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CROSS-SPECTRAL ANALYSIS OF PROCESSES WITH
STATIONARY INCREMENTS INCLUDING THE
STATIONARY G/G/o QUEUE!

By DAvID R. BRILLINGER
The University of California, Berkeley

We consider a linear time invariant model relating one process with
stationary increments to another such process. The model contains the
stationary G/G/co queue and a bivariate cluster process as particular cases.
The parameters of the model are shown to be identifiable through cross-
spectral analysis and estimates are shown to be asymptotically normal
under regularity conditions. In the case of the G/G/ queue, the parame-
ters considered are the characteristic function and the distribution function
of the service time. The estimates are based on a stretch of entry and exit
times for the system.

1. Introduction. We consider bivariate processes X(7) = {X,(¢), X;(1)}, —o0 <
t < oo, having stationary increments. The general theory of such processes is
developed in Kolmogorov (1940), Yaglom (1958) and Bochner (1960). A par-
ticular case of these processes is the stationary point process considered in
Bartlett (1963), Daley and Vere-Jones (1972). Certain additional aspects of
processes with stationary increments were presented in Brillinger (1972). In the
manner of that paper, suppose that we may write the joint cumulant

(1.1) cum {dX; (¢t + w), - -+, dX;,_(t + u,_,), dX; (1)}
= le,._jk(dul, -eydu,_y)dt

with le,,,jk(dul, -++,du,_;) a finite measure for j,, -..,j, =1,2and k = 1, 2,
3, -++. The cumulant spectra of the process may now be defined by
(12) s o5 huca)

= 2n)™*§ - §exp{—i TET A u5)C . (duys - -, duyy)
for —co < 4, -+-, 4_; < co. In particular we suppose that
(1.3) : EdX;(t) = C; dt
(1.4) Cov {dX,(t + u), dX, (1)} = C;,(du) dt
for a finite measure C;,(du) and that the second-order spectra are given by
(1.5) [iu(8) = (2z)7" § exp {—idu}C;(du)
for j,k =1,2. In the case of a stationary point process, f,,(2) is the point
process spectrum introduced in Bartlett (1963).
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The class of models to be considered in this paper consists of those processes
for which

(1.6) E{dX,(0)| X} = [t + §%w a(t — u) dX,()] dt

for —co < t < 0. The model (1.6) is reminiscent of one for mutually exciting
point processes introduced in Hawkes (1972); however it differs in the important
respect of not completely describing the probability structure of the process.
The model (4.19) of Brillinger (1972) is a particular case of the model (1.6). In
the case of stationary point processes, the model is one proposed by John Rice
in his doctoral thesis at Berkeley.

By analogy with the terminology of the cross-spectral analysis of ordinary
stationary processes, we call a(x) an impulse response function and we call its
Fourier transform

1.7) A(R) = § a(u) exp {—ilu} du

—o0 < 2 < oo, a transfer function. We will see below that this parameter is
also of interest.

As an example of a process for which the model (1.6) is satisfied consider the
stationary G/G/oo queue with X(7) referring to the times ..., z_,, 75, 7y, - - - Of
arrival of customers at a service facility possessing an infinite number of servers
and with X,(¢) referring to the times of departure --.,7_, + 7_;, 7 + 700 71 +

71> - - - of customers, r; being the service time of the jth customer. We may
write symbolically
(1.8) dX(t) = £, 8(t — 7; — 1;)dt,

0(t) being the Dirac delta function. In the case that the service times are
independent of the process X(7) and have the same marginal density function
g(z) we may conclude from (1.8) that
(1.9) E{dX,(1)| X} = 3; § 8(t — 7, — w)g(u) du dt

= ng(t— Tj)dt

= [§ 9(t — ) dX,(w)] dr .
This has the form of (1.6) with # = 0 and a(x) = g(#) and indicates the interest
of estimating the parameters of that model. If ®(2) = Eexp {idr} is the char-
acteristic function of the service time distribution, then the transfer function
A(2) = ®(—2) here.

