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“NORMAL” DISTRIBUTION FUNCTIONS ON SPHERES
AND THE MODIFIED BESSEL FUNCTIONS'

By PHILIP HARTMAN AND GEOFFREY S. WATSON
The Johns Hopkins University and Princeton University

In R*, Brownian diffusion leads to the normal or Gaussian distribution.
On the sphere S”, diffusion does not lead to the Fisher distribution which
often plays the role of the normal distribution on $*. On the circle (S*) and
sphere (S?), they are known to be numerically close. It is shown that there
exists a random stopping time for the diffusion which leads to the Fisher
distribution. This follows from the fact, proved here, that the modified
Bessel function I,(x) is a completely monotone function of »2 (for fixed
x > 0). More generally, we study the class of distributions on $* which can
be represented as mixtures of diffusions. The stopping time distribution is
characterized, but not given in computable form. Also, three new distri-
bution functions involving Bessel functions are presented.

1. Introduction and summary. The density of a normal distribution with zero
mean and variance 2v when reduced modulo 2z (or “rolled-up”) is

(1.1.1) f1(0,v) = 27)7'[1 + 2 3 7_; exp(—m®v) cos m0] ,

where —n < 6 < #. fi(0, v) is also the density of a Brownian particle, released
at the “north pole” § = 0 of a circle, after time ». Thus f;(6, v) has some claim
to be called the “normal” distribution on the circle S*. The corresponding density
for the Brownian diffusion on the n-sphere S" = {x ¢ E**': |x| = 1} is given by

(1‘1) fn(a’ ’U) = wn—l Z:=o Nnm eXP[“m(m +n— l)v]an(cos 0) ’

where 0, = area of $* = 2z**2[['((n + 1)/2), m(m + n — 1)form =0, 1, - -.
are the eigenvalues of the Laplacian on S*, P,,, is the Legendre polynomial of
order m for E**!, and N, is the number of linearly independent homogeneous
spherical harmonics of degree m in E"+' (cf. Section 2 for notation). Forn = 2,
this follows from Yosida [16]. It is stated explicitly for n = 2, for example, by
Roberts and Ursell ([10] page 321) and can be obtained for arbitrary n by spe-
cializing their formulas on pages 336-339 for general n-manifolds or from standard
formulas for the fundamental solutions of the heat equation in $* (see Section 2).

While f,(8, v) is, on probabilistic grounds, the analogue on S" of the normal
distribution, the analogue for the purposes of statistical inference is the density
proportional to exp(xcos §) with x > 0, where 6§ is the angle between the
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observation and the mean or polar direction. On S?, von Mises showed that only
for this density is the direction of the vector resultant of a sample the maximum
likelihood estimate of the polar direction. This vector is seen to be a sufficient
statistic. The same holds on S§? (cf. Fisher [3] and Breitenberger [1]) and, in
fact, on $*. On S%, the density is, for —7 < 0 < =,

(1.2.1) 9:(0, x) = exp(x cos 0)/2r1(x)
= (2n) ™Y1 + 2 Yo, [1u(x)/1(x)] cos mb} ,
and, on $*(n = 2), for0 < 6 < =,
(1.2) 9.(0, x) = c,(x) exp(x cos 6)
= 0,7 0520 NonlLns a1 Tin12(%)1Pam(€08 6) -

The normalizing factor c,(x) is determined by

1 = (9,00, x)do, = 0,_, {7 9,(0, x)sin""* 0 db ,
since do, = sin"* 6 df dw,_,. Hence
(1.3) Cu(X) = (X[2) PR 2m DRy, 0(X) 5

cf. (2.5) below. The distribution with density g,(+, x) on $* is called the von
Mises—Fisher distribution. In these formulae, 1,(x) = exp(—v=i/2)J,(ix) is the
modified Bessel function

(1.4) L(x) = Do (X2 k! T(v + k + 1) .

I(x) and K,(x) are standard linearly independent solutions of the modified Bessel
equation; cf. [14] pages 77-80. ‘

Roberts and Ursell [10] showed for » = 2 and a fixed x that there is a choice
of v = v,(x) such that the maximum of |{ [ f,(0', v) — 9,(0', x)] d0'| is “‘small”.
Stephens [12] found the same was true for n = 1. The “best” choice of v
hardly differs from that obtained by equating the coefficients of P,,(cos ) in (1.1)
and (1.2), i.e., Zi41y(%)/Lin_1,2(¥) = eXp(—nv). The result on [{J[f,.(6', v) —
g.(0’, x)]d0’| led us to the conjecture that there is a random stopping time dis-
tribution depending only on n and x for the Brownian motion which leads exactly
to g,(6, x). In Section 4, we prove this to be the case:

THEOREM 1.1. For fixed n = 1,2, ... and x > 0, there exists a distribution
function W, (v) = W, (v, x) on 0 < v < oo such that
(1.5) 9.(0, x) = §& f.(0, V)W, (dv, x) forall 6,

W, (+0, x) = W0, x) =0, Furthermore, W, W,, --- can be chosen so that
(1.6) W0, %) = () Tupya()] §5 €XP[— (n — 1)1/4]W(dr, x) .

