_j_ 1 é Vn é t_]}
S Zizz-2 Lico 42k + 3)sup {|g(z, w)|: 2€ G, \Cpy j S w S j + 1)

(see (3.58)). This last expression tends to zero as L — oo because g is directly
Riemann integrable. Thus, it suffices to prove (1.20) with g(x, 1) replaced by
9(x, H)A(f) and we may assume that g(x, 1) = 0 for |s| = L for some L. In the
same way it follows that we may assume g(x, ) = 0 for x ¢ C¢, for some k, once
we prove that for each N there exist a continuous function 6: S — [0, 1] and a
ko such that §(x) = 1 for x e Cy, 6(x) = 0 for x¢ C¥. This will bring us to the
case already dealt with in (3.72).

We complete the proof by showing how such functions 6 can be found. When
we interchange the role of x and y in (3.62) we find

PV, < m(2r) forsome m > N} < e+ PV, < my~* for some m > N},
whenever N > 2y and d(y, x) < ry(x, €) and thus, for x e C = closure of C,

PV, < m(2N)~' for some m = 2N}
< limsup,,  co, P{V, < mN-* for some m = 2N} < 1.

Thus Cy C G,y. Similarly for x € C,y, by (3.62)

limsup,_, P{V, < m(4N)~* for some m = 4N}
= P,{V, < m(2N)~* for some m = 4N} < },

so that some neighborhood of x is contained in Cj, (see (3.56)). Consequently

Cy C Cyy © C}, = interior of Cj,,
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Therefore, if N > 1 is given, we can take k, = 4N and

0(x) = r(inf, .y d(x, 2,), inf, , o, d(x, 2,)) ,

1€CN
where 7 is some continuous function from

{(s1,8): 5, 20,5 =0 butnot s, =5, =0}
into [0, 1] such that y(s;, 0) = 0, 5, > 0, and 7(0,s) =1, 5,>0. Such a @ is

continuous, equals 1 on C, and vanishes on the complement of C,. []

4. The case of negative drift. In thissection we briefly indicate how Theorem
1 can be used to find the behavior for large ¢ of

P{max, V, > 1,
or more generally
E{f(Z(1), W(1); N(1) < oo},
when n~'V, — a a.s., but now with a < 0 instead of @ > 0 as in 1.2 (N(¥), W(¢)

and Z(r)areasin (1.7)—(1.9)). We take our cue from the method of Chapter X1.6
in [9]. Suppose that we can find a function r: § — (0, co) and £ > 0 such that

r(x) > 0, xesS,
and
r(x) = E,eor(X)) = § P(s, dy)r(y) § F(d2|s, y)er.

One can then define new measures P, on & by

P{X,eA4,0<i<nuecB,0<i<n
1
= ’;Z;)“ IAO(X) SAl P(x, dyl) T SA,, P(Yp-s dyn)r(yn)

X SBO F(da,| x,, yy)esto - - SBn_l F(d2,_y| Yuo1s Ya)eint

for 4,€ %, B,e &% (compare (1.1)). When governed by these measures, the
coordinate functions X, on Q still form a Markov chain, now with the new
transition function

P(x, A) =

(4.1)

L, P(x, dy)r(y) §72 F(dR| x, y)e
()

and the conditional distribution function of u, given X, = x, X, = y is
P(d2|x, y) = [1+2 e<F(dE | x, )] "¢ F(di|x, y) .

(The use of the measures P is a familiar trick in the boundary theory of Markov
chains; see for instance [8].) For practical purposes it is more convenient to
define P, by the relation
(4'2) Exf(Xo, ceey Xy Hgy e ey un—])
1
= Eff(Xe -+ s Xy tyy ++ o5 u,_)1(X,)e"n},
g EAA : Dr(X,)es)

for f positive and &"*! x <™ measurable. (4.2) is easily seen to be equivalent
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to (4.1). Assume now that the new measures P, satisfy Conditions 1.1-1.4. We
can then apply (1.16) to the function

| .

flz, w) = @e—"wf(z, W)

to obtain
(4.3) lim, .., £, f(Z(1), W(1)) = K(f)
for some finite K(f), independent of x. However, by (4.2)
E, f(2(0, W(1) = Zieo Ef (X0 Vi — 1) N(t) = K}
= 1 D EArX)e (X, ¥, — 0 NO) = K

r(x)
e e . _

= ;(7) Zk=o Ex{f(Xk’ Vi — t)’ N(’) = k}
ef:t .

=5 E{f(Z(1), W(1); N(1) < oo} .

Consequently, by (4.3)

lim, .., e“E,{f(Z(), W(1); N(t) < o0} = K(f)r(x) .

For the matrix example discussed in the introduction, (especially (1.6)) the details
of this procedure will be worked out in [13].
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