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LOWER CLASS SEQUENCES FOR THE SKOROHOD-STRASSEN
APPROXIMATION SCHEME

By DaAviD G. KosTKA
Texas A & M University

Let S» = X1 + -+ + X, where {Xi}r21 is a sequence of independent,
identically distributed random variables with mean zero and variance one.
By the Skorohod representation S, has the same distribution as £(U») where
& is standard Brownian motion. We find increasing sequences of real num-
bers {c.} and {d»} such that

. U,) —
lim sup-ee 5—((;%15%'—1)— =oc0 as.
and
lim sups—e §Un) — &lm) =0 a.s.

(dn1g n)t

We conclude with an example which explicitly gives the sequences {c,} and
{dx} in terms of the original random variables {X}.

1. Introduction. Let {X,},., be independent random variables with the same
distribution; make the normalizations E(X,) = 0, E(X,’) = 1; and let S, =
X, + --- + X,. Different embeddings of S, into Brownian motion have been
constructed (by Skorohod, Breiman, Root, Dubins and Monroe) with the fol-
lowing common properties (see Breiman (1968) pages 276-278). There exists a
probability space (Q, <&, P) with a Brownian motion £(f) (normalized so that
E[£(r)] = 0 and E[§%(f)] = ¢) and a sequence of nonnegative, independent, iden-
tically distributed random variables {T},,, defined on it such that the following
conditions hold.

(1.1) {6(Xr, T))},2: has the same distribution as  {S,},., .
(1.2) ET,) = EX,)=1.

Recent proofs of the law of the iterated logarithm rely on such a Skorohod-
type embedding. Let U, = 317, T,, V, = U, —n, and W, = §(U,) — &(n).
Using the strong law of large numbers on ¥, it is shown (see Breiman (1968)
pages 291-292) that

(1.3) lim sup, .. W,/(nlglgn)t =0 a.s.

where lg n = log, n. \ )
Kiefer (1969) considered a more specialized case. Assuming E(T, — 1)’ =
B < oo he shows that

(1.4) limsup, ., W,/((28n1glgn)tign)t =1 a.s.
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LOWER CLASS SEQUENCES 1173

Notice that he finds a finite, positive number for the lim sup. His proof relies
on the law of the iterated logarithm applied to the sequence {V,}. Kostka (1972)
generalized this result. Essentially he shows that if there exists a sequence of
numbers {c,},., such that

(1.5) limsup, .. |V,|/c, =1 a.s.
then
(1.6) lim sup,_.. W,/(c,lgn)t =1 a.s.

Kesten (1972) showed, in essence, that the normalizing sequence ¢, in (1.5)
exists only if the T, belong to the domain of partial attraction of the normal
law. The purpose of this paper is to prove equations analogous to (1.6) without
assuming the existence of an exact normalizing sequence c, as given in (1.5).

Assuming

1.7 lim sup, .. |V,|/d, =0 a.s.
and
(1.8) lim sup,_.. V,/c, = oo a.s.

then basically we show that

(1.9) lim sup, .. W,/(c,1gn)t = o a.s.
and
(1.10) lim sup, ., W,/(d,1gn)t = 0 a.s.

Statement (1.10) is an easy upper class result for W,. Statement (1.9) gives a
lower class result for W, and indicates how exact (d, g n)! is as an upper bound
for the fluctuations of W,.

We conclude with an example which explicitly gives the sequences {c,} and
{d,} in terms of the original random variables {X,}.

2. Theresults. The following is an easy upper class result (see Strassen (1967)
or Kostka (1972)) about the fluctuations in a Skorohod-type embedding versus
the Brownian motion.

(2.1) PROPOSITION. Suppose lim sup, _,.. |V,|/d, = O with probability one where
{d,} is a sequence of positive numbers, then lim sup,_,., W,/(d, 1g n)t = 0 a.s. where
g n = log, n.

Under additional assumptions on the random times T;, we can prove lower
class equations of the form (1.9). In the following theorem a regularly varying
sequence means a regularly varying function whose domain is restricted to the
positive integers. The theorem can be proved for more general sequences, but
these are sufficient for most examples. ‘

(2.2) THEOREM. Suppose there exist sequences of real numbers {c,} and {d,}
which are regularly varying with exponent m, 0 < m < 1, and satisfy c,[n™ 1,
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d,/n™1, and (c,1gn)/d, T oo as n — co. Furthermore suppose that

(2.3) lim sup, ., |V,|/d, = 0 a.s.
and
2.4) lim sup, ., ¥, [c,, = oo a.s.

where {n,} is a subsequence of the integers such that n, = y* for some y = 2 and

Lia (m) = O((n,)?)
for some p, m < p < 1. Then

(2.5) limsup,_,, W,/(c,lgn)t = oo a.s.
and
(2.6) limsup, ., W,/(d,1gn)t =0 a.s.