A possible explanation of the phenomenon first noticed by Roberts and Ursell
may be that W, (v, x) is “nearly” the Dirac distribution (v — v,(x)) with a jump
of 1 at v = v,(x). In Theorem 4.1 we deduce a number of properties of W, but
do not obtain a good estimate of W, (v, x) — e(v — v,(x)).

At the end of Section 4 we use arguments similar to [5] pages 766-768, to prove
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PrROPOSITION 1.2. Letn =1,2, ... and v > 0 be fixed. Then there does not
exist a distribution function U on x = 0 such that
(1.7 fu(0,v) = §5° 9.0, x)U(dx)  for almost all 6.

Thus we see another sense in which the diffusion density is more fundamental.
The question of the uniqueness of W, in (1.5) (or more generally’ of Q, in (3.1)
below) will remain apen. ‘

In Section 3, we introduce the class Q, of probability densities on $* which
can be obtained as mixtures of f, and we obtain basic results about Q,. These
results permit us to deduce Theorem 1.1 with W, = W in Section 4 as a corollary
of the following:

THEOREM 1.3. For fixed x > 0, 1,(x) is a completely monotone function of v?
hence there exists a distribution function W(t) = W(t, x), 0 < t < ca, such that

(1.8) L(x)[I(x) = (¢ exp(—v)W(dt,x) for 0 v < 0.

The last part of this theorem follows from the first and the theorem of
Hausdorff-Bernstein; cf. [2] pages 415-418 or [15] page 60. For properties of a
function of v having an ’integral representation of the type (1.8), see [11]. It
turns out that the exponent 2 in (1.8) is critical. In fact if 4 = v* and a < 2,
then 0%/ (x)/0pu* — — oo as x — oo for fixed p.

The first part (Sections 2-4) of this paper concerns directly the spherical dis-
tributions f, and g,. In Section 2, we give our notation and a brief resumé of
the required properties of the Legendre polynomials P,,. Section 3 deals with
the class Q, of probability densities on $*. In Section 4, we assume Theorem 1.3
and give the proofs of Theorem 1.1 and Proposition 1.2.

The second part (Sections 5 and 6) of this paper deals with the modified Bessel
function /,. We prove Theorem 1.3 in Section 5 and obtain properties of the
function W in Section 6.

In the last part (Section 7), we observe the existence of three new families of
distributions on x > 0 depending on /, and K,.

2. Notation and the Legendre polynomials. For n = 1, the variable § on
|6] < = is the standard parameter on S* with dw, = df. For n > 1, the variable
fin 0 < ¢ < «is taken as the polar angle on S" so that dw, = sin"~' 0 df dw,,_,.
Thus functions of ¢ alone are axially symmetric functions on $*.

Miiller [9] has given an account of spherical harmonics in ¢-dimensions and
our notation is suggested by his. He denotes the Legendre polynomials of degree
m in E?, normalized to be 1 at t = 1, by P,(g; t), whereas we use the notation
P,,(t) when ¢ = n 4+ 1. Thus by Rodrigue’s formula ([9] page 17),

@) Pon(t) = (=2 "[C(2)/T(m + nf2))(1 — 2= djdiy(1 — pym+in-r
Py)=1lforn=1,2,..., P,(cosf) = cosmf form =0, 1, --. and P,,(¢) is

the standard Legendre mth order polynomial, |P,,(cos §)| < 1. Further P, () =
[[(m + H[(n — 1)/T'(m + n — 1)]C, "~ V7(t) where C,*(¢) is the usual Gegenbauer
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function; [7] page 218. The number N,,, of linearly independent homogeneous
spherical harmonics of degree m in E™*!, is given by

_2m+n—DIm+n—1)
- T(m + 1)[(n) '

Since (see [7] page 221) (d/dr)C,*(t) = 2vCy,ty(t), we have

(2‘2) Nnm

@.3) Pla) = ML= D P ®)-

We shall use this formula in the form

(2’3') P:Lm(t) = Zﬂ[Nn-H,m—l/wn+2][wn/Nnm]Pn+2,m—l(t) *
As is well known (cf. [9]),
(2.4) ®,_, \& P, (cos O)P,,(cos 0) sin*"* 0 d6 = 0, @, [N,

so that [N, /®,]*P,(cos 0) for m = 0, 1, .. . are orthonormal on §”. They span
the space of axially symmetric functions in L*($™). Also from [7], page 221, it
follows that

(2.5) o,_, \Z exp(x cos )P, (cos ) sin*~* 6 df

= 2x MDA x) M TORLL | ny(X)

from which (1.2) and (1.3) may be deduced.

