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R-THEORY FOR MARKOV CHAINS ON A GENERAL
STATE SPACE I: SOLIDARITY PROPERTIES
AND R-RECURRENT CHAINS

BY RicHARD L. TWEEDIE

The Australian National University, Canberra

This paper develops, for a Markov chain {X,} on a general space
(&, &) with n-step transition probabilities Pr(x, 4), xe€ 2, Ade &, a
theory analogous to that of Vere-Jones for Markov chains on the integers.
If the chain is ¢-irreducible there is a partition %" of 22~ such that ¢-almost
all of the power series G(x, 4) = Y;» P*(x, A)z» have a common radius of
convergence R for 4 in any element of .7, and they all diverge (R-recur-
rence) or all converge (R-transience) for z = R. The R-recurrent case is
then investigated, and it is shown that there exist essentially unique non-
zero solutions Q, f'to the R-subinvariant equations Q = RQPand f = RPf,
and that Q and f satisfy these inequalities with equality: a relationship
between Q and f and first-entrance probabilities is also established. Fur-
ther, if {X,} is aperiodic, limy—e R"Pn(x, A) = f(x)Q(A)/ § o f(")0(dy) for
almost all x e 27and 4 in any element of a second partition.

The methods used are probabilistic and depend mainly on generating
function techniques: it is pointed out that these techniques do not depend
on the substochasticity of the transition probabilities, and hence the results
are true in a much wider context.

1. Description of the process; Condition I. Let 2% be an arbitrary set, on
which is defined a o-field . We consider a Markov chain {X,;n=0,1, ...}
taking values in &2%, with stationary transition probabilities P(x, 4), 4 ¢ &7 for
fixed x € 27, P(x, +)isa probability measure on the o-field ., and for each fixed
Ae &, P(-, A)is a measurable function on -2°. We denote the n-step transition
probabilities of the chain {X,} by

PY(x, A) = Pr{X,e 4| X, = x} n

v

1
these are defined iteratively by
(1.1) Pi(x, A) = § o P(x, dy)P*7(y, 4) .

We shall write P’(x, A) = d(x, 4), where o(x, A) =1 if xe A and o(x, A) =0
if x¢ A.

Extensive use will be made of the idea of taboo probabilities; we write, for
A,Be 7, ’

sP"(x, A) =Pr{X,ed, Y ¢B,r=1,...,n— 1| X, = x}.
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These are defined analytically by
(1.2) sP(x, A) = § 5 P(x, dy)s Py, 4)

where B° denotes the compléement of B in Z°.
The purpose of this paper is firstly to investigate the properties of the power
series

(1.3) G,(x, A) = Xz, P(x, A)z*

for xe 227 and A e & . Since P*(x, A) < 1, G,(x, A) exists and is finite at least
for 0 < |z| < 1. In particular, in Section 2 we prove some solidarity theorems
regarding the radii of convergence of these series. These theorems, and in many
cases their proofs, are suggested by similar results in the case 22 = Z (where Z
is the set of nonnegative integers) proved by Vere-Jones (1962), which we shall
refer to as VJ1.

Secondly, we prove existence results for r-subinvariant measures and functions
for {X,} (defined in Section 3) which extend those of VJ1 and Vere-Jones (1967),
which shall be referred to as VJ2. We show in Section 3 that results of Harris
(1956) for r = 1 can be generalized: in a sequel we shall show that under certain
conditions other results of Harris (1957), Veech (1963), Pruitt (1964) and Moy
(1967) can also be generalized from the discrete state space case.

The fourth section contains work on first entrance analogues, and criteria for
the finiteness of r-subinvariant measures in terms of these; the fifth R-positivity
results; and the sixth indicates how the work extends to general nonnegative
operators as VJ2 extends VJ1.

We write, forn,j =1,2, ...

(1.4) B(n,j) = {xe 2 P(x,B)e((j + 1)),
P(x,By=0,r=1,...,n—1};

also put

(1.5) B = U1 B(n, j)

so that B is the set of points in 22~ from which it is possible to reach B.

In order to prove solidarity results for Markov chains on a general state space,
one needs an analogue of irreducibility, and in this we follow Orey (1971) and
call the chain {X,} ¢-irreducible if there exists a g-finite measure ¢, not identically
zero, such that ¢(B) > 0 implies B = Z°.

LeMMA 1.1. Suppose that {X,} is ¢-irreducible for some ¢; then there exists a
measure M on & such that

(i) {X,} is M-irreducible;

(ii) if Be & is such that M(B) = 0, then M(B) = 0.

Proor. Take a fixed real a, 0 < @« < 1. Since ¢ is o-finite, there exists a
partition %~ = (K(j)) with 0 < ¢(K(j)) < oo for each j. Define M by setting,
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for each Be &,
(1.6) M(B) = 23; 27 Yy $(dX)Go(x, B)P(K())) 5
since M(2") < a/(1 — a), M is trivially o-finite. Suppose M(A) > 0 for some
Ae F. Write
Ay ={y: Gy, 4) > k7}3

using the obvious inequality

Pr(x, 4) 2§, PA(x, dy)PT="(y, A) , r>n,
shows that, for x € 4,(n, j),
(1.7) Gu(x, 4) 2 [k(j + D]

But from (1.6), M(A) > 0 implies ¢(A4,) > 0 for some k, and since {X,} is
¢-irreducible, U, ; A(n, j) = A, = 2, and so (1.7) shows {X,} is also M-
irreducible.

If, on the other hand, M(A) = 0, then (1.6) shows that ¢(4) = 0. Notice that
A C A4, since certainly if one can reach 4 from x then one can reach A from x;
hence ¢(A) = 0, and from (1.6), we must also have M(4) = 0, which is (ii). [J

We shall henceforth assume that M denotes a fixed, o-finite, measure on %, not
identically zero and that {X,} satisfies

ConpiTioN 1. (i) {X,} is M-irreducible

(ii)y M(B) = 0 implies M(B) = 0.
We know from Lemma 1.1 that it is enough to assume that {X,} is ¢-irreducible
for some ¢ for Condition I to hold. When in the sequel we speak of results
holding for almost all x € &7, it will be understood that the exceptional set is of M-
measure zero, although we shall often emphasize this explicitly.

A related notion of “irreducibility” for general state space Markov chains is
sometimes expressed by demanding that {X,} satisfy

ConpiTiON I'. The measures 7,, defined by
(1.8) 7:(0) = LY 27"P™(x, o) = Gy(x, ),
are all equivalent (have the same null sets).

Condition I’ is used in, for example, Sidak (1967); it is somewhat stronger than
Condition I, for if we take y, = M, {X,} is M-irreducible and, under Condition
I’, M(A) = 0 implies not merely that A is M-null, but that A4 is empty. The
following example provides a chain satisfying Condition I but not Condition I':
we shall employ this example more than once to illustrate that naturally occurr-
ing null sets need not be empty.

ExampLE 1. Let {Y,} be an irreducible (in the classical sense) Markov chain
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on the positive integers, and let {X,} be a Markov chain on Z, with

Pr{X,eA|X,=x} =Pr{Y, ed|Y,=x}, x>0;
Pr{Xn=0]Xn_1 =0l=a< 1;
Pr{X,eAd|X,_, =0} = pil, 4), 0<pg=s1l—a.

