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DEPENDENT CENTRAL LIMIT THEOREMS
AND INVARIANCE PRINCIPLES

By D. L. McLE1sH
University of Chicago

.

Central limit theorems are proved for martingales and near-martingales
without the existence of moments or the full Lindeberg condition. These
theorems are extended to invariance principles with a discussion of both
random and nonrandom norming.

1. Introduction. In this paper we use a slightly modified classical approach,
used by Salem and Zygmund (1947), to generate central limit theorems for
martingales and variables which are close to being martingales. These are simi-
lar in type, though not in proof, to the results of Dvoretsky (1969), (1972) and
Brown (1971), the main difference being that the Lindeberg condition used here
(cf. 2.4) is weaker than in these papers, and finite second moments are generally
not assumed (in fact many theorems, e.g., 2.7, 3.6, do not even require first
moments). These theorems are extended to invariance principles in Section 3,
similar to those of Brown (1971), and Drogin (1972), except that again the
Lindeberg condition is not required. An invariance principle corresponding to
the main theorem (2.2) of Dvoretsky (1972) is included as a corollary.

Let {X,;;i=1,2, ..., k,} be anarray of random variables on the probability
triple (2, &, P). We denote EX}, =02, < oo, and S, = > %s, X, ;. Unless
otherwise indicated, summations will be over the range 1 < i < k, (e.g., S, =
2. X,.5), and limits will be taken as n — oco. I(A4) or I, will be used to denote
the indicator of theset 4 € .%". The L, norms for random variables (i.e., E/?| X|?)
is denoted || X]|,, and the various kinds of convergence, in L, in probability,
almost sure, and weak (in distribution) are denoted respectively — Ly 5> s
and — .

We will occasionally require the following conditions;

(1.1) The Lindeberg condition: foralle > 0, 3, §4, . X2 ,dP — 0,n— oo.
(1.2) : 20k, —1 as n— oo .

Now let {&, ;0 < i < k,} be any triangular array of sub-sigma fields of .&~
such that for eachnand 1 < i < k,, X, ,is &, -measurableand .5, ,_, c .7, ..
We will abuse notation slightly in the interests of brevity denoting E(U|.&, ,)
where U is some variable (e.g., = X; ) taken from the nth row by E, U.

2. Central limit theorems. We begin with a useful basic theorem which has
been implicit in a number of papers since Salem and Zygmund (1947). Let
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(X1 =j = k}and {&, ;0 < j < k,} be defined as before, let i be the com-
plex number (i# = —1), and let  be real. For each n, define a random variable
by T, = [k, (1 4 itX, ).

2.1 THEOREM. Suppose for all real t,

(a) ET,—1,

(b) {T,} is uniformly integrable,
(c) X;X:;—,1,and

(d) max;g, |X,.;| —, 0.

Then S, —, N(0, 1).

Proor. We will use the appoximation e* = (1 + ix)exp{—x?/2 + r(x)}
where |r(x)| < |x|* for |x| < 1 (verified by computing the series expansion of
log (I + z)). Define a complex valued random variable by I, = ¢S» and let
U, =exp{—22 33, X} ; + 2;r(X, ;}. Then by the above approximation,
I, =T,e*? + T,(U, — e*?) so in order to show EI, — e~**?, as is required
by the method of characteristic function, we need only show, by (a), that

2.2) T, (U, — exp(—£*[2)) =, 0. But,

| 255 r(Xo sl = 1P 2 1 X s° = 1P (max g, [Xo 5(25 X5,5)

which converges in probability to 0 by (c) and (d). Combining this with (b),
we have T, (U, — exp(—1#*/2)) = I, — T, exp(—t*/2) which is uniformly inte-
grable (cf. Meyer Theorem 20; a convex combination of uniformly integrable
sets is uniformly integrable; the uniform integrability of /, follows from the fact
that E|I,|* = 1). Therefore, in view of the convergence in probability and the
uniform integrability, (2.2) holds and the proof is complete.

We will call the array X, , a martingale difference array (m.d.a.) with respect
to &, ,if each X, , is &, -measurable and E,_, X, , = 0 a.s. for all n and i.