As a second example, consider a process in which X(¢) refers to a primary

process of cluster centers while X,(7) refers to the cluster process itself. In the
case that the cluster members are distributed independently of the primary

process and in the same stochastic manner from cluster center to cluster center,
we can see that the model (1.6) is satisfied with

(1.10) A(A) = E 3, exp {—ido,}

the o, being the displacements of the cluster members from their center.
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We now turn to the problem of identifying the parameters of the model (1.6)
from the parameters of the process X(7). By taking repeated expected values in
(1.6) we may conclude that the means of the processes are related by

(1.11) C,= ¢+ A0)C
and that the cross-spectrum of the two processes is given by
(1.12) fu(A) = AQ)fu(2) -

This last shows that we may identify A(2) provided f,(2) ++ 0. a(u) may be
determined by inverse Fourier transform. ¢ may be determined from (1.11).

It is useful to set down two further parameters. Expression (1.6) suggests
that we define the following process with stationary increments

(1.13) de(t) = dX,(t) — [p + § a(t — u) dX,(u)] dr .
Clearly E de(f) = 0 and
(1.14) Cov {dX,(t + u), de(t)} = 0

for —oco < 1, u < oo. If the second-order spectrum of the process () is f.(2)
then from (1.14)

(1.15) fal2) = [AQFu(2) + fod2)

and so the coherence, |Ry(2)]* = |f1a(3)*/[fu(R)f2u(A)], of the two processes
X,(1), X,(1) is given by

(1.16) R = [ADFuDADFu(2) + f(A)] -

Throughout the paper our concern is with real-valued X(#), X(f). No serious
difficulties appear in extending the results to the vector-valued case considered in
Brillinger (1972). The proofs of the theorems set down in the next two sections
may be found in Section 4. In connection with the theorems we mention that
our concern has not been with finding best possible results, rather it has been
with indicating that cross-spectral analysis provides an interesting direct approach
to certain point process problems of interest. I would like to thank Dr. Daryl
Daley for helpful comments on this paper.

2. Estimation of the parameters. Expression (1.12) suggests that we consider
the following estimate of A(4),
(2.1) AT@R) = fiP D)D)
where f17)(2) is an estimate of f;,(2), j, k = 1,2. We begin this section by
determining the asymptotic distribution of this 4”’(2) when the estimate f7’(2)
is constructed in the manner of Brillinger (1972).

That construction proceeds as follows. Suppose that the stretch of data
[Xi(7), X,(£)], 0 < t < T is available for some T > 0. Set
(2.2) d; D) = §F exp {—irt} dX,(F)
(2.3) IR @A) = 22T)7d; " ()d, " (2)*
24)  fRQ) = 20B, 7T 5,0 W(B, A — 25/ TR (2s/T)
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for some weight function W(a) and sequence of nonnegative band-width
parameters B,, T = 1,2, .- .. Inorder to determine the asymptotic distribution
we must set down,

AssuMpTION 2.1. The function W(a), —oo < a < oo, is real-valued, even,
0 for |a| > 4, of bounded variation and § W(a)da = 1,
and

AssUMPTION 2.2. The bivariate process X(7) = {X,(?), Xy(?)}, —o0 < t < o0,
has stationary increments and the measure C; ...; (du,, - - -, du,_;) of (1.1) satisfies

2.3) § oo Sl + -+ nICyg (A, - duy )| < o0

forj, -+, j=1,2 k=2,3,....

This latter assumption is a form of mixing or asymptotic independence condition
on the increments of the process. It will allow us to develop central limit
theorems for various statistics based on the process. We begin with

THEOREM 2.1. Let the process {X,(t), Xy(1)}, —oo < t < oo, satisfy Assumption
2.2. Suppose f,,(2) # 0 and |f7(2)| < o0, j, k = 1,2. Let W(a) satisfy Assump-
tion 2.1. Set f,(2) = fun(d) — |f1:(A|*/f(2). Let B, — 0, B,T — oo, BT —0
as T — oo. Then A (R), A + 0, is asymptotically complex normal with mean A(2)
and variance

(2.6) BT 2x § W(a)*da f,() fn(A)™*.