Example 1 shows the essentiai difference between Condition I and the standard
notion of irreducibility on the integers, for the former ensures, when 27 = Z,
only that there is exactly one closed class of the chain: it does not ensure that
this closed class exhausts the state space.

Finally, we define the collection of sets & * by 4 . *ifandonlyif 4 ¢ &
and M(4) > 0 (& * will not, of course, be a o-field); and for 4e & *, we
shall write &, for the collection of &% -measurable subsets of 4, and %+ for
those elements of %, which have positive M-measure. If % is a partition
of .27, then we also write % , for the union of the o-fields &, Ke .5, and
F Lt =UF

2. Solidarity results for the series G (x, 4). In VJ1, Vere-Jones proved that
if £ = Z, and if R, is the radius of convergence of the series G,(i, {j}), then all
the R,; have a common value R when the chain is irreducible (in the classical
sense), and that either all the series G.(i, {j}) are convergent or they are all
divergent. The result which we shall prove in this section is

THEOREM 1. Suppose {X,} is as in Section 1, and M satisfies Condition 1. Then
there exists a real number R = 1, a partition 2% of 22 and an M-null set N such
that, forx¢ Nand Ae & .+, R is the radius of convergence of the series G (x, A).
Either Gy(x, A) < oo for every x¢ N and Ac F,*, or Gy(x, A) = oo for every x
and A. If R = 1, then in fact N = @; if R > 1, then N may be nonempty.

The proof of this theorem will occupy the bulk of this section, and we give
it in several propositions.

PRrROPOSITION 2.1. Let r > 0 be fixed. Either G (x, A) = oo for every xe 2~
and A e Z +, or there is a partition 2%, and a null set N, such that for x ¢ N,, and
Ae T4, G x,4) < oo.

Proor. Suppose for some { € 27 and Be & +, G,({, B) < co. We show that
the set N, = {y: G,(y, B) = oo} and the collection of sets 5%, = {B(n, j), n, j =
1,2, ...} (which is a partition since M(B) > 0) satisfy the proposition. For any
n,m=0andany 6 < 1,

grrsmPr(C, B) 2 §y, (0P, dy)rP(y, B) ;
summing over n and m gives
0 > (1 = 0)7G,(C, B) = §x, Gru(C: dy)G.(y, B) -

By the definition of N,, this means G,,({, N,) =0, and from Condition I,
M(N,) = 0.
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Secondly, form > n =1, j = 1, we have
r"P™(x, B) = \5n.;, " "P™ "(x, dy)r"P*(y, B)
> P(j + 1) Prx, B, ) 5
summing over m gives
G(x, B) = "(j + 1)7'G (x, B(n.))) »
and so for all x¢ N,, G(x, B(n, j)) < co. []

Adopting the nomenclature of Vere-Jones (VJ1) from the countable state
space, we shall call the chain {X,} r-transient if there exists { € 2" and 4 ¢ 5+
such that G,({, 4) < co. We shall call a set 4e .5 * an r-transient set if, for
some one (and hence, from Proposition 2.1, almost all) x € 27, G,(x, 4) < oo.
From Proposition 2.1, if {X,} is r-transient, then 22” can be partitioned into r-
transient sets. Note that, if {X,} is r-transient, then {X,} is a-transient for each
a < r. We can thus define R by

2.1) R =sup{r: {X,} is r-transient},

and we have that {X,} is r-transient for all r < R; by stochasticity, R > 1. We
say that {X,} is R-recurrent if it is not R-transient, and call a set 4 an R-recurrent
set if {X,} is R-recurrent and A is r-transient for all r < R.

It should be noted that if R = 1, this definition of 1-recurrence is somewhat
weaker than that of ¢-recurrence given in Orey (1971), page 4; ¢-recurrence
demands that for every 4 e &+, ,G,(x, A) = 1, xe 2. Some connections be-
tween the two notions of recurrence are given in Section 2 of Jain and Jamison
(1967).

PROPOSITION 2.2. Suppose {X,} is R-recurrent. Then there exists a partition 7%,
of & into R-recurrent sets.

Proor. Choose some sequence {r,} of real numbers with r, { R, and write
Np = U.N, , where N, isasin Proposition 2.1. Then for fixed{ e N;", G, (&, +)
is a o-finite measure on 22~ for each n, and it follows from a result of Kingman
((1967) page 73) that there is a partition %7 = (Kg(j)) of &2~ such that G, (C,
Kx(j)) < oo for each n, j. Thus .57 is a partition of {X,} into R-recurrent
sets. []

PROPOSITION 2.3. Suppose {X,} is r-transient. Then if r = 1, there exists a par-
tition 2%~ = (K(j)) such that G,(x, K(j)) < oo for every x e 2 and all j; but if
r > 1, then the null set N on which G (X, A) = oo, for all A e 5+ need not be empty.

Proor. Suppose r = 1, and that for some { € 27and 4 € F ¥, G,({, 4) < oo.
Let A4, = {xe 2": Gy(x, A) < n}; from Proposition 2.1, for large enough n,
A, N Ae & +. For such an n, write B = 4, N A. We have, decomposing over
the first entrance to B, and using the taboo probability notation introduced in
(1.2),

(2.2) Pn(x, B) = T3t §5 5P(X, d))P"H(y, B) + 1P(x, B) .
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Writing the generating functions for taboo probabilities as

(2.3) sG(x, A) = XI5 sP™(x, A)z™
for any sets 4, Be %, we have, summing both sides of (2.2) over m,
(2.4) Gy(x, B) = {5 5Gi(%, dy)G\(y, B) + 5Gi(x, B)

< (n + 1)5Gy(x, B) ,
since by definition G,(y, B) < G,(y, 4) < nwhen ye BC A,. But
3Gi(x, B) = Pr {the chain {X,} ever enters B|X,=x} <1,

and so from (2.4), G,(x, B) < n + 1 for every xe 2. As in Proposition 2.1,
this means that G,(x, B(n, j)) is finite for each n, j and every x. Hence the first
statement of the proposition is proved.

To show the second, in Example 1 put « = ¢ and 8 = 1 — ¢™*, where ¢ is
chosen with 1 < ¢ < r: since

PO, )=Pr{X,=1,X,=0,s=1,...,n— 1| X, =0}
= (1 — ¢ e,
the series G,(0, 1) diverges for any real z > ¢, and so in particular for z = r. [

Proor oF THEOREM 1. Define R by (2.1); then R > 1, since P*(x, A) < 1 for
every n, xe 2, Ae & . If {X,} is R-transient, we may choose %" = % and
N = N, as in Proposition 2.1, and if X, is R-recurrent as in Proposition 2.2; this
then gives R as the radius of convergence of each of the power series G,(x, 4),
x &Ny, Ae & 4 ; for if one of these power series had radius of convergence
@ > R, then G(x, A) < oo for R < 8 < a, and this would contradict the defi-
nition of R; whilst the nonnegativity of P*(x, A) ensures that the radius of con-
vergence of such a series cannot be less than R, since A is an r-transient set,
r < R. Proposition 2.1 also proves the penultimate, and Proposition 2.3 the
ultimate statement of the theorem. []

Throughout the remainder of this paper we shall use R to denote the common
radius of convergence shared by the series G,(x, A4), and call R~ the convergence
norm of {X,} (cf. VJ2).