Proor. Statement (2.6) follows immediately from Proposition (2.1). To prove
statement (2.5) for0 < m < p < 1 let

(2-7) Fr,p = {maxlsism,.w |Un,.+i - Un,. - i| < % cn,.} .

We will now show that F, ,, the complement of F, ,, occurs only finitely often

7,0

a.s. as r — oo. By the assumption on the sequence {7’}

(2-8) 12X (T — 1) = 24,
for all but a finite number of m a.s. Thus if (2.8) holds for two values of m = M
and m = k > M, then .
|Z1,Z‘=M+l (Ti - l)l = |Zf=1 (Ti - l)l + |Z¥I=1 (Ti - l)l
< 2d, + 2d, .

In particular

(2.9) max, <rsn,+n,? |Zf=n,. T, -1 = 4dk,.

for all but a finite number of n, a.s. where k, = 7, (n,)*. But by the assump-
tion on n,

(2.10) k,= X1, (n) £ Cn,)
for some C > 0. Now, d, = n™L(n) where L(n) is slowly varying and thus
d,, = (k)"L(k,) = O[(n,y"L(n,)] = O[(n,)*"**]
for @ > 0 since the slow variation of L(n) implies L(n) < n*for n = N(a). Thus

4d, < L (nym < &
k,_.z(nr) <2c'n,.

for r sufficiently large. Thus only finitely many F, , occur a.s. Let K > 0 be
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an arbitrarily large fixed constant. Now the event
(2.11) K, <U, —n< (1 +e)d,
for all n such that n, < n < n, 4 (n,)? occurs for infinitely many r a.s.
Let J, = integral part of (n,)?/4d, and for 0 < i < J, define
n,; = n, + int (2id, )
n;, = n, + int (2id, + K, )
A= {87 — &(m,) > K(p — m)¥(c,, Ign,)})
B, = {suposz5(1+s)d,,r—1{%,,r (7 + x) — &(ny)] < F‘(cn,. Ign,)%
where 0 < ¢ < 1.
Cr,i = Ar,i n Br,i
Qr = UiJ;1 Cr,i .
Suppose (2.11) holds for n = n’.;, 0 < i < J,, then
nl, < n 4+ Pcn,
L
n+ (14 e)d,
ni+ (1 + e)d, — K, .

A A TIA

This together with C, ; entails
§(U, ) — &(m0) > (K(p — m)* — p)(c,, Ign,)}

which gives the desired result of the theorem. Thus it is sufficient to show
P(Q, occurs i.0.) = 0 which we proceed to do.

PQ,) = P(Niz Cr—i) = Ilin P(CT,,;)
P(C,,) = P(4,, U B,))
= (4..) + P(B,;) — P(4,,n B,)
= P(4,,) + P(B,,) — P(4,,)P(B,,)
=1—P4,,) + PB,,) — (1 — P4, )P(B,.)
=1—P(4,)[1 - P(B, ).
By Gaussian tail estimates

—K*p —m)

2= g n)(1 + o(1))}

P(A,) ~ {1 — exp
and since P(sup,.,<p £(f) = b) = 2P(&(T) = b), b > 0,
o _/"2015,. lg n,
P(B,) ~ 2 exp {(T)(l + 0(1))}

where g, = (1 + ¢)d, — K’c, .
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Thus
PC)~1— {exp (—(PT—'")) (g n,)(1 + o(l))}

X {1 -2 exp[<_‘ﬁzc;rﬁ’ﬁ) a + o(l)):l} :

Since g, = (1 + ¢)d, — K’, < 3d, and(c,lgn)/d, T oo

P(é;:) é 1 _ —;’_.< 1 )((p—m)/ﬁ)(l+0(l))

for r sufficiently large. Thus for large r
A —m)/2) (1+0 (1))
g P(@) < {1 (— 1 (L)
gP(Q) = 4 i, (2 (5
Ly~
=73 L(n,)(n,) (p=m/D0+o) :

Since 0 < m < p < 1 and L(n) is slowly varying,

lg P(Q,) £ —4(n,)" where ¢ > 0.
Thus
PQ,) < 1fet"

and by Borel-Cantelli only finitely many Q, occur a.s. This completes the proof.