Also A™(R,), ---, AT (4;) are asymprotically independent normal for distinct
Ay v oey Ay

The proof of this theorem is given in Section 4. The limiting distribution is
seen to have the same form as that of the transfer function estimate of ordinary
cross-spectral analysis.

We next turn to the problem of estimating the impulse response function a(x).
The estimate that we consider is

2.7)  a™(u) = [X¢_gp A" (Crq) exp {uCrg}][(1 — cos Cru)/(nCru?)]

9==Qr
for some small C, and large Q,. For large Q, one would make use of a Fast
Fourier Transform in the computation of this estimate. The final multiplier in
(2.7) is introduced in the manner of Bohman (1960). In practice we also find
that inserting convergence factors into (2.7) often reduces the bias substantially.

THEOREM 2.2. Let the conditions of Theorem 2.1 be satisfied. Suppose f,(2) =
0>0,j=1,2, § |[uf|la(u)| du < oo, § |4|"|A(2)| d2 < oo for somer > 0. Suppose
C, =B, 0,B,—0,0,°B,7'T* - 0asT— oco. Then[a'" (), ---,a"(u;)] is
asymptotically normal with mean :

(2.8)  [[X9Z-op A(Crq) exp {iu; Cog}[(1 — cos Cru)[(xCru)]:j =1, -+, J]
= [a(u;)] + O(C,*Qr) + O(C,77Q;7")
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and covariance matrix having the following entry in row j, column k
(2.9)  CpB, 7T § W(a) da § 525, exp {i(u; — 1,)a} fu(@) fu(@)™ da(2m) !
forj,k=1,...,J.

From (2.9) we see that the asymptotic variance of a'™(x) does not depend on
u and is of order O(C,*Q, B,~*T~") under the stated conditions. The expression
also suggests the following estimate of the covariance (2.9)

(2.10)  CAQm) BT § W(a) da NI92_y, exp {i(t; — u)Cr)
X f(Crg) LP(Crg)™
based on the spectral density estimates. From (2.8) we have,

CoRroOLLARY. If, in addition to the conditions of the theorem, C,*Q, B, T — 0,
C,2Q, B, T — 0 as T — oo, then [a'"(u,), - - -, a'"(u,)] is asymptotically
normal with mean [a(u,), - - -, a(u,;)] and covariance structure given by (2.9).

In the next section we specialize the results of this section to the case of a
G/G/co queue.

3. The G/G/co queue. In Section 1 we saw that a stationary queueing system
with an infinite number of servers satisfied the model (1.6) with # = 0 and a(u)
being the density of the service times. In the previous section we developed
statistical properties of estimates of the parameters of the model for processes
satisfying Assumption 2.2. We begin this section by indicating a set of con-
ditions under which a G/G/co queue satisfies Assumption 2.2.

THEOREM 3.1. Let N,(f), —oo < t < oo, be a stationary point process whose
cumulant measures exist and satisfy (2.5) with jy = --- = j, = 1 fork =2,3, ---.
Let Ny(t) be a process constructed from N,(t) by displacing the events of the latter
by independent amounts having cumulative distribution function G(u), —co < u < co.
Suppose § |u| dG(u) < co. Then the process {N,(t), Ny(f)} —oco < t < oo satisfies
Assumption 2.2.

In other words, the theorems of the previous section apply to the stationary
G/G/oo queue having independent service times with finite mean value. We
now proceed to indicate the form that the results of the paper take for this
particular case. Let ®(2) = { exp {idu} dG(u) denote the characteristic function
of the service time distribution, then from (1.7), (1.9) the transfer function
A(2) equals ®(—2) here. Cox (1963) showed that

(3.1) fu(2) = |P@)[Fu() + 27)7C[1 — |DA)]
here, (this also follows directly from Theorem 4.4), and so from (1.15) the
error spectrum is given by

(3.2) fld) = 2m)7G[1 — [T -
This, in turn, shows that the coherence (1.16) between the input and output
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series will be nearer to 1 the nearer the service time distribution is to being
constant.

Turning to the problem of estimating characteristics of the service time dis-
tribution, the characteristic function ®(2) would be estimated by A(—2).
Expressions (2.6), (3.2) show that the asymptotic variance of this estimate has
the form

3.3) B,7'T7 § W(a)*da C[1 — |O(A)|*] fu(A)*.