Finally in this section, we look at the M-absolutely continuous and M-singular
parts of P*(x, «); that is, write

(2.5) P*(x, B) = {5 p"(x, y)M(dy) + P,"(x, B),

where for each x, p*(x, «) is an & -measurable function and P,*(x, ) is con-
centrated on a set S, with M(S,) = 0.

Write g,(x, y) = X p"(x, y)z", and let R,, be the radius of convergence of
g.(x, y). Perhaps the exact analogue of Vere-Jones’ result is

THEOREM 2. There exists a real number R = 1, an M-null set N, and, for each
x e N°, an M-null set N,, such that
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(i) forxeN,yeN,, R,, = R.

(i) either g,(x,y) < oo forall xe N°andy € N°, or g,(x, y) diverges for all such
X, y; in the former case {X,} is R-transient, in the latter R-recurrent.

The choice of version of the densities may determine the null sets N,, but not the
radius of convergence R or the null set N.

Proor. Let R, Nand ¢ be as in Theorem 1. Since G,(x, K(j)) = Yz, 9>
y)M(dy) from (2.5), there is a null set N,(j) < K(j) such that R,, = Rforx¢ N,
y & N,(j). Let L(n) = {yeZ": R,, > R + 1/n}, and suppose M(L,(m)) > 0 for
some m < oo; write L,'(k) = {y € L,(m): 9p.1/m(X, y) < k}. Since L,'(k) T L.(m)
as k — oo, we can find # such that M(L,'(k)) > 0.

Finally, write H, = L,'(k)\S,; we have, from (2.5) and the above,

Griym(* Hy) = S, 9 rry/m(X> y)M(dy)
< hM(H,) .

This contradicts the definition of R since it implies {X,} is (R 4 1/m)-transient,
and so L,(n) is M-null for each n. Writing N, = [U; N,(j)] U [U L.(7)] leads
to (i); a similar argument shows that there exists a set N, for x € N° such that
(i) holds. Writing N, = N, U N,” then gives the theorem. []

One might hope to replace the null sets N, in this theorem with a single M-
null set, Nysay. In general, except when 22”7 is countable, this cannot be done;
if, for example, M allots zero measure to every singleton {x}, then by choosing
a version of the density with p"(x, x) = a™" (a # R), wecanhave R,, = a # R
for every xe 27, and so U N, = 2.

The solidarity results which we have proved are related, when r = 1, to those
of Theorem 2 of Jain and Jamison (1967) if & is separable (countably gener-
ated), and to those of Siddk (1967). The latter shows that, if Q is a o-finite
1-subinvariant measure, then (under Condition I') either all sets of finite Q-
measure are 1-transient, or all such sets are 1-recurrent. We shall show in Part
II that this result can be derived from ours under Condition I, and further that
if r < R, and Q is an r-subinvariant measure (cf. (3.1) below) then all sets of
finite Q-measure are r-transient sets (if {X,} is 7-transient) or r-recurrent sets (if
{X,} is r-recurrent). This identification of r-transient and r-recurrent sets is
useful, for no solidarity properties exist for general transition probabilities
P*(x, A), where A is an arbitrary member of &7 for we always have 27¢ &,
and obviously G,(x, :Z°) = oo for all xe 2.

3. R-invariant measures and functions for R-recurrent chains. In this section
we consider the inequalities

(3.1) Q(A) = r ., Q(dx)P(x, A) all Ae 5

(3.2) f(x) = r§ ., P(x,dy)f(y) almost all xe 2
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and the corresponding equalities
(3.3) 0(4) = r . Q(dx)P(x, A) all 4e. 7
(3.4) f(x) = r§ . P(x,dy)f(y) almost all xe 2.

A o-finite measure Q, not identically zero, satisfying (3.1) is called an r-subin-
variant measure for {X,}, and r-invariant if it also satisfies (3.3); whilst a non-
negative measurable function f with M{y: f(y) > 0} > 0, satisfying (3.2) is called
an r-subinvariant function for {X,}, and r-invariant if it satisfies (3.4). If f is an
r-subinvariant function, we write

(3.5) N,=H,uH,,
where H, is the null set on which (3.2) fails: from Condition I, M(N,) = 0 and

- from (3.2), f(x) > 0 on N,°. In the countable case, (3.1)—(3.4) are studied
extensively in V]2,

ProrosITION 3.1. Whenr > R, {X,} admits no r-subinvariant measure or function.

Proor. Suppose Q satisfies (3.1) for r > R, and choose gsuch thatr > 8 > R.
Iterating (3.1) gives

(3.6) 0(4) = 1 § . Q(AN)P™(x, 4) ,

and multiplying each side of (3.6) by 8" and summing over n gives

§ 2 Qdx)Gy(x, A) < O(4) T (BIN" < oo

for some A with 0 < Q(A4) < co. But 8 > R implies G,(x, A) = co for every
x e 2 (Theorem 1). So Q = 0, which we have specifically excluded. A similar
argument shows that no r-subinvariant function can exist when r > R. []

The next lemma, although simply proved, is a powerful tool for the study of
r-subinvariant measures and functions (cf. VJ2 in the countable state case).

LemMma 3.1. (i) If f is r-subinvariant, r < R, then

J(x) 2 4 4G.(x, dy)f(y)

for almost all x € 27 and every Ae & .
(ii) If Q is r-subinvariant, then

Q(B) =z 14 2(4).G.(y, B)
forevery Be & and Ae F+.
Proor. From (3.2), defining N, by (3.5),

f&) =z r§ 2 PO, dy)f(y) 2 1 §4 P(x, dy)f(9) . XEN,.
Assuming inductively that, for y ¢ N,

J) =z §a 22 Py, dw)f(w)
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we have for x ¢ N, (since N, & N,)
f(x) 2 1§+ P(x, dy)f(y)
= 1§40 P(x, dy) §4 D1 1" aP™(y, dw)f(w) + 1 §4 P(x, dy)f(9)
§a 27 1 P (x, dw)f(w) -
Letting n — oo in the induction proves (i); (ii) is proved similarly. []

Using the notation of Proposition 2.1, we have the following result:

ProrosiTiON 3.2. If {X,} is r-transient, each of the o-finite measures G (x, +),
x & N,, is r-subinvariant for {X,}, and each of the functions G,(+, A), Ae F % , is
r-subinvariant for {X,}.

Proor. For the r-subinvariant measure result, note
G,(x, A) = rP(x, A) + Y 7, I"P"(x, A)
= rP(x, A) + r§, X, r"P™(x, dy)P(y, A)
> 1§, G,(x, dy)P(y, ).

A similar breakup of P*(x, A) = { . P(x, dy)P""'(y, A) proves the r-subinvariant
function result. []

A more detailed investigation of r-subinvariant measures for r-transient chains
is carried out in a sequel to this papetr. We shall now go on to present results
for R-invariant measures and functions for R-recurrent chains: these parallel
and extend those of VJ1 and VJ2 for 227 = Z, and those of Harris (1956) for
l-invariant measures for ¢-recurrent chains on a general state space.

The method of proof is, firstly, to establish an existence result for R-invariant
functions, and then to show that one can use this to utilise Harris’ result for
¢-recurrent chains to prove an existence result for R-invariant measures for R-
recurrent chains.