Finally, (1.1) may be obtained by solving the diffusion equation in n + 1
dimensions V?f = df/dv by separation of variables and using the appropriate
representation of the delta function on §,; cf. Yosida [16]. Since the particle
starts at # = 0, the motion is axially symmetric, so that only P, ,(cos #) appears.

For use below, we recall the following:

DEFINITION. A continuous function f(v) is said to be completely monotone on a
v-interval if, on the interior of the interval, f(v) is of class C* and (— 1)*d"f/dv" = 0
forn=20,1, ....

3. The class Q,. This section deals with the class Q, of probability densities
on S™ which can be represented as mixtures of the Brownian distribution (1.1).
It is an analogue of the class Q of distribution functions (rather than densities)
on E' which are mixtures of centered normal distributions studied by Hartman
and Wintner [5].

DEFINITION. Letn = 1,2, ... be fixed and Q, be the set of functions ¢(¢),
|t| < 1, with the properties that ¢(¢) is a Baire function, g(—cos §) ¢ L(S"), 0 <
9(f) # 0 and if C,[q] is the normalizing constant defined by

C,l9] §sn g(—cos 0) dow,, =1,

then there exists a distribution function Q,(v) = Q,[¢](v) on v = 0 such that
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Q.(+0) = Q,(0) = 0 and
G- C.lqlq(—cos 8) = §i fu(6, v)Qu(dv)

/

for almost all 4.
First we shall verify the following elementary fact.

PRrOPOSITION 3.1. Letn = 1,2, ... be fixed. Then f,(0, v) is of class C* for
v > 0, f,(0,v) > 0 and its partial derivative

(3.2) 8f,(0, 0)[00 = —2re""f, (0, v) sin 0
is negative for 0 < 6 < .

Proor. The series (1.1) is uniformly absolutely convergent for v = ¢ > 0,
since |P,,(cos d)| < 1 (cf. [9] page 15) and N, ~ 2m""' as m — oo (cf. (2.2)).
Easily justified formal differentiation of (1.1) gives (3.2) after using (2.3). All

the assertions of Proposition 3.1 now follow from these facts and the relation
of f, to the fundamental solution of the heat equation on S".

THEOREM 3.2. Ler q(t)eQ,. Then, after alteration of q(t) on a null set,
q(t) € C=(—1, 11; ¢(¢) is completely monotone on (—1, 1], in fact, (—)iq'9(t) =
(—=)i(d/dt)iq(f) > 0 for —1 < t £ 1; the integral ¢ = lim (¢ as ¢ — 0, in (3.1)
is uniformly convergent on every interval 0 < 0, < 0 < «; and (—)iq'9(t) € Q,,,;
forj=1,2, - with Qy,3,(v) = Cpyl(—)g?1(v) given by
(3.3) Qusaj(v) = §3 €7 HT0Q, (du) /(5 €770 Q, (du) -

Proor. Since f,(6, v) is a decreasing function of  for 0 <6 <, geQ,
implies that the integral (3.1) is uniformly convergent for 0 < 6, < 0 < =,
6, > O arbitrary. Hence ¢(f) can be taken as continuous on —1 < ¢ < 1 and is
decreasing. It is easy to justify formal differentiation of (3.1) to obtain

—C,lqlq'(—cos 0) = 2 § f,,4(0, V)™ Qu(dV)

by (3.2). It follows that ¢’(r) is continuous for —1 < ¢ < 1 and the last integral
is uniformly convergent on every interval 0 < 6, < ¢ < n. Also by Fubini’s
theorem,

1/Coill —4'1 = —§sni2 4'(—cos 0) dw,,,, = 27§ e Q,(dv)/C,[q] -

The last two formulas imply —g¢'(r) € Q,,, and the case j = 1 of (3.3). An in-
duction on j completes the proof of Theorem 3.2.

PROPOSITION 3.3. Ler q(f) e Q, n C'[—1, 1]. Then the integral in (3.1) is uni-
formly convergent and (3.1) holds for 0 < 6 < .

Proor. Since (3.1) is valid for 0 < ¢ < m and g(—cos @) is decreasing,
Calqlg(=1) = §7 (0, v)Qu(dv) for 0< 0 =m;

Lebesgue’s theorem on monotone convergence implies that the integral in (3.1)
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is convergent for § = 0 and
§5£4(0, v)Qu(dv) = limy_.,, §7 f,(0, v)Qu(dv) -
Our main criterion for ¢ € Q, is given by the following

THEOREM 3.4. Let0 < q(t) e C°(—1, 1] and let 0 % g(—cos 0) e L{(S™) have the
Fourier expansion

(3.4) C.l91(— €08 0) ~ @, £y Ny G Pon(c08 0) ,

where q,,,, is the mth Fourier coefficient,

(3.5) Gum = C,lq]@,_; §§ g(—cos §)P,,(cos 0) sin"~1 4 df ,
form=0,1,.... Then q(t) e Q, [and (3.1) holds] if and only if there exists a
distribution function Q,(v) on v = 0 satisfying Q,(+0) = Q,(0) = 0 and

(3-6) Gum = V7" €Xp[—m(m + n — 1)v]Q,(dv)

form=0,1,....