(2.3) THEOREM. Let X, , be a martingale d{ﬁ”e(ence array satisfying

(a) max.g, |X, ;| isuniformly bounded in L, norm,

(b) max,g, |X,—,0,and

(¢) ZiXai—p 1
Then S, —,, N(O, 1).

Let us examine briefly the conditions of this theorem. Condition (b) is a con-
sequence of the Lindeberg condition assumed by most authors including Brown
(1971), Drogin (1972) and Dvoretsky (1969). In fact, since P{max, |X, ;| > ¢} =

P[>, X2, (X, | >¢) > €], (b) is equivalent to the weaker version of the
Lindeberg condition;

(2.4) X2 (X, | >e€)—,0, forall ¢e>0.

Following 2.6, we furnish an example in which the stronger, L, convergence
does not hold in (2.4).
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Condition (a) is also a consequence of the Lindeberg condition since, for any
e >0, maxy, X3, <&+ D X3 J(X,,| > ¢) and the second term on the
majorant side converges in L, norm to 0.

Finally condition (c) replaces the convergence of the conditional variances of
Dvoretsky, Brown, and others, by convergence of the sum of the squared vari-
ables. Such an assumption, similar to that made by Drogin (1972), is perhaps
intuitively preferable in that it deals directly with the statistic normally used to
approximate the asymptotic variance. In the proof of Corollary 3.8, we show
that these two sums are frequently equivalent, and hence that the present theo-
rems contain those of Brown and Dvoretsky.

Proor or (2.3). Define an array by Z, , = X, ;[(1{z} X3, < 2). Observe
that Z, ; is also a martingale difference array and that

(2.5) KZ,; # X, forsome j < k,) < P(Z;X};>2)—0

as n — oo. Therefore, Z, , also satisfies the conditions of (2.3). We will verify
the conditions of Theorem (2.1) for this equivalent array. Let T, be defined as
in (2.1) but with X, ; replaced by Z, ;. Then ET, = 1.

For (2.1b), define random variables by

Jo=min{j < k,; Bl X5, >2}  if XX >2,
=k, otherwise.
Then
EIT,) = EQljun (1 + 1°25) < Eexp(r Tjar’ X3 )(1 4+ £X5,5)
s e(1 4+ PEX}, )
which is bounded uniformly in n by (a). Therefore, {T,} is uniformly integrable.

The remaining two conditions of (2.1) hold by assumption. Therefore
25 Zy; —w N, 1) and by (2.5), S, —, N0, 1). 0
(2.6) CoROLLARY. Suppose X, , is any array satisfying the conditions (2.3 a,
b, ¢), and in addition;

d) X.E_ X, , —,0, and

(e) X El X, :—,0.
Then S, —,, N(O, 1).

Proor. Let Y,, = X, , — E,_,X,, Clearly Y, is an m.d.a. and we will
verify the conditions of Theorem (2.3) for this equivalent array. The demon-
stration that (2.3b) holds is routine, and for (2.3c) observe that

Y= -2 N B X+ DB X and

so by (c) and (e), it is sufficient to show that the middle term on the right-hand
side of this equality converges in probability to 0. But

| D¢ X By Xo | S Do | X dl|Eemi Xl S (20 X )N D0 ELL1 X, )
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by Schwartz’s inequality, and this converges in probability to 0 by (c) and (e).
Finally, to deal with (2.3a), observe that

E(max,g |Y,.|)* = E(max,g, (X, — E,_,X,.)")
< 2E(max,g, X, + 2E(max,g, El, X)) .

The first term on the majorant side is bounded by assumption and for the second,
2 max,g, (Ei_i|X, ) = 2maxg, (E,_, max;g, | X, i) -

Now (E,_, max;g, |X, ;i =2,3, .-, k,} is a martingale and therefore by
Doob’s inequality for submartingales (Doob, Theorem 3.4, page 317),

E(maxg, (E,_,max;g, |X, ;)"
= 2'E(E, _, max;g, |X, ;)
< 2'E(E, _(max,g, |X, ;)" by Jensen’s inequality
= 2 E(max; g | X, |)*

which is also uniformly bounded by assumption. Therefore, by Theorem (2.3),
2 Yai = N(O, 1) and this, with (d), implies S, —,, N(0, 1). I

For a simple example of variables satisfying the conditions of this corollary,
but not the usual Lindeberg condition, take (Q, &, P) to be the Lebesgue unit
interval with Lebesgue measure, r,(w) to be the Rademacher functions (i.e.,
r(w) = +, —1as[2‘w]is even, odd), put X, ,(w) =210 < w < 27") + n7tr(w),
fori < nyand &, =0(X, ;; ] S ).