For the remainder of this section, we shall assume not only that R~ is the
convergence norm of {X,}, but also that {X,} is R-recurrent.

Suppose that f is some R-subinvariant function for {X,}, and define N, by (3.5):
write Z2f) = Z\N;, F(f) = F ;- Then we can define a Markov chain
{X.(N)} on (ZAf), Z(f)) by the (possibly defective) transition law

(3.7 Py(x, A) = R §, P(x, dy)f(y)/f(x) ,
xe Z(f), Ae Z(f). Since, by construction, P"(x, N;) =0, xg N, r =1 we
have as the n-step transition probabilities of {X.(}

Pj(x, 4) = R §, P*(x, y)f()If(x),  xeZ(f), 4e Z(f),
and consequently
(3-8) Gip(Xs A) = 7o P(x, A) = §,4 Go(x, )W) (%), - xeZAf)-

Since {X,} is R-recurrent, this implies that G, (x, 4) diverges for all x e 27 f)
and 4 e . Z(f)*, and so {X,(f)} must be l-recurrent.
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Now a 1-recurrent chain must have P(x, 22”) = 1 for almost all x: supposing
otherwise, we can find 4 ¢ & * with P(y, 22°) < 0 < 1 for all y € 4, and using
a last exit decomposition, we have, for all » < 1 and every x

G,(x, A) = 4G, (x, A) + §4 Go(x, d).G(y, 4)
é 1 + G'r(x’ A)5
which implies G,(x, 4) < 1/(1 — d); hence by monotone convergence G,(x, 4) <
o, which contradicts the recurrence assumption. (It is, though, possible that
P(x, 27) < 1 on a null-set, as Example 1 with {Y,} l-recurrentand a« + 8 < 1

shows.)
But from (3.7), Py(x, Z27(f)) = 1 for almost all x proves

ProrosITION 3.3. If f is R-subinvariant and {X,} is R-recurrent, f is R-invariant.
Using this proposition, together with Lemma 3.1, we can prove

ProposITION 3.4. Suppose f is R-subinvariant for {X,}. Then f is unique, in the
sense that, if g is also R-subinvariant for {X,}, f(x) = cg(x) for some constant ¢ > 0,
except perhaps for x on a set of measure zero; and for any A€ F *, f satisfies the
equation
(3-9) Jx) = 4 4G(x, dy)f(y)
for almost every x ¢ 2.

Proor. (i) Suppose that f is an R-subinvariant (and so from Proposition 3.3,
R-invariant) function, and 4 a set in &% +. Write

Sfa(¥) = §4 4Gr(ys dw)f(w) ;
from Condition I, f,(y) > O for all y, and from Lemma 3.1 (i), f(y) = f,(») for
y & N,. We have, for x¢ N,
R § o P(x, dy)fu(y)

(3.10) = R § 4o P(x, dy)[§4 Z7 R*P™(y> dW)f(W)] + R 4 P(x, dw)f ()

= Y4 L7 R7P7(x, dw)f(w) 4 R §, P(x, dw)f4(w)

= fa(x)
and so f,(x) is R-subinvariant. From Proposition 3.3, f, must thus be R-invariant,

and so from (3.10), f,(w) = f(w) for almost all w € 4. If w € A\N, issuch that this
equality holds, R-invariance and Lemma 3.1 (i) then give, for any n,

Jw) = R*§ . P"(w, dy)f(y) = R" § o P"(w, dy)fu(y) = fu(W) -

Consequently f(y) = f,(») for almost all x'€ 227, which is (3.9).

(ii) Now let f, g be any two R-invariant functions for {X,}, and define N/,
N, as in (3.5); write H = [N, U N,]’. For x e H, (3.4) holds for both f and g.
Choose 4 ¢ & ,+ such that

infyeAf(y) = 5}‘ >0, 00 > 1, = SUP,c 4 9(») ;
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writing d = d,/y, > 0, we have that, for every y e 4, f(y) = dg(y). From (i)
above, there exists an M-null set N with N £ N such that, for x € N°,

J) = §4 4Gr(*: d)f(¥)

(3.11) = d {4 4G r(x, dy)9(y)

= dg(X) .
Since N < N, we have, writing B = A\N, that for each xe N, Ee .7,
(3.12) Gu(x, E) = ,Gy(x, E\N).

Define ¢ > d as ¢ = inf,.; [f(x)/9(x)]; from (3.11) and (3.12), x € N* implies
Jx) = §5 5G(x; dy)f(y)
(3.13) 2 ¢ {5 5Gx(%; dy)9(y)
= cg(x) .-
Let ¢ be small and positive; by definition we can find { e B such that [ f({)/9(£)] <
¢ + ¢, and so
(3.14) cg(8) > f(8) — <9(%)
= f(c) /P
Since { € H, R-invariance of f and g, (3.13) and (3.14) imply, for each n,
f©) = R*§ o P )A(y)
= R* §o PG 4)f())

(3.15) = cR" §yo P"(C, dy)9(y)
= f(c) — &, -

Since ¢ is arbitrary, (3.15) shows that
M{y e N°: f(y) > eg(y)} = 0,

and so, except for y in some null set X,

f) = c9(y) - i

LemMaA 3.2 (see Orey (1971) page 10). Suppose that &~ is countably generated,
and let p*(x, y) be the density of P™(x, ) with respect to M (cf. (2.5): if & is
countably generated the density p(x, y), can be chosen measurable with respect to
both variables).

Then for every set Ae F *, there is a set Ce F ,*, an integer n and a real
number & > 0 such that '

(3.16) infi, ) eono P"(X, ) = 0.

TueoreM 3. If {X,} is R-recurrent and satisfies Condition 1, then there is a unique
R-subinvariant function f for {X,} (in the sense that, if f and g are both R-subinvariant,
f(x) = cg(x) for some ¢ > 0 except perhaps for x in some M-null set); the function
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[ is strictly R-invariant, and satisfies, for each Ac F +,

(3.17) Jx) = §4 4Gr(x, dy)f(y)
for almost every x ¢ Z°.

Proor. We only need to prove that some R-subinvariant function f exists:
the strict R-invariance then follows from Proposition 3.3 whilst the uniqueness,
and (3.17), follow from Proposition 3.4.

Suppose first that & is countably generated. Let {r,} be a sequence of real
numbers with r, 1 Ras k — oo, and let 4 be some R-recurrent set (whose existence
is guaranteed by Proposition 2.2); let C, n and . be such that C e &+, and
(3.16) holds.

For m > n, we have, for every xe C,

P™(x, €) =z §¢ P™(x, dy)P™="(y, C)
(3-18) Z §o p"(x, y)M(dy)P™="(y, C)
= 0§ M(dy)P""(y, C) ,
and, so defining f, by
(3-19) ful%) = G,,(x, O)f; M(dy)G, (7, C),
for those x for which the right-hand side of (3.19) is finite (that is almost all x,

by Theorem 1), and zero elsewhere, we have that for every k and almost every
CeC,

(3.20) fu@) > 9.
Define f by
(3.21) f(x) = liminf,__, fi(x);

from (3.20), f({) > o for almost every { e C. Moreover, since by Fatou’s lemma
1 = §c M(dy)fi(y) = e M(dy)f(), f is finite for almost every y e C.