Note that the exponents in (3.6) satisfy >} 1/m(m + n — 1) < oo, so that the
Hausdorff criterion [6] for the existence of Q, does not apply while, in general,
Hallenbach’s [4] conditions are too complicated to be useful.

PRoOF. Assume the existence of a distribution function Q, on v = 0, satisfy-
ing Q,(40) = Q,(0) = 0 and (3.6). We shall verify that ¢(r) ¢ Q, and (3.1) holds
for 0 < § < r. Lete > 0and put

3.7 Gam(e) = {2 exp[—m(m + n — 10]Q,(dv) , m=20,1,...,
so that 0 < ¢,,.(¢) < exp[—m(m + n — 1)e]. Hence the series in
(3‘8) qs(a) = wn_l Z:=0 N'n.m qnm(e)P'Mn(Cos 0)

is uniformly and absolutely convergent for 0 < ¢ < =. Hence one may put (3.7)
in (3.8) and interchange the order of summation and integration to obtain

(3.9) 9.(0) = §7 f4(0, v)Qu(@v) -
Since f,, = 0, ¢.(f) is non-increasing with respect to ¢, and
(3.10) 50 q.(0) do, = §7 Q,(dv) < 1 for ¢ >0,

it follows from a theorem of Lebesgue (or B. Levi) that

(3.11) lim,_, 4.(0) ="§7 fu(6, v)Q.(dv)

exists on 0 < ¢ < « and is an L'(S") function. But (3.10) and gq,,(¢) — ¢,.,. as
¢e—0form=0,1,...imply that ¢,(0) tends weakly in L}(S") to C,[¢]¢(—cos )
as ¢ — 0. Consequently, (3.11) is the function C,[¢]g(—cos §), and q(¢) € Q,.
Conversely, if ¢(f) e Q, and (3.1) holds, define ¢,() by (3.9); hence (3.7)
and (3.8) hold. Thus 0 < ¢,(d) < C,[g]g(—cos §) implies that ¢,(6) tends to
C.[q]9(—cos 0) strongly, and so weakly, in L(S") as ¢ — 0. Since g,,,(c) is the
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mth Fourier coefficient of ¢,(0), we have that ¢,,(¢) — ¢,, as e — 0 for m =0,
1, ..., that is, (3.6) holds. This completes the proof.

Whereas Theorem 3.2 gives a necessary condition for ¢(f) € Q,, a sufficient
condition, independent of n, is contained in the following.

THEOREM 3.5. Let x > 0 and suppose that q(t) has the properties

(i) 0 ¢q(r) e C[—x, o0),

(ii) q(t) >0 ast — oo,

(iii) q(¢t) completely monotone for t = —x, (that is, suppose q(t) has a represen-
tation as a Laplace-Stieltjes transform
(3.12) q(t) = {3 exp(—st)a(ds) for t = —x,
a(+0) = a(0) = 0, with a(ds) = 0), then g(xt) € Q, and
(3:13) 0.(v) = Qu(v, X) = C,[q(x*)] §7 [Wa(v, sx)/c,(sx)]a(ds) ,
where c,(x) is given by (1.3) and W (v, x) occurs in (1.6). The relation (3.13) is
equivalent to
(3.14)  9Q,(v, 0)[0v = C,[q(x+)] §7 [(W (v, sx)/9v)/e,(sx)]x(ds) -

In the proof of the first part of this theorem, we shall use Theorem 1.1 (to
be proved in the next section). Had Theorem 3.5 been proved ab initio, Theorem
1.1 would have followed as the special case ¢(f) = exp(—¢). The equivalence of
(3.13) and (3.14) is an immediate consequence of properties of W, which follow
from (1.6) and Theorem 4.1.

Proor. By (3.12), we have
g(—x cos 0) = {7 exp(sx cos O)a(ds) for 0<6=nr.
Hence Theorem 1.1, (1.5) and a(+40) = «a(0) give
g(—xcos 0) = §3 [c,(sx)] 755 ful8, V)W (dv, sx)]ex(ds) .

Since the functions and measures in this iterated integral are nonnegative, Fubini’s
theorem implies that the integral in (3.13) is convergent and that we can change
the order of integration in the last integral to obtain

C.[9(x+)]g(—x cos 0) = §5 f,.(0, v)Q,(dv, x) .