The service time density function g(u), if it exists and satisfies the conditions of
Theorem 2.2, would be estimated by a” (). Expressions (2.9), (3.2) show that
the asymptotic variance of this estimate is

(3.4)  CpB,7T™§ W(a) da §2555, (20)7'Cl[1 — |D(a)[*] fu(@) ™ der .

In practice one would undoubtedly be more interested in estimating proba-
bilities involving the service time variate rather than ®(2) or g(x). Consider for
example the problem of estimating G(u + k) — G(z — k), the probability that
the service time falls between # — h and u + k. For u — h, u 4+ h points of
continuity of G,

(3.5) G +h) —Gu—kh)

= lim, . (27)"" §*, exp {—iua} Si‘}‘z " O(a) da .
(44

This suggests that we estimate the probability (3.5) by
(3.6) GT(u+h)— G"(u—h)

= [ Z9-er AT(Cr ) exp (1Cr g} BECET((1 — cos €, )/ (C,a)].
rq

In practice this estimate would be computed, for large Q,, by a Fast Fourier
Transform Algorithm. In connection with the estimate we have

THEOREM 3.2. Let the conditions of Theorem 3.1 be satisfied. Suppose also

(i) §|u[*dG(u) < oo,
(ii) § |a|""!|@(a)|da < oo for some r > 0.

Then GO(u, + b)) — G (uy, — hy), - -+, GO (U, + hy)) — GT(u, — hy) is asymp-

totically normal with mean

(3.7) [[ 92_op A(Crg) oxp (—iu; Cpq) SMi Crd ]
h;Crq

X [(1 — cos Cpu;)[(xCru?)]: jo= 1, J:|
=[G(; + k) — Gu; — hy): j=1,---,J]
+ O(C,°Qy) + O(C,77Q,77)
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and covariance matrix having the following entry in row j and column k
(3.8) C, BT §W(@)* da § %535, exp (i(u; — w,)a)

su}:l;a sin h,,af (@) foal@)~ dex

J

forjk=1,...,J

The asymptotic variance of G"'(u + k) — G'™(u — h) is seen to be

(3.9) Cp B, T § W(a) de §°2%5, (Sm ”"‘) Ful@) fula) dac

which is of order O(C, B,~*T-"). From (3.7) we have,

CoRrOLLARY. If in addition to the conditions of the theorem, C,*Q,*B, T — 0,
C, ™ 'Q,™ B, T—0asT— oo, then G™(u, + b)) — GT(u, — hy), - - -, G (u; +
h;) — G (u; — h;) is asymptotically normal with mean G(u, + b)) — G(u, — hy), - - -,
G(u; + h;) — G(u; — h;) and covariance structure given above.

Probabilities involving long intervals may be estimated by accumulating prob-
abilities of the form considered above. For example, Prob [0 < service time <
2Lhk] = G(2Lh) — G(0) may be estimated by
(3.10) D {G([20 — 118 + b)) — G ([2] — 1]h — R)} .

The previous theorem indicates that this estimate is asymptotically normal with
mean G(2Lh) — G(0) + O(C,*Q;) + O(C,~"Q,~") and variance

sin La/2
sin a/2

(A1) C; BT W(ay da) §%58%, ( )(S‘n MY f(@) fle) ™ dac

In the case that the input series is Poisson the expressions of this section
simplify because it makes f,,(1) = C;/2z. The problem is then one concerning
an M|/G[oo queueing system. Milne (1970) showed that the service time distri-
bution is identifiable in this case and Brown (1970) considered an estimate of
the service time distribution. The discussions of these papers make specific
use of properties of the Poisson process and so are not applicable to the G/G/co
problem considered here.