Now using Proposition 3.2, we see that f,(x) defined by (3.19) is r,-subinvariant
for {X,}; hence, again by Fatou, for almost all x ¢ 2°

f(x) = lim inf,__, f,(x)
(3.22) = liminf,  r, § . P(x, dy)fi())
= R§ . P(x, dy)f(y) -
Since, for some { € C, f({) < oo, (3.22) shows that f{(y) is finite for almost every
x € 27, and so f defined by (3.21) is R-subinvariant for {X,}.

Now suppose that & is arbitrary, and let 4 be an R-recurrent set. Again
using a result in Orey ((1971) page 7), we can find a countably generated o-field
7, such that, for each Be &, P(+, B) is measurable with respect to &, and
Ae ., Thus to the Markov chain {X,} on (2, %) we can apply the first
part of the proof to find an . -measurable R-subinvariant function f, which,
since #, C &, is clearly also & -measurable; and so the theorem holds in
general. []
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We now use Theorem 3 to prove the analogous result for R-invariant
measures.

LeMMA 3.3. Suppose {X,} is ¢-recurrent and satisfies Condition 1. Then there is
a unique (up to constant multiples) 1-subinvariant measure Q, for {X,}, which is
equivalent to M, and strictly 1-invariant for {X,}.

Proor. The bulk of the proof is again in Orey ((1971) Theorem 7.2), where
it is shown that

(i) there exists a set D e & * (called a D-set; for a definition see Orey, (1971)
page 29) and a probability measure Q,, on .5, such that

(3-23) Qp(B) = {5 Qn(dy)pGi(y> B) 5 Be 5,
and Q, is the unique probability measure satisfying (3.23);
(ii) the measure Q, defined by
0u(B) = §5 95(4y)sGi(y B) » Be &
is l-invariant for {X,}, and is the unique l-invariant measure satisfying
o(D) = 1;

(iii) M is absolutely continuous with respect to Q,.

It remains to show that no 1-subinvariant measure other than Q, exists for {X,},
and that Q, is absolutely continuous with respect to M.

Suppose that U is 1-subinvariant for {X,}, and that D is a D-set with U(D) < co.
Then U(A)/U(D) = Q,(A), Ae & ,; for @, is the unique solution of (3.23), but
because of Lemma 3.1, for any 4 e &,

U(D) = U(A) + U(D\A)

(3:24) Z §5 U(dy)oGu(ys 4) + Vo U(dy)5Gi(y; D\A)

= §p U(dy),Gi(y, D)

= U(D)
(the last equality since ,G,(y, D) =1, ye D, when D is a D-set) and (3.24)
implies U(.)/U(D) is a solution of (3.23). Finally, another application of
Lemma 3.1 for any 4 € & gives

U(A)[U(D) z [UD)]™ § U(dy)sGu(y> 4)
(3.25) = {5 @n(dy)sGi(ys 4)
= 0(4);
since U is l-subinvariant and Q, is 1-invariant, (3.25) gives, for any n,
1 =UD)/UD) = [UD)]™ | Uldy)P(y, D)
(3:26) Z {2 Qu(d)P"(y; D)
l = QI(D) =1.

Thus the central inequality in (3.26) must be an equality, and (since M(D) > 0),
U(A)|U(D) = Q,(A) for every Ae .
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That Q, = M follows from this result as in Sidak (1967), Theorem 6. []

Statements (i)—(iii) in the proof of the lemma were first proved for separable
& by Harris (1956), and the separability condition removed by Jamison and
Orey (1967). Sidak (1967), under the stronger Condition I’, proved that the
unique 1-invariant measure is the unique 1-subinvariant measure, and used this
to show that it is equivalent to M. In fact, under Condition I, if Q, is r-invariant
for {X,} for any r < R (whether {X,} is r-recurrent or not), then Q,(4) =0
implies M(A4) = 0, and also M(A4) = 0 implies P(y, A) = 0 for all x ¢ 27, and so

0,(4) = r§, Q,(dy)P(y, 4) = 0.

Hence under Condition I’ all r-invariant measures, r < R, are equivalent to M:
this is not necessarily true under Condition I, as we show in Part II.

We cannot apply Lemma 3.3 directly to {X,(f)}, which is 1-recurrent rather
than ¢-recurrent, and we need

LeMmA 3.4. Suppose {X,} is R-recurrent, and let f be an R-invariant function for
{X,}. Put, for Ae &,

By(fs A) = {1 f(0) # §.4 4Gr(y» do)f(@)} s
and put A(f, A) = Ay(f, A) U A(f, A). If & is separable, then there exists A ¢ F~
with A © A and M(A) = 0, such that A(f, A) A for every Ae .Z*. Further, if
{X,(A)} is the Markov chain defined on 27, = Z°\A by

Py(x, 4) = R §, P(x, dy)f(y)[f(*) »
forxe 2, Ae & with A C A°, then {X,(A)} is ¢-recurrent.

Proor. Define {X,(f)} by (3.7): we know that {X,(f)} is 1-recurrent. From
Theorem 2 of Jain and Jamison (1967), if & is separable there exists H C . (f)
with # € H, M(H) = 0, such that {X,(f)} restricted to 27(f)\H is ¢-recurrent:
if we take A = H U N, this says that {X,(4)} is ¢-recurrent. The definition of
{Pu(x, A)} together with that of ¢-recurrence thus implies that for every Ae & +
with 4 C A° and every x e A°,

1= 2100 4Pa"(x, A) = §4 251 R 4P(x, do)f(w)/f(x) ,
and since, if xe A%, §,,,,Gx(x, do)f(w) = 0 for any 4e &, it follows that
A(f, A) < A. Finally, since A,(f, 4) is then contained in A £ A, we have
that A(f, 4) < A. [
An example due to Blackwell (1945) shows that the ‘global’ null set A con-
tainining all the null sets A(f, 4), 4€.% *, may not exist when & is not

separable.
From Theorem 3 and Lemmas 3.3 and 3.4 we can prove

THEOREM 4. If {X,} is R-recurrent, there exists a unique R-subinvariant measure
Q for {X,}: Q is R-invariant, equivalent to M on &, and satisfies, for each Be &+

(3.27) Q(4) = §5 0d)sGal(y» 4) de .
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Proor. Note first that if Q is some R-subinvariant measure for {X,}, and N
is some M-null set with N € N, and if for every A€ . .

Q(4) = R §y. Q(dy)P(y, 4) ,
then Q(N) = 0 and Q is R-invariant for {X,}.
Assume first that & is separable, and define A and {X,(A)} as in Lemma 3.4.