This argument is more transparent and gives (3.14) if we use that W,(dv, sx) =
(W (v, sx)/0v) dv; cf. Theorem 4.1 and, (1.6).

4. The von Mises-Fisher distribution and Brownian motion. Theorem 1.1
asserts that, for fixed x > 0, the von Mises—Fisher density g,(6, x) is of class Q.,
the mixing distribution being denoted by W,(v) = W,(v, x). We shall deduce
this from Theorem 3.4 and Theorem 1.3. .

Proor orF THEOREM 1.1. The case n = 1 of (1.5) follows with W, = W from
Theorem 3.4, in view of (1.2.1) and (1.8) in Theorem 1.3. In order to obtain
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the cases n > 1, we note that for v > 0,
Ly ety p() L yo(X) = [1(%)[ L -1 a(%)] § €Xp[— (v + (n — 1)/2)*]W(dt, x) ,
by (1.8). But this can be written as
L w0 inony (%) = §o exp[—v(v +n — D)W, (dt; x) ,

where W, is defined by (1.6). Hence, Theorem 1.1 for n > 1 follows from
Theorem 3.4 in view of (1.2).

Proor oF ProposiTION 1.2. Suppose, if possible, that there exists a distribu-
tion function U satisfying (1.7) for almost all . Formula (1.3) and the asymptotic
behavior of /,(x) imply that c,(x) ~ 1/2z"+Y/ and c,(x) ~ exp(—x)(x/27)"** as
x — 0and x — oo, respectively. Thus g,(6, x) = c,(x) exp(x cos 0) is uniformly
bounded for 0 < @ < wand x > 0, while g,(0, x) ~ (v/27)" exp[x(1 — cos 6)] as
x — oo, uniformly in §. Hence (1.7) is uniformly convergent on every interval
0L, 0.

Let p = U(+0) — U(0) = 0 and write (1.7) as

(0, 9) = plo, + §30 0,0, DUx),

since g,(6, x) — 1/w, as x — +0 uniformly in 6. By (1.5),

[0, v) = plo, + §30[§7 fu(0, W)W (du, x)]U(dx) ,

where W, is given by (1.6) and W, = W of Theorem 1.3. By Fubini’s theorem,
the last formula can be written as

(4.1) fa(0,v) = plo, 4 §5 f.(0, )V(du) ,
where V(+0) = V(0) = 0, V(du) = 0, and
V() = §30 Wa(u, X)U(dx) .

The function V is continuous for # > 0. Thus Proposition 1.2 will be proved
if we verify the following “uniqueness” theorem.

PROPOSITION 4.2. Letv > 0andn =1,2, ... be fixed. Let p >0 and V(u)
a non-decreasing function such that V(+0) = V(0) = 0 and that (4.1) holds uni-
formly on every interval 0 < 6, < 0 < n. Then

4.2) p=0 and V() = e(@ — v),
where ¢(u — v) is the Dirac distribution with jump 1 at u = v.

Proor. Arguing as in the proof of Theorem 3.4, we obtain the following
relationship between the Fourier coefficients of f,(6, v) and f,(9, u),

(43) e~ mimtn—1y Pamo _|__ Sso e—m(m+n-—1)uV(du) for m = 0, 1, e,

where d, = 1 and d,,, = 0 if m > 0. The case m = 0 shows that V' is bounded
and

(4.4) 1 =p+ V(o).
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Let 0 < t <vand m > 0. Then
e~mmin=lv > (Le~mmin-Lul/(dy) > e~m™mr-VIY(f) |
On letting m — oo, it follows that V(f) = 0 for 0 < ¢t < v. Thus (4.3) becomes
(4.5) e~mmin=lu — (= g=mmin-Dup/(dy) for m=1,2,....

Consequently, V(x) has a jump of 1 at ¥ = v and is constant for u > v. This
proves the proposition, in view of (4.4).

5. Proof of Theorem 1.3. It is possible to give a direct proof based on the
modified Bessel differential equation and the asymptotic expansions for /,(x) and
its partial derivatives 0"/ (x)/dv" as x — co. Instead we give a short proof based
on the theory of differential operators and an observation of McKean [8] page
524, since this proof may have wider applications.

The functions /,(x) and K,(x) are solutions of the modified Bessel equation of
order v,

(5-1) Lyl = xy" + xy' — xy = py ,
where ¢ = 12, and their Wronskian determinant satisfies
(5.2) x(I,K) — I'K) = —1;

cf. [14] pages 77 and 80. In order to obtain a formally self-adjoint operator,
make the change of independent variables x — s,

(5.3) ds = dx[x, e, x=e".