4. Proofs. In this section we prove the theorems of the paper and develop
several theorems of independent interest, namely Theorems 4.2, 4.3, 4.4. We
begin with,

THEOREM 4.1. Let the process {X,(1), Xy(1)}, —oo < t < oo, satisfy Assumption
2.1. Suppose |fi(2)| < oo, j, k=1,2. Let W(a) satisfy Assumption 2.1,
W a) = B,7*W(B,'a). Then as T — oo, if B, —0 and B, T — oo

@.1) Efp(d) = f(2) + O(B) + O(B,'T-)
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Cov {£72,(4), fia (3}
= 20TH§ WO — @)Wy — @) f;;.(a) fus(—a) da
+ § WD — WDy + @) f (@) fos(—a) da
(4.2) + §§ WO, — a))W (2, — ay)
X [iyigigeg(@1> — @1y — ) day da} 4+ O(B,~*T?)
= [22B, 7T~ § W(a)* da][6{4 — A} f5,;,(4) fieyer(— 2)
+ {4 + A} i, (2) fryi(— )]
+ 27T f g — A1y —25) + O(Bp*T~%) + O(B,T™Y)
for|d, = 2| = B if 4, + 4, +0
(4.3) cum (£, (A), + -+ [, (3,)} = OBy~ HT=7+)
forJ =1,2,.... The error terms are uniformin ,, -- -, 2,. (6{2} = 1fori=0
and = 0 otherwise.)

Proor. This follows in the manner of Theorems 2, 3, 4 in Brillinger and
Rosenblatt (1967) and of Theorem 4.3 in Brillinger (1972).

CoROLLARY. Under the conditions of the theorem and if B,°T — 0 as T — oo,
[ f}f,gl(l), ceey, g,’, ,(4,)] is asymptotically normal with mean | fjl,,l(ll), s fi Jk J(l 2]
and
(4.4) limg_q, B, T cov { {1} (), i3, (4:)}

= 2z § W(a)* da [6{2, — 22}fj1k2('21)fk1k2(—11)
+ o{4, + Z2}f;r'1k2(11)fk1j2(—21)] .
Proor. The standardized joint cumulants of order greater than 2 tend to 0.
This last theorem and corollary are seen to take the same exact form as cor-

responding results for ordinary stationary series (see Brillinger and Rosenblatt
(1967).)

ProoF oF THEOREM 2.1. From Theorem 4.1 and Corollary 3 of Mann and
Wald (1943)

A = AQ) + {[il'(A) = faD] — ADLATA) — fu(DD/fu(D)
+ O,(B,'T).
This last together with the Corollary above gives the indicated asymptotic
normality. The specific expression (2.6) indicated for the asymptotic variance
follows from (4.4) by simple algebra.
The next theorem has some independent interest. It will be needed in the
proof of Lemma 4.1.

THEOREM 4.2. Let the conditions of Theorem 2.1 be satisfied. Let 0, T=1,
2, ... be an increasing sequence of positive integers. Then for any ¢ > 0

(4-5) supeZo |5 (Cr9) — fi(Cr9)| = 0,(Qr* B, 74 T7H)

as T — oo.
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PRrROOF OF THEOREM 4.2. We have
sup, | f3#'(Crq) — Ef(Cr )™ = LS 1fi#(Crq) — EfR(Crg)™
for m a positive integer. In Theorem 4.1 we saw that
cum, {f5'(A)} = O(B,~""T~"*7)

uniformly in 4. Using the classic formula expressing moments in terms of
cumulants it follows that
E|fi () — Efid (P = OB, ~"T™) .

Therefore

Esup, |f5i(Crq) — Efi(Crq)I'™ = O(Q B,~"T ™)
and so

Esup, |f5(Crq) — Efi(Cr9)| = O(Q, "B, 7T H) .
Taking m sufficiently large gives

sup, | f'(Crq) — Efi(Cr9)l = 0,(Q,*B,~*T7H)
for any ¢ > 0. The proof is completed by noting that
sup, [Ef5i'(Crq) — fi(Crq)| = 0(Qr*B,7*T7H)
from Theorem 4.1.