Assume that some R-subinvariant measure Q for {X,} exists; since f is positive
on 77, R-subinvariance for Q implies

(3:28) §4 Q@)f(y) = R, Qdx) §, P(x, dy)f(y)
= o, [QU@X)f()]Ps(x, ) 5 Ae Ty

Since {X,(A)} is ¢-recurrent, we know from Lemma 3.3 that there is a unique
l1-subinvariant measure Q, for {X,(A)}; thus from (3.28) we have

(3-29) Qi(4) = 4, 2@ (y) » Ae F .
From the first remark of this proof and the properties of Q,, it follows that

(i) Q is strictly R-invariant for {X,};
(if) Q is the unique R-subinvariant measure for {X,};
(iii) Q is equivalent to M on & ,,, and hence, since Q(A) = M(A) = 0, on
G

Secondly we must show that there does exist an R-subinvariant measure for
{X,}. Since Q, is l-invariant for {X,(A)} and [f(x)]™* < o0, x €2, we have
for Ae &,

(3:-30) 4 Q@] = [, Quldx) §4 Po(x, ) A(D)]7 -
Write ¢,(x) for the density of Q, with respect to M, and define the (measurable)
function ¢ by setting

9(x) = (*)/f(x) -
Define the measure Q by setting Q(A) =0, and, for Ae &, Q(A) =
§49(x)M(dx). With these definitions, Q, and Q satisfy (3.29), and so for
Ae F ., (3.30) shows

0(4) = L4 Q@] = V2, [QE@X)f ()] §4 Palx, DY)LfN]
(3.31) = R { ., Q(dx)P(x, A)
= R, Q(dx)P(x, A);
hence, since both Q(A) and § . Q(dx)P(x, A) are zero, Q is R-invariant for {X,}.
The separability assumption is necessary to enable us to use Lemma 3.4. It
can be removed by the use of admissible sub-g-fields of &, exactly as in the
final section of the proof of Theorem 7.2 of Orey (1971), and it follows that a
unique R-invariant measure Q for {X,} exists.
Finally, we prove that Q above satisfies (3.27). From Lemma 3. 1 (i), for any
Be 7,
0(4) = §5 Q(dy)sGx(y> 4) » Ade F;
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fix Be &+ and write Q,(A4) = (; Q(dy);Gr(y, A), Ae F . Since

R . Qu(dy)P(y, A)
(3:32) = R §5: [{5 Q(dx) 7 R*5P"(x, dy)]P(y, A) + R §5 Qu(dy)P(y, A)
= §5 Q(dy) i3 R"sP"(x, 4) 4+ R §;5 Qu(dy)P(y, 4)
< Q4(4)

Q; is R-subinvariant for {X,}, and hence from (i) above, Q is R-invariant and
must be some multiple of Q. However, if Q;(4) = (1 — ¢)Q(A) for some ¢ > 0,
the inequality in (3.32) would remain, for some A, a strict inequality; hence
Q; = Q, and the theorem is proved. [J

When R = 1, Theorem 4 (except for M > Q and (3.27)) is given by the
Corollary to Theorem 2 of Jain and Jamison (1967), and we could have applied
their result directly to {X,(f)}, rather than Lemma 3.3 to {X,(A)}, to prove the
theorem. Their proof that Q is the unique 1-subinvariant measure is rather
more complicated than that using Lemma 3.1 given in Lemma 3.3.

The proof of Theorem 4 needs only Condition I, but it relies heavily on the
equivalent result for ¢-recurrent chains, given in Lemma 3.3. It is in fact pos-
sible to emulate the proof of Theorem 3 to derive Theorem 4, but only (as far
as I can see) under the following irreducibility condition

ConpiTioN I”. There exists a o-finite measure M, not identically zero, on
& such that

(i) M(A) > 0 implies G,(x, A) > 0, for all xe X
(ii) there exists an M-null set N, with N, € N, such that, for each x¢N,,
G,(x, ) is absolutely continuous with respect to M.

Condition I'" is weaker than Condition I’, which demands N,, = @, but stronger
than ConditionI. Itensuresthat the ‘reversed’ chain, with transition probabilities

P,(x, A) = R {, 9(y)p(y, x)M(dy)/q(x)

is 1-recurrent and hence stochastic for almost all x: the proof of Theorem 3 is
then easily imitated. This gives a new proof of Harris’s result which avoids
any need to introduce uniformly ¢-recurrent chains and ‘processes on A4’

4. First passage analogues and finiteness results. When X = Z, the follow-
ing dichotomy (well-known for r = 1) is given in VJ1:

(a) if {X,}is r-transient, r < R, then ,G,(i,i) < 1,ie X
(b) if {X,} is R-recurrent, then ,G.(i,i) = 1, ie Z.

In this section we shall begin by investigating the analogues of these results for
general 27, We first prove the r-transient result.

PRroPOSITION 4.1. Let {X,} be r-transient r < R. Then there is a partition
x, = (K())) of &, such that
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(i) M(K,(9)) =0

(i) if Ae F g, foranyj+0,
(4.1) 4G,(x, A) = Zi7 P0x, At < 1
for every x e A.

Proor. Let %" = (K(j)) be a partition of 2 into r-transient sets. For fixed
J, write, forn=1,2, ...

(4.2) B.()) = {y e K(j): Gy, K(j)) e [(n — 1)/2, n[2)} 5
since K(j) is r-transient, there is a set By(j) < K(j) with M(By(j)) = 0 such that

' U= Bu()) = KO\BJ) -
Thus {B,(j)} is a partition of K(j); if we write K,(0) = {J; By(j), and denote by
%, the collection of sets {K,(0), B,(j),n=1,2,...,j=0,1, ...}, then 5%,
is certainly a partition of 22~ into r-transient sets such that (i) holds. To show
that (ii) also holds, let B be any set in %, other than K, (0), and let K be the
element of .27 such that B C K.
The first entrance decomposition, for any 4 € &, and { € 4, gives

G, K) = 46,5, K) + §44G,(, dy)G.(y, K)
4.3) = ,G,.(, K) + inf ., G.(y, K),G,(&, 4)
> ,G.(C A)[1 + inf,., G(y, K)] -
By construction (4.2), we have (since 4 < B), that for any { e 4,
(4.4) inf,., G(y, K) = G,({, K) —
putting (4.4) into (4.3) shows that (4.1) holds. [}

When X = Z, (a) can be used to prove (b), since there is a finest possible
partition of the integers. However, the partition %, in Proposition 4.1 depends
in its construction upon r (via (4.2)), and consequently from Proposition 4.1 we
cannot assert the existence of a partition %~ = (K(j)), independent of r, such
that ,G.(x, 4) < 1, Ae &, *, for every r < R, x € A, when {X,} is R-recurrent
and R > 1 (it is clearly true that such a partition exists when R = 1, from
probabilistic considerations).

In fact, as the following results show, the existence of such a partition is not
in general plausible: this is one of the few instances where results do not seem
to carry over from the countable case.

PRrROPOSITION 4.2. Suppose {X,} is R-recurrent, and let f be the unique R-invariant
function for {X,}. Then a set Ae F + satisfies
4.5) 4Gr(x, A) £ 1

for almost every x € A, if and only if f is constant almost everywhere on A and then
we have equality in (4.5) for almost every x € A.
If (4.5) holds for some Ae & *, and F is separable, then there is a set A, with
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M(A,) = 0, such that for every set B¢ .?';\Ao,
5Gr(x, By =1 forall xeB.

Proor. From Theorem 3, for any Ae.& *, there exists A(f, 4) with
M(A(f, A)) = 0 such that

(4.6) Jx) = §4 4Gr(x, dY)f()) » xe¢A(f, 4).
Suppose first that for some given A, there is a subset 4, € &, with M(4,) =0
and f(x) = ¢, x € A\4,. From Condition I, we can find 4, £ 4 with M(4,) = 0
such that 4, C 4,, A(f, A) N A C A, and f(x) = ¢ when x ¢ A\4,.