2.7 COROLLARY. Suppose there exists a matrix of positive constants {c, }
bounded strictly away from 0 and co such that.

(a) max; |XM| —,0,

(b) 24 Eio( X, o I[| X ] S €0i]) =, 0,

(€) 2 B (X, 11| X | S €ni]) =, 0, and
(d) Zi X:.t —p 1.

Then S, —,, N(O, 1).

Proor. By (2.4d) is equivalent under (a) to the condition ), X7 . I(|X, | =
€4) =, 1. The proof now follows by setting Y, , = X, ,/(|X, .| < c,.), and
observing that Y, , satisfies the conditions of (2.6), therefore converges to the
standard normal distribution, and since, by (2.4), P(X}, Y, #+ 2. X,:) — 0, so
too, does Y, X, .. [I

This result contains most of the known martingale type central limit theorems
including 2.1 and 2.2 of Dvoretsky (1972). The next two corollaries show
how much weaker the assumptions may be when the array satisfies the norming
condition (1.2) on the variances.

(2.8) CoRrOLLARY. Let X, ; be a martingale difference array satisfying (1.2) and
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the two conditions:
(2.9) max,g, |X,.—,0 and
(2.10) forall ¢>0, P, X:, <1—¢)—0.
Then S, —, N(0, 1).

Before undertaking the proof of Corollary (2.8) we will need an elementary
lemma.

(2.11) LemMMA. Let X, and X be positive, integrable random variables such that
P(X — X, >¢)— 0, foralle > 0,and EX, — EX. Then X, convergesin L, to X.

Proor oF (2.11). The proof is entirely analogous to that of Scheffé’s theo-
rem (cf. Billingsley (1968) page 224) and proceeds by putting ¥, = X — X, —
(EX — EX,), Y,* = Y, on the set where Y, is positive, and zero elsewhere, and
noting that, by hypothesis, Y,* — 0, for sufficiently large n, Y, * is bounded
above by X + ¢. Therefore, Y,* —, 0, by the Lebesgue dominated convergence

theorem, and since EY,” = EY,*, we have Y, —, 0. []
ProoF oF (2.8). By (2.10) and Lemma (2.11),
(2.12) 2 X -, 1,

and so conditions (a) and (c) of (2.3) are satisfied. The result follows from Theo-
rem (2.3). [J

(2.13) COROLLARY. Suppose X, , is a martingale difference array normalized by
its variance (1.2), satisfying the Lindeberg condition (1.1) and the condition:
(2.14) limsup, ., 2. EXZ X2, < 1.

Then S, —, N(O, 1).

Proor. By (2.4), (2.9) is implied by the Lindeberg condition. The only
remaining condition of (2.8), viz. (2.10), is implied by the following lemma.
(2.15) LemMa. If {X, )} satisfies (1.2), the Lindeberg condition, and (2.14),
then 33, X3, —p, 1.

Proor. For arbitrary positive ¢, put
(2.16) Yn,i = Xn,iI[lX,,,i|ée] .

The Lindeberg condition implies that

(2.17) DiXai— N Yai > 0 and so
”Zz X':,i - 1H1 = “Zngt — 2 YZ,¢||1 + “Zz Y:.i - 1“1 .

The first term on the right-hand side cohverges to 0 by (2.17) and the second

is less than (3, EY}, + 3,,; EY2, Y2, + 1 — 2 3, EY} ). Butsince EY,, <

J
&EX?,, EY?, Y}, < EX},X?, and ¥, EY?,— 1 by (2.17), the limit of this

7,4 n, 5

expression is less than ¢. Again, since ¢ was arbitrary, the limit of || 3, X3 ; — 1]|,
must be 0. [
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3. Invariance principles. There are a number of invariance principles for
martingales; those of Brown (1971), and Drogin (1972), are outstanding exam-
ples. Both of these assume the Lindeberg condition, and in this section we prove
some corresponding results when the Lindeberg condition is weakened to (2.4).
As a corollary, we obtain the central limit theorem (2.2) of Dvoretsky (1972)
and its corresponding invariance principle.