We next state,

Lemma 4.1. Suppose the conditions of Theorem 2.1 are satisfied. Suppose
fu(d) =0 > 0 for some 6. Let Q,, T = 1,2, ... be an increasing sequence of
positive integers, then
(4.6)  supfLy |[A(Crg) — A(Crg) — {[fil’(Cr9) — fu(Crq)]

— AC DU (Crg) — Sl Cr DN [ Cr DY = 0,(Q*B, 7T )

forany ¢ > 0.
Proor. We have the identity
a_a_(a—a)  «a =BT =8) _ s_aolL
- L0 =LFR[02D (o)

Using this identity with a = fi’, b = fi’, @ = f,,, 8 = f,;, We see that the left-
hand side of expression (4.6) is bounded by
07 sup |fu” — full07" sup | fu sUp [f" — ful + sup |fil” — full/inf fi” .

Now inf fi” > inf f,, —sup | /i’ — fu,| = inf f;,+0,(Q,*B,~*T~*) and so 1/inf /i)’ =
0,(1). The Lemma now follows from Theorem 4.2.
Before proving Theorem 2.2, we develop the limiting distribution of a class
of spectral averages. Consider

FOH) = Cp B HCUf(Crq) — Efi(Crq)]
for a function H(2), —oo < 2 < oo, of interest.



824 DAVID R. BRILLINGER

THEOREM 4.3. Let the process {X,(1), Xy(t)} satisfy Assumption 2.2. Suppose
|/ < oo, jok =1,2. Let W(a) satisfy Assumption2.1. Suppose |H(2)| is
bounded. Let B, — 0, B,T — co, C; = B, as T — oo. Then EZ [{’(2) = 0 and

Cov {F[J(H,), F 5, (H)}

= C,*B,"'T~2x § W(a)* da {}¥}, H(Cr 9)Hy(Cr9)*f3,3,(Crq)
4.7) X fklk,(—CT q9) + X, H(Cr9)H(—Crq9)*f; ;,(Cr q)fkli,(—cr 9)}

+ Cp22T™" Bgy Loy Hi(Cr ) H(Cr 92)*
X fjlkljzkz(CT 9> —Cr g1, —Crqs) + 0(Q,'C,*B,°T™)
+ 0(Q,’C,*B, T7).
If in addition, Var 7§ (H) = C,*B,~'T~* ¥ |H(C,q)|’ for some ¢ > 0,0,B, =
0(1), Q;*B,™' T~ — 0, then [ Z [\ (H)), - - -, F [7i,(H )] is asymptotically normal.
Proor. Clearly E& {(H) = 0. Using (4.2) the covariance (4.7) equals

Cr’ e Za H\(Cyp4,)Hy(Cr ) *{[B, T2z § W(a)" da]}
X [o{q, — qz}fjliz(cr 91)fk1k2(_CT 9,) + o{g, + ‘Iz}filkz(CT ql)fkljg(_CT 91)]
+ 28T 4 ie(Cr 41> —Cr s —Crqa) + O(B,*T™*) + O(B,T™)
giving (4.7).
Next,
lcum {5 (H,), - -+, F 7, (H)H
=|Cp 2y o Y Hi(Crqy) - -+ Hy(Crq,)
X cum { (J'TI:I(CT 4)s -+ s figks(Crg)}]
< G/ By MM, [H(Cr )| -+ Zg IHAC 9] -

Because

X, |H(Crg)l < [2Q + 1T, [H(Cr 9l
it follows that the standardized joint cumulant is O(B,'~/*T*~7Q,’”*). This
tendsto O forJ = 3,4, ... provided Q,°B,7'T"* »0as T — oo. This completes

the proof of Theorem 4.3.
We next record a lemma that is essentially contained in the work of Bohman

(1960).
LeEMMA 4.2. Let f(u), —oco < u < oo, be such that
() §1fw)] du < oo and
(ii) § JuPlf(w)] du < oo.
Let
#(A) = §=, exp {idu} f(u) du .
Then for T, C >0

(27)* §7, exp {—iAu}p(2) d2 — 1“—3?9 7/6 10 H(Cq) exp {—iuCa}

< (127)'TC* § | f(u)| du .
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ProoF. See pages 118-120 in Bohman (1960).