Since 4, C A,, writing A\4, = 4,

~

(4.7) 4Gr(x, A) = ;Gx(x, ), xed.
Also, for x € 4, (4.6) bolds, and implies
Grx, A)=1, xed.

If & is separable, then 4, can be chosen so that A(f, B) < 4, for every
Be .7 ,*, from Lemma 3.4; it then follows from (4.6) (with x € Band B in place
of A) that for all Be & ,*,

4.8) 8Gg(x, B) =1 forall xeB.

Secondly, suppose (4.5) holds for some set 4.~ *. From Theorem 4, the
unique R-invariant measure Q for {X,} then satisfies

Q(A) = 14 Q(d)4Ga(y> 4) = 14 Q(dy)

and so, except for y in some set 4, with Q(4,) = 0, ,G(y, A) = 1. Write 4 =
A\(4, U A4,); as before, (4.7) holds so that ;G,(y, 4) = 1, ye 4.

Putting f,(y) = iGx(y, 4), y € 2, it is easy to show (cf. 3.10) that f, is R-
invariant for {X,}, and by uniqueness, f = cf, for some real ¢ > 0. Hence f is
constant almost everywhere on A, that is, almost everywhere in 4. It then
follows from the first part of the proof that for Be . ;*, (4.8) holds when &~
is separable. []

CorOLLARY 1. If {X,} is R-recurrent, and .Z is separable, there is a partition
" = (K())) such that

(4.9) 4Ge(x, A) =1,  foralmostall xe A, andall Ae F *

if and only if there is a null set N such that [f(x) takes on only a countable number
of values for xe X\N. If (4.9) holds, there is a null set N, such that the partition
7 = (Ny, KO)\N,, KQ2)\N,, - - ) satisfies

(Gx, A) =1, xed, Ade F1..

COROLLARY 2. There is at least one R-recurrent set A e F * such that (4.5) fails
to hold for almost all xe A, if R > 1.
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Proor. If not, then f must then be constant almost everywhere on 27 but
[ is R-invariant, so for almost every x,

¢ = f(x) = R, P(x, dy)f(y) = Re,
and R = 1. []

CoroLLARY 3. If 27 = Z, and {X,} is R-recurrent, R > 1, at least one of the
pairs{k,j},j=0,1, - - -, fails to satisfy (4.5) foreachk = 0,1, -...

The second part of this section will be devoted to finding various finiteness
criteria for r-subinvariant measures which generalize those in VJ2.

We shall call a positive-valued measurable function # an r-superinvariant func-
tion for {X,} if
(4.10) h(x) < r§, P(x, dy)f(y)

for almost x € &2°. Such functions are studied for 27 = Z in VJ2.

We reserve a proof of the first result to the sequel to this paper, where it is
easily proved when we have more information on the structure of r-subinvariant
measures: however, it is stated here since it naturally begins the sequence of
results we wish to prove.

ProrosiTiON 4.3. If U is an r-subinvariant measure for {X,} and h is an r-super-
invariant function, then if {X,} is r-transient,

§o H(x)U(dx)
is divergent.
For the remainder of this section, we shall again assume that {X,} is R-recurrent,
and that Q and f denote the unique R-invariant measure and function for {X,}.

PRroPOSITION 4.4. If h is an R-superinvariant function for X, then
§ 2 B(x)Q(dx) < oo
implies that h is R-invariant, and hence h = f.
ProoF. R-superinvariance of & gives, since Q ~ M,
§. Q(dx)h(x) < R § . Q(dx) § . P(x; dy)h(y)
(4.11) = {2 [R . Q(dx)P(x, dy)]A(y)
= {2 Qh(y) »

so that if the right-hand side of (4.11) converges, we must have equality through-
out (4.11); hence £ is R-invariant, as claimed. []

Notice that, since &(x) = 1 is r-superinvariant for r > 1, but not r-invariant
for r > 1, these two propositions imply that a finite r-subinvariant measure can
only exist when {X,} is 1-recurrent.

We now derive a criterion for the finiteness of

(4.12) §o- Q(dX)f(x)
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in terms of

(4.13) JG(x, A) = lim, ,[,G,(x, 4) — 4G,_(x, A)]Je
= N nrtt PY(x, A)

forxeZ, r< Rand 4e F+.

THEOREM 5. If {X,} is R-recurrent, then

(4.14) §2 QUf(y) <
if and only if, for some one (and then every) Be & *
(4.15) §5 O(dx) {5 5G5/(x, dw)f(w) < oo .

Proor. For any set Be & *,and eachn > Oand r < R, we have the identity

§ o D02t aP"7H(x, dy)r** § 5 s PH(y, dw)f(w)r*
= 2521 5 s P"(x, dw)f(w)
+ §5 2521 5P 7 (x, dy)rnF § 5 g PRy, dw)rtf(w)

Summing this identity with n gives, formally,

§ o 5G. (X ) §5 5G.(y, dw)f(w)]
= D (n — DI§5 5P"(x, dw)f(w)]r"
(4.16) + §5 8G.(xs )5 5G.(y> dw)f(W)]
= r§5 G,/ (x, dw)f(w)
+ [§5 5G.(x, dy) §5 5G.(p, dW)f(w) — (5 5G(x, dw)f(W)] .

- (Note that, if B is such that sup,. , f(x) < oo, (3.9) shows that for r < R, every
term in (4.16) is finite for almost all x € 2°.) Letting r 1 R in (4.16) gives us, for
almost all x € 27,

(4.17) § 5Gr(%s dy) V5 5Ga(y> AW)f(W) = R §5 5G4/ (x, dw)f(w)
(where one, but then both, sides of (4.17) may be infinite). Suppose (4.14)
holds; then from Theorems 3 and 4,
(4.18) 00 > (. QYY) = § §5 Q(dx)5Ga(x> d) § 5 5Cnly> AW)f(W)
= R §5 Q(dx) {5 5G'(x, dw)f(w) ,

and so (4.15) holds for every Be & +.

If, on the other hand, (4.15) holds for some Be .& *, then (4.18) read back-
wards shows that (4.14) holds, and hence, from the preceding paragraph, that
(4.15) holds for every Be & +. []

CoROLLARY 4. If {X,} is R-recurrent, then if (4.14) holds,
(4.19) §5 Q(dx);G/(x, B) < oo

for every Be Z * such that inf, . f(x) > 0.
In particular (4.19) holds for every Be &+ such that (4.8) holds.
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5. R-positivity results. In this section we investigate another dichotomy. In
the countable case, VJ1 shows that aperiodic R-recurrent chains can be classified
as either

(a) R-null; that is, as n — oo,

R"P™i,j)— 0, all i,jeZ; or
(b) R-positive; that is, as n — oo
(5.1) R*P(i,j)— ;> 0, all i,jeZ.

Theorem 6 gives the analogue of these results for chains on a general state
space. For a definition of the period of such a Markov chain, see Orey (1971)
pages 13-15.

THEOREM 6. If {X,} is R-recurrent and aperiodic, then there exists a partition
X" such that for each Ac F ,*, as n — oo

(5.2) P*(x, A)R™ — =(x, 4), x¢ N(f, A)
where M(N(f, A)) and
(5-3) a(x, ) = f()QA)/\ + f()Q(D) -

(Here f and Q are the unique R-invariant function and measure for {X,}.) If &~
is separable, there exists a null set A with N(f, A) & A for every Ae F +.