Let J be an interval either of the form [0, T'] for some T < oo or the half line
[0, o). Let D(J) be the space of right continuous real valued functions on J,
endowed with the Skorohod J, topology. We wish to discuss weak convergence
(denoted —,,) of random functions with values in this space (for compact J, cf.
Billingsley, Chapter 3). For semi-infinite J, T will denote an arbitrary real,
0 < T < o0, and observe that by Stone (1963) page 695, it is sufficient to show
weak convergence of the functions restricted to each finite interval [0, T7].

We now consider a doubly infinite array of variables {X, ;} and a sequence of
integer valued, non-decreasing, right continuous functions defined on J, k,(¢)
such that k,(0) = O for all n. We form a random function

(3.1) W, (1) = Yk X, , for reJ

(of course the sum over an empty index set is 0). Observe that W, is a right
continuous step function, a measurable random element of D(J), and W, (0) = 0.
The object of the invariance principle is to show that W, converges weakly to
the standard Brownian motion process W on D(J).

3.2) THEOREM. Suppose X, ; is a martingale difference array satisfying,
(a) max;g . | X 4l -, 0, and
(b) Xk X2, —, t, for each teJ.
Then W, —, W on D(J).
Proor. Put X, , =X, J(31i2 X2, < T + 1). Then P(X,, # X, , for some

i <k (T))—0,and 3, X2, < T + 1 + max,g, ., Xa; which is uniformly inte-
grable by (a). Therefore X, , is an equivalent m.d.a. satisfying;

3.3) maX;<p, (r |Xn,il -,0,
and
(3.4) Skatv X3, —y for each ¢.

We will show that W,(f) = Y ¢ X, ,.—, W on D[0, T'], from which it will
follow, since P(W, #+ W,) — 0, that W, —_, W on D[0, T].

Such an invariance principle, under these conditions (3.3) and (3.4), is similar
to Theorem 3 of Brown (1971), for by (2.4), (3.3) is equivalent under (3.4) to
the Lindeberg condition. For this reason we only sketch the proof. The finite
dimensional distributions of W, are shown to converge to the corresponding
finite dimensional distributions of W by the Cramér-Wold technique; if
Uy, Uy, - -+, U, are arbitrary real numbersand 0 = ¢, < ¢, --- < ¢, elements of
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J, we put
Yn.i = ujy'n,i
=0 if k,(t,)<1i, where j = inf (1; k,(t,) = i) .

The conditions of Corollary (2.8) are easily verified for the array Y, , (with
the unit variance replaced by ¢* = R, u(f; — t,) and thus 3, Y, =
Sim L w[W,(t) — W,(t,_,)] converges to the normal law with mean 0 and vari-
ance o°.

For tightness (cf. Stone (1963) page 695) it is sufficient to prove for each
positive ¢,

(3.5) 1im,_q lim SUp, .o, P(SUP,_yi<sinnist |Wal(s) — Wau(t)] > ¢) = 0.
This is done with only minor changes in the proof of Theorem 3, Brown (1971). 0

The following invariance principle corresponds to Theorem (2.7).

(3.6) THEOREM. Suppose c, , is an array of positive constants bounded away
from 0 and co and:

(a) max;g ) [Xnil =50
(0) Lhat |E X, J(| X, < €4i)| —, 0, and
(€) Xtup X2, —,t, foreach tel.

Then W, —, W on D(J).
Proor. Put Y, = X, I(X,, < c,.), and observe that, by (2.4) and (3.6¢),
3.7 P(Y,,+# X,, forsome i <k, (T))—0 and bl Y3 >, 1.

Therefore, by essentially the same argument as that used in the proof of (2.6),
the array Y,, — E,_,Y,, satisfies the conditions of Theorem (3.2), hence
Sk (Y, — E,_,Y, ) —, W(1). Butsince (b) implies sup,r Sk E,_ Y, ,—,0,
it follows (cf. Billingsley, Theorems 4.1 and 5.1) that 2t Y, ; —, W. The
convergence of W, to W now follows from this and (3.7). [I

We now give an invariance principle corresponding to a central limit theorem
of Dvoretsky [(1972) Theorem 2.2].