Thus 0 < x < oo becomes —oo < 5 < oo and (5.1) becomes
a

(5:4) Lyl==Z —ey=m,

which has the solutions 7,(¢*), K,(¢'). The differential operator L in (5.4) can be
considered a self-adjoint operator on L* —co, co0). No boundary conditions are
needed since s = 4 oo are in the limit point case. Also, the half-line # > 0 is
in the resolvent set. In fact, by (5.2), (# — L)~ is a bounded integral operator
and the corresponding Green kernel is
(5.3) G(s, t, ) = K, (e")],(e") if —co<t<s5< 0,

G(s, t, pr) = K (e')] (e if —co<sst< 0,
where ¢ = 1»*. The standard expansion of (z — L)~*about a point # = g, in the
resolvent set,

(= L) = Za=o (=™ — p)"(pto — L)™ 7,

in the uniform operator topology shows that (d/dp)"(¢ — L)~ = (—1)"m! (1 —
L)~ or that

(=1 (g_)” G(s, 1, 1) = m! G™¥V(s, 1, i) for m=0,1, ...
I
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and g > 0, where G = G and
G™(s, t, p) = §=,, G(s, r, p)G™(r, t, p)dr > 0.

Thus, for fixed (s, #), G(s, ¢, ) is a completely monotone function of x > 0.

In particular, for 0 < x < y, K,(y)1,(x) is a completely monotone function of
v'. Since e¥(2y/n)!K (y)I,(x) — I,(x) as y — oo holds uniformly on v-compacts
(for x > 0 fixed), Theorem 1.3 follows.

REMARK. A special case of McKean’s main result [8] is that
G(x,y, ) = §7 p(x, y, e~ dt

where p(x, y, 1) is a fundamental solution for the parabolic equation Lo = o,.
The relation between p(x, y, f) and W(¢, x) in Theorem 1.3 is

I(x)oW(t, x)[ot = lim,_,, e*(2y[z)}p(x, y, 1) .

6. The function W(#, x) in Theorem 1.3. The formula (1.8) in Theorem 1.3
permits us to deduce a number of properties of W, = W.

THEOREM 6.1. Let W(t, x) for t = 0, x > 0 be given by Theorem 1.3 and extend
its definition to —oo < t < o0, x = 0 by

6.1) Wi(t,x)y=0 if t<0 or x=0.

Then W(t, x) has the following properties: W(t, x) € C=((— o0, o) x (0, 00)) N
C'((— o0, o0) x [0, 0));

(6.2) L(x)/1(x) = ¢ [0W(t, x)[ot] exp(—v*)dt  for v =0
and for x > 0; o(t, x) = W(t, x)I,(x) satisfies the parabolic equation
6.3 (x8/ox)’ = x*¢ + do/ot;

W(t, x) is a distribution function on 0 < t < oo forfixed x > 0,andon0 < x < o
for fixed t > 0, in fact,

(6.4) W(t, x) isincreasingin (= 0) andin x(=0),

(6.5) w0, x)=0 and W(co, x) =1 for x>0,
(6.6) W, 0)=0 and W(t, o) = 1 for t>0;
oW |dt satisfies

6.7) §& x [0V (¢, x)[0r)] dx < oo for fixed t;
there exists a constant C, (independent of x) such that, for fixed x > 0,

(6.8) I(x)W(t, x) < Cl(exti/Z)I/‘it* for small t >0,
(6.9) 1 — W(t, x) < C,Ky(x)/I(x)tt forlarge t > 0;
finally,

(6.10) 174§ sW(ds, x) — Ky(x)[ztl(x) > 0 as t—oo.
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In particular, (6.10) shows that the first moment of W(., x) is co; in fact, that
§o 11t W(dt, x) = oo, but §& ti=W(dt, x) < oo
fore > 0and x > 0.
Proor. Multiplying (1.8) by I(x), introducing

(6.11) o(t) = a(t, x) = I(x)W(t, x),
and writing 1,(x) = I(v, x), we have
(6.12) I(v, x) = {7 exp(—v?*t)o(dt) .

Let ¢ > 0. By the inversion theorem for Laplace-Stieltjes transforms, we have
at continuity points of ¢(f),

(6.13) a(t, x) = ZL §=. I((c + in)t, x)(c + iu)~le+wt dy
T
We verify that this integral can be differentiated arbitrarily often with respect
to both ¢ and x; in fact
(6.14) *w [0™1((c + iu)t, x)/0x™||c + iu|*du < oo

is uniformly convergent on compacts of x > 0 for arbitrarily fixed k and n =
0,1, -... To this end we use the integral representation (cf. [14] page 79),

(6.15) I(v, x) = [(x/2)*[xC(v + $)] §L, (1 — s?)*~te=ds.
Define 0 = 6(u) by
(6.16) v = (¢ + iu)t = (c* + uP)ted™ [B@)] < =2 .