ProoF or THEOREM 2.2. Using Lemma 4.1 and (4.1) we may write

@) = 12 T 3 exp (4C gLA(Crq) + Calh) + 0,(Cr OB,
T

for any ¢ > 0, where

) = ST B exp (—iCrgHAD — EAD] — AL — EAVYA

Using Theorem 4.3, and some algebra, [{,(,), - -+, {(u,)] is seen to be asymp-
totically normal with mean [0, -- -, 0] and covariance structure

— cos Cru;][1 — cos Cpu,)

*Cpluu,?

X g exp {i(u; — )Crq}fCrq) fu(Crg)™* .
The terms involving order 4 spectra drop out as we assume B,Q, — 0. From
Lemma 4.2
L 008 Callts = 1) 53 exp {i(u; — w)Cr g}l Crg)fuCre)™
nCr(u; — u,)? !
= §Z0%er eXP {i(4; — w)A} [ (A) fu()* 4R + O(C,*Qy) .

For T sufficiently large 1 — cos C(#; — u,) does not vanish and the last expres-

sion is equivalent to (2.9).

The mean function (2.8) follows from Lemma 4.1 and the fact that
§ 1274 42 < oo.

We next set down a theorem of independent interest that will be used in the
proof of Theorem 3.1.

B,~T-2z | W(a)* dae L1

THEOREM 4.4. Under the conditions of Theorem 3.1, the probability generating
functional of the process [ Ny(t), Ny(t)] is given by
(4.8) T2 [€:5 €] = E[exp {§ lOg &(0) dNy(1) + § log &,(1) dNy(1)}]
= [L [&(& « G)]
with T],[+] denoting the probability generating functional of the process N(t), x
denoting convolution and G~(u) = 1 — G(—u).
Proor. We have

[ l6ir &1 = BT, ()60 + 7))
= E[IL; {5:(z5) § &u(z; + 1) dG(n)}]
giving the indicated expression as
§ (75 + 1) dG(r) = § §u(z; — 1) dG(r) .

Probability generating functionals are discussed in Vere-Jones (1968). In that
paper he evaluated T],[§,] = I, [& « G~].
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Proor oF THEOREM 3.1. The cumulant measures of the process appear in the
expansion of the cumulant generating functional

log 1. [€Xp 71> €XP 75]

= Ty § 0 V) e ) )
Jl k! .

X cum {dNy(t,), - - -, AN;(t;), dN,(1h), - - -, dNy(t)} -
Using (4.8) this is given by
I [7: + log (e x G)]
“.9) -3, j—l, § - § [(s) + log (en x GT)(1)] - - -

[m(2;) + log (€72 x G7)(z;)] cum {dNy(1,), - - -, dNy(2;)} -
Making the expansions

e”*G‘(t):l-l—p*G‘(t)-l-%p’*G—(t)_[_...
1og(ev*G-)(t)={n*G-(t)Jrﬂzl_!yf*G—(,),Jr }
_%{,7*(;-(,)_{__21«!,72*6—(,)4_ ...}24_...

we see that the term of (4.9) of order m in 7, and n in 7, is the sum of terms
that are simple multiples of

S N s m(tl) A m(tm)[vz(wn)“l e 72(Wlﬁl)al] e
[(Wea)® -« - Da(Wi) ][ AG(Wyy, — 1)) - - - dG(w,p — uy)] - -+
[dG(w, — uy) - - - dG(wkpk — )]
X cum {le(tl)’ Tt le(tm)’ dNI(ul)’ T le(uk)}
where a,8, + -+ + a8, =n. As §|u|dG(u) < oo, and (2.5) holds for the
process N,(t), Fubini’s Theorem applies and yields

§ oo SOal+ oo 4 [tal + wul + -+ + [Wepy—l]
X [dG(wy — uy) - -+ dG(wys, — uy)] - - -
[AG(wyy — uy) - - - dG(wkﬁk—l — u,,) dG(—u,)]
X |cum {dN,(t,), - - -, dNy(t,), dN,(,), - - -, AN, (u,)}/du,| < oo
which is what is needed for (2.5).
Proor oF THEOREM 3.2. Proved in the same manner as Theorem 2.2. Inte-

gration by parts shows that condition (i) of the Theorem implies condition (ii)
of Lemma 4.2.
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