(3.8) COROLLARY. Let X, ; be an array satisfying;

(3.9) The conditional Lindeberg: ¥'» E,_, X2 I(|X, ;| > ¢)—,0foralle > 0,
(3.10) Tk E, o Xp >t and
(3.11) Tk B, X, ] =, 0, forall tel.
Then W, —, W on D(J).

Proor. We verify the conditions of (3.6).
(a) From Lemma 3.5 of Dvoretsky (1972), for all ¢, » > 0,

(3.12) P(max, |X, .| >¢) < 7+ P(T.P(X, | >¢|F i) >0}
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Applying the conditional form of Chebyschev’s inequality, and then (3.9), the
limit of this as n — oo is less than 5, and since 7 is arbitrary, this limit must be 0.
(b) Pick any 0 < c< oo. It is clearly sufficient by (3.11) to show
ki |E,, X, KX, | > c)] —,0. Again this follows from (3.9) and the in-
equality |E,_, X, [(|X, | > ¢)| £ ¢'E,_, X2 (| X, > ¢).
(c) For arbitrary ¢ > 0 and re J, put

Wee=X (X, | S, Zin E; X0 St + 1)
and observe that both
(3.13) P(X,,# W,, forsome i< k,(t))—0, and
Tk E,_ (X}, — W2)—,0 as n— oo,
by (3.9), (3.10) and (3.12). Moreover,
(3.14)  E(Sh Wi, — E_, W3 ) = Thal" (EW), — EEI_ W)
S EE(LM E W) S €t + 1)

Consequently for » > 0, by (3.13) and (3.14), limsup,_, P{3 ! (X3, —
E,_,X2) > n} < &t + 1)/5%, which limit, since ¢ is arbitrary, must be 0. There-
fore (3.6c¢) follows from (3.10). [

The last part of the proof of Corollary (3.8) is of independent interest. With
minor modifications we can show that if {X,, ;} satisfies the conditional Lindeberg
(3.9), and if limsup,_, P(3, E,_, X3, > K) is o(1) as K — oo, then

(3.15) max;g. ) 2= (Xa; — E_,X3)—,0.

This result was obtained by Drogin [(1972) Theorem 1] under the Lindeberg
condition. In a number of papers (e.g., Drogin, Lévy), random norming is
used—that is, k,(f) permitted to be a random function. For example, we may
define &, by

(3.16) ky(1) = inf {j; Sz X3, > 1) or
(3.17) ku(r) = inf {j; i B X3 > 1}
The effect of (3.15) is to demonstrate that these two normings are equivalent
under fairly weak conditions.

The theorems of this section remain valid also when k,(f) is, for each n and
t, a stopping time with respect to {#, ;i = 1,2, ...}. Certainly the theorems
and proof of Section 2 remain essentially unchanged if we allow k, = co. Note,
then that the theorems can be verified when k, is a stopping time by replacing
X, . by X, I(i £ k,), for which array the conditions (e.g., of (2.7)) still hold.
The theorems of Section 3 can be similarly extended; for example, the finite
dimensional convergence in (3.2) carries over unchanged. Finally observe that
if k, is defined as in (3.16), (3.6¢) is implied by (3.6a) and similarly if it is
defined as in (3.17), (3.10) is implied by (3.9). Thus if (3.6a, b) hold for k(1)
defined by (3.16), or if (3.9) and (3.11) hold for k() defined by (3.17) then
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W, —, W. These results are similar to Drogin (1972), except that the Lindeberg
condition is weakened to convergence in probability (2.4).

It is perhaps worthy of note that when the triangular array X, ; arises in the
usual way from a sequence of random variables, then &, , c &, _, , for all n,
i = 2. Under this condition it is easy to show that all of the above invariance
principles are mixing in the sense of Rényi (1958), and hence that we can pass
directly from nonrandom to random sum central limit theorems and invariance
principles as is done in Billingsley (1968), Theorem 17.2.

Acknowledgment. I am deeply indebted to the referee for a number of valu-
able contributions, particularly for pointing out and proving the equivalence of
the martingale and non-martingale case (Corollary (2.6)).
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