Then O(u) —> +x/4 as u — +oo; in fact €™ = et 4 O((c* + u?)~%) as u —
+oo. Thus
(6.17) Rev ~ |u/2]t, Imy ~ +|u/2|t as u— +oo.
It follows from (6.17) that there exist constants 8 = f(e, n), C = C(e, n) such that
(6.18) 19"1(v, x)[ox"| < C(1 + |p|*~er™/T(v + 4)
for 0 < ¢ < x < lfe, v = (¢ + iu)}, and large |u|. By Stirling’s formula (cf. [7]
pages 3 and 4) and (6.16), (6.17) and (6.18),
I'(v + §) = (2m)* exp(vlog (v + %) — ¥)[1 + O(]»|7)]
as |u| — oo. Hence, if 0 < a < 274,
1/T(v + ) = O(exp(—alul* log Ju])) as Ju] - oo .
Thus, by (6.18) for fixed k and n, )
|v|*|0™I(v, x)[0x"™| = O(exp(—alu|* log |u|)) as |u|— oo,

uniformly for 0 < ¢ < x < 1/e. This implies the assertions concerﬂing (6.14)
and hence the fact that ¢(f, x) e C* and W(t, x) e C* for —oco < t < oo and
x> 0.



604 PHILIP HARTMAN AND GEOFFREY S. WATSON

In particular (1.8) can be written as (6.2). By an integration by parts applied
to (6.12),

(6.19) I(x) = v* {5 o(t, x) exp(—vi) dt, v=>0,x>0.
Since I,(x) is a solution of

(6.20) Lyl = x¥" 4+ xy’ — Xy =¥y,

an application of L to (6.19) gives

(6.21) VI(x) = 1 §3 L[o(t, x)] exp(—v*) dt .

But (6.2) and the uniqueness theorem for Laplace transforms, with (6.21), implies
that L[a(t, +)] = d0/dt which gives (6.3).
Since the right side of (6.3) is nonnegative,
0% (t, e*)|ou* = (x0/dx)*a(t,x) = 0,
where x = expu. Hence o(t, e*) = 0 is a convex function of # and so
0 < lim,_,_,o0o(t, e*) = lim,__,0(f, x) < oo

exists and is a non-decreasing function of . Fatou’s lemma and (6.19) imply that
0 = v §¢ [lim,_,, 0(z, x)] exp(—v*) dt for v>0.

This gives o(¢, +0) = 0, hence W(t, +0) = 0 and W(z, x) is continuous for
—o0 <t < oo and x = 0. Itis clear that (6.4) holds.
Since W(t, x) = o(t, x)/1(x), L(l;) = 0 and (6.3) show that

W' 4+ 211, + 1/x]W' = W, [x*
where W, = W /ot = 0. Hence
(6.22) (W'Iix) = )W, [x = 0 for tr=0,x>0.

Since W = 0 and W(r, +0) = 0, a convexity argument shows that W(z, x) is
non-decreasing in x. In particular, by (6.5), 0 < lim W(z, x) < 1 exists, as
x — oo, and is non-decreasing function of r. From (6.19),

1 — L(x)/Iy(x) = v* §o [1 — W(t, x)] exp(—vir)dt for v> 0.

Since 1 — I (x)/I(x) >0 as x— oo, it follows from Fatou’s lemma that
W(t, +oc0) =1 for t > 0. Thus (6.4), (6.5), (6.6) hold.
Two quadratures of (6.20) give

§= (AN I2W(t, x)x~1 dx) dr < oo

by (6.6). On interchanging the order of integration and using I(x) ~ e*(2zx)~*
as x — oo, we obtain (6.7).
From the relation

L(x)[Iy(x) = §¥*" exp(—v*)W(dt, x) = e W(1 12, x) ,
we obtain the inequality W(t, x) < el (x)/I(x) for v = ¢+% > 0. Thus (6.8)
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follows from a standard asymptotic formula for /,(x) as v — co (with x > 0
fixed), easily obtained from (6.15) and Stirling’s formula,
L(x) ~ (ex/2vy |2yt ;

Horn (cf. [14] page 225).
In order to prove (6.10), we use

(6.23) —[oL,(x)/ov]/I(x) = 2v 3 t exp(— )W (dt, x)
and the formula (cf. [14] page 78),
(6.24) — 0l (x)[0v — Ky(x) as v—0.

Thus, if we let »* = p in (6.23), we obtain
§o te=HW(dt, x) ~ Ky(x)[21y(x)pt as g —oo.
Hence, (6.10) follows from a standard Tauberian theorem; cf. [15] page 197.
We now obtain (6.9) as a consequence of (6.10) and the inequalities
§6 sWds, x) = §ia sW(ds, x) = (1[2)[W(1, x) — W(1[2, x)] -
By (6.10), W(t, x) — W(t[2, x) < 3K(x)/tI(x)t* for large . Hence, for large ¢,
1 — W(t, x) = So_ [W(2™ e, x) — W(2"t, x)]
= [BKy(x)[m(x)1H] T3, 270
This gives (6.9) and completes the proof of Theorem 6.1.