If {X,} is periodic with period d, then there exists a partition 72" such that, if
Ae F %, there is a null set N(f, A), and

(5-4) lim,_, % L4z Pri(x, AR = f(x)Q(A)/§ o f()Q(dy)

for x ¢ N(f, A). if & is separable, N(f, A) can be chosen independent of A.

Proor. Define A(f, A) as in Lemma 3.4, so that A(f, 2°) 2 {y: f()) #+
(o P(y, dx)f(x)}. Let %"= (K;),j =0, 1, -.. be a partition of 2”7 with K, =
A(f, &) and with the properties that

(i) §x;/(»)Q(dy) < oo, for every j = 1; and

(i) inf,cx f(y) > O for every j = 1.

Let O be a fixed subset of &, *. From Proposition 1.3 of Orey (1971), there
exists an admissible g-field &, £ . with@®e &, and K; ¢ &, for all j. Hence
from Lemma 3.4, we can find an M-null set A e &, with A < A such that the
chain {X,(A)} defined as in Lemma 3.4 on 22, = 2°\A is ¢-recurrent. From
Lemma 3.3, there is a unique 1-invariant measure Q, for {X,(A)}, which then
satisfies (cf. (3.31))

(3-3) Qu(B) = §5 Q(d)f 1)) - Bes .

From (i), Q,(B) < 0 if Be &, n F,.
Let K be any element of %" other than K,. Forevery Be & . n .7, it
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follows from Orey (1971), page 30-35, that

lim, .., P*(x, B) = Qu(B)/Q4(Z) , xeZ,,
and hence that for any such B,
(5.6) lim, ., § 5 P,"(x, do)g(@) = §5 Qy(dw)g(®)/Qx(Z") » xeZ,

where g is any bounded measurable function on K (cf. Ginssler, (1971).) By
construction, [f(y)]~* is such a function: using the definition of P,, and (5.5),
we find that setting g = f~'in (5.6) gives

lim,_., R*P"(x, B) = f(y)Q(B)/} » f(®)Q(dw)
for xe #,, Be &, N F,.

In particular, since @ ¢ & n &, for some K # K,, we see that (5.2) and
(5.3) hold with N(f, ®) = A. In general, A depends on &, and hence on 0.
However, if & itself is separable, then % can be taken as .5, and N(f, ©)
can be chosen independent of © from Lemma 3.4.

The proof in the periodic case is similar. []

It is clear that the limits in (5.2) are identically zero if § . Q(dw)f(w) = oo,
and all positive if §_, Q(dw)f(w) < oo, since Q and M are equivalent. In the
former case we call {X,} R-null, in the latter R-positive.

The condition { . f(x)Q(dx) < oo, which determines R-positivity, has been
investigated already in Section 4. Combining the results of Theorem 6 and
Section 4 gives the following important criteria for R-positivity:

THEOREM 7. The following conditions are equivalent:
(i) {X,} is R-positive;

(ii) there exists an R-subinvariant measure U and an R-superinvariant function h

suck that
§2 H())Udy) < o5
(iii) {X,} is R-recurrent, and for some one (and then for all) Ae F+,
§40(dy) §4 4G (s dw)f(w) < o0,

where ,G,'(y, +) is defined by (4.13).

Proor. If (i) holds, Theorem 6 shows (ii) is true with U = Q, h = f. If (ii)
holds from Proposition 4.4, U = Q and & = f, whence (i) is true from Theorem

6 and (iii) from Theorem 5. If (iii) holds, Theorem 5 shows (ii) holds for U = Q
and k = f D

The final R-positivity result we give is of particular interest when [X,} is
l-recurrent.

PROPOSITION 5.1. Let {X,} be R-recurrent and aperiodic, and let A € F * be such
that Q(A) = 1. Suppose f is constant on A. Then for almost every x € A,

(5.7) lim, ., R"P*(x, A) = [R §, Q(d),G4 (7> AT
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Proor. From Theorem 6,

lim, ., R"P*(x, ) = z(x, A) = f()Q(A)/{ > [(7)Q(dy) ;
and therefore from (4.18) it follows that

(3-8) (x, A) = f(X)Q(A)/R §. Q(dy) §4 4G (¥, dW)f(w) -

If Q(4) = 1 and f(x) = c on 4, then for x € A the right-hand side of (5.8) is in
fact the right-hand side of (5.7), and the proposition holds. [T

CoROLLARY 5. If {X,} is 1-recurrent and aperiodic,
lim,_., P*(x, 4) = [§4 Qu(d).G\'(y, A"

where Q , is the unique 1-invariant probability measure for the transition law ,G\(y, *)

on (A, F ).

6. Semigroups of nonnegative operators. One of Vere-Jones’ main achieve-
ments was to point out in VJ2 that the results for Markov chain transition
matrices, proved in VJ1, held for semigroups of nonnegative matrices which
were not substochastic.

The same is true in general: the context we require is the following. Let
(&, &) be a space equipped with ¢-field, and let the collection {T™(x, A),
xeZ,Ae ¥,n=0,1,2, ...} be a semigroup of nonnegative operators; that is,

(i) for each xe 27, T"(x, ) is a o-finite measure on &~
(ii) for each 4e€ &, T™(+, A) is a nonnegative, measurable function on 2~
(iii) foranyn,m =20, xe 2, Ae F,

T™*™(x, A) = § . T*(x, dy)T™(y, A) .

The reader will verify that all the results of Section 2, except those which allot
special place to the value R = 1, depend solely on the semigroup property of
the transition functions, rather than their stochasticity, and hence that a con-
vergence norm R~' > 0 can be defined for a semigroup of nonnegative operators.
If R > 0, then we can find an r-subinvariant function for some r with0 < r < R
(as, for example, in Proposition 3.2), and form a substochastic kernel by the
transformation

P(x, A) = 1§, T(x, dy)f(y)/f(x) ,

already used to such effect: translating the results of the previous sections for
P into results for {T"} gives

THEOREM 8. If {T™(x, A), x€ 2", Ac 5 }is a semigroup of nonnegative oper-
ators which satisfy

(iv) There exists a o-finite measure ¢ on . such that $(A) > 0 implies that
for each x e 22, at least one of the elements T"(x, A), n = 1,2, - .. is positive,
(that is, {T™(x, A} is ¢-irreducible), then there is a real number R = 0, a partition
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% and a ¢-null set N such that for x¢ N, Ae F ., $(A) > 0, the power series
Diwoy T™(x, A)z™ has radius of convergence R.

If R > 0, then the results of Sections 1-5, except those which allot the case R = 1
special place (specifically, the fact that R = 1 and the empty null set for R = 1 in
Theorem 1 and the corollary to Proposition 5.1) are all true (with T* in place of P™
throughout).

Semigroups of Markov chain transition functions can be set in the theory of
positive contraction operators (cf. Foguel (1969)). In this paper we have used
probabilistic rather than operator-theoretic methods; however, Theorem 8 shows
that the contraction assumption usually employed can be replaced by the much
weaker assumption that the convergence norm is finite, and many of the famil-
iar Markov chain properties will carry through to their R-theoretic analogues.
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