7. On distributions related to /,(x) and K, (x). A version of the argument
showing that W(t, x) is a distribution function on x > 0 (for fixed ¢) will be used
to obtain the following.

ProposiTION 7.1. Let 0 < p < v be fixed. Then I,(x)/I,(x) and K (x)/K,(x) are
(continuous) distribution function on x = 0.

Proor. Since I,(x) ~ (x/2)*/T'(1 4+ v), K, (x) ~2(x/2)"*/T'(v) as x — 0 and
I(x) ~ e|(2nx)t, K (x) ~ e *(n[2x)} as x — oo, it follows that I(x)/I(x) and
K, (x)/K,(x) tend to O or 1 as x — 40 or co; cf. [14] pages 202-203, Thus it
only remains to verify that these functions are increasing for x > 0.

Since y = I (x) is a positive solution of (6.20) for x > 0 the function z =
I(x)/1,(x) is a solution of

(x122") = (»* — i)} z/x > 0
for x > 0, satisfying z > 0 and z(+0) = 0, z(co) = 1. Rewrite this equation as
d’zlds’ = (v — )}z >0, where ds = dx|xI}?.

Thus z is a convex function of s and, in particular, cannot take a maximum.
Since z > 0 and varies from z = 0 to z = 1 as s increases, z must be monotone.
In fact, dz/ds > 0, hence z/ > 0 for x > 0.
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Similarly, z = K,(x)/K,(x) > 0 satisfies z(40) = oo, z(c0) = 1 and, as a func-
tion of s, is a solution of

d’zlds’ = (* — K,z >0, where ds = dx/xK,’ .
Note that s — co as x — co since 1/xK,? ~ 2¢%[r as x — co. Since z is a convex

function of s which is bounded as s — oo, it follows that z is monotone. In fact,
dz|ds < 0, hence z' < 0 for x > 0.

PROPOSITION 7.2. Letv = §and0 < pp < v. Then 2xI,(x)K (X) is a (continuous)
distribution function on x = 0.

This is false for z > v > 00r 0 < v < . In fact, the asymptotic developments
for I, K, show that, as x — oo,

2xI(x)K,(x) ~ 1 + (2 — v))2x + -+,
2xI(X)K,(x) ~ 1 — (4* — 1)/8x + ...

cf. [14] pages 202-203. Thusif x> v >00r0 < v < £, we have 2xI, K, > 1
or 2xI,K, > 1 for large x.

Proor. In view of Proposition 7.1, it suffices to consider the case £ = v = 1.
Ifv = 4, then 2x/(x)K,(x) = 1 — e7*, and the result is trivial. We shall there-
fore deal only with the case £ = v > 4. The asymptotic behavior of /,, K, shows
that 2x7,(x)K,(x) — 0 or 1 according as x — 0 or co. Thus it suffices to show that
(xI,K)) = [(x}L)(x*K,)]’ > O for x > 0, equivalently, that if r,(x), ry(x) are the
logarithmic derivatives of x:K, xt1,, then r,(x) + r,(x) > 0 for x > 0.

In the differential equation (6.20) for y = I, K, introduce the new dependent
variable z = x!y. Thus z = x!I,, x}K, are solutions of

(7.1) 7 —q(x)z =0, where ¢ =1 4 (»* — 1)/x2.
The corresponding Riccati equation for r = 2’/z is

(7.2) r=gq(x)—r.

Hence r,, r, are solutions of (7.2) satisfying

(7.3) n(x)— —1 and ry(x) — 1 as x — oo .
From the behavior of I, and its derivative at x = 0,

7.4) r(x) ~ (v 4+ $)/x as x—0.

The zero-level curves for the right side of (7.2) are r = =+ g*(x), where g(x) > 1
satisfies ¢¥'(x) < 0 for x > 0. Since ¢(x) — r* < 0 when r < —g#(x), it follows
that if r = r(x) is a solution of (7.2) satisfying r(x,) < —g#(x,) < —1 for some
x, > 0, then r(x) is decreasing (in particular r(x) < r(x,) < —1) for x > x, on
its interval of existence. Hence the first part of (7.3) implies that r,(x) > —g(x)
for x > 0. .

Since ¢¥(x) < 0 while g(x) — 72 = 0 if r = ¢*(x), it follows that if r = r(x) is
a solution of (7.2) satisfying r(x,) > ¢*(x,) for some x, > 0, then r(x) > g#(x) for



NORMAL DISTRIBUTIONS ON SPHERES 607

Xx > x,. Note that g}(x) ~ (* — 1)t/x as x —> 0. Since (v — 1)t < v + %, (7.4)
implies that r,(x) > ¢*(x) for small x > 0. Hence ry(x) > g¥(x) for all x > 0.
Consequently, r,(x) 4+ r,(x) > 0 for x > 0, and the proof is complete.
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