It is of interest to give the sequences {c,} and {d,} in terms of the original
random variables {X;}. Sawyer (preprint) relates the asymptotic behavior of the
tail distribution of X, to the asymptotic behavior of the tail distribution of the
stopping time 7, which comes from the Skorohod-Breiman representation of
X,. As a special case he shows that if X, > —M and P(X, = t) ~ c/t* where
g > 1, then P(T, = s) ~ ¢’[s** where ¢/, ¢, and M are positive constants. We
can use this result and the following theorem due to Feller (1946) to find the
sequence {d,} in terms of the original random variables {X;}.

(2.12) THEOREM (Feller). Let {Y,},., be a sequence of independent, identically
distributed random variables such that E(|Y}|) < oo, E(Y;) = 0, and for some 0 <
0 < 1, E(|Y,|***) = oo. Furthermore, let {d,} be a sequence of numbers for which
there exists an ¢ with 0 < e < 1 such that ¢, [nV/"*® 1, c,[n ], and let S, =
Y,+ -+ + Y,. Then|S,| > c, infinitely often a.s. if and only if |Y,| > c, infi-
nitely often a.s.

(2.13) EXAMPLE OF PROPOSITION (i.l). Assume E(X,) = 0, E(X)) = 1, X, =
—M, and P(X; = f) ~ c/t’. Then Sawyer’s result says P(T; = s) ~ ¢'[s*. By
Feller’s theorem ’

lim sup, .. |V,|/(nlg n(lglg n)*)t =0 a.s.
Thus Proposition (2.1) gives
lim sup, ., W,/(n(1g n)*(glgn)’)t = 0 a.s.



LOWER CLASS SEQUENCES 1177

Notice that we cannot use Feller’s theorem to find the sequence {c,} in Theorem
(2.2) since condition (2.4) requires information about the fluctuations of ¥,
along a geometric-like subsequence. To establish a result of this type, the fol-
lowing two lemmas are used. The first, which is a generalized Borel-Cantelli
lemma, is proved by Lamperti (1963).

(2.14) LEMMA. Let D, D,, - - - be events in a sample space, and suppose that
Lwa P(D,) = oo
Suppose also that for some constants N and C < oo
P, D,) = CP(D,)P(D,,)
foralln,m > N. Then
P(D, occur i.o.) >0.

The following lemma, which appears here in a slightly more general form, is
proved in Kostka (1973).

(2.15) LEMMA. Let{Y,},., be a sequence of independent, indentically distributed
random variables and S, = Y, + ... + Y,. Assume {b,} is an increasing sequence
of real numbers such that nP(Y, > b,) —0asn— oco. Assume also that P(S, > 0) >
e > 0. Then

P(S, > b,) = CnP(Y, > b,)
for some C > 0.

(2.16) PROPOSITION. Let {Y,},., be independent, identically distributed random
variables with mean zero such that P(Y, = s) ~ ¢'|s' as s— oco. Let S, =
Y+ -« +7Y,. Then

Sy = K(2*1g 2¥1glg 2kt i.0. a.s.

forany K > 0.
(Note: A direct application of Feller’s theorem above merely gives S, >
K(n(lg n)(Iglg n)t i.o. a.s.)

ProoF. Let y(k) = K(2*1g2*Iglg 2¥)t and D, = {®: Sy-1 > 0, Spp — Sye—1 =
7(k)}. Then for k > I

DD, = {w: Sp-1 > 0, Sy — Spe-1 = 7(k), Sy > 0, Sy — Sy-1 = (1)}
CH{o: Sp-1> 0,8 — S2k~llg 7(k), Sp — Sy = ()} -
Thus, P(D,D,) < P(D)P(Sy — Sy-1 = 7()) < c¢P(D,)P(D,) for some c¢ > 0.
Since by Lemma (2.15)
2 P(Dy) = € 2, 2'P(X, > y(k)) = oo,

Lemma (2.14) gives P(S,s = (k) i.0.) > 0. By the Hewitt-Savage zero-one law,
this probability must be one which is the desired result of the proposition.
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(2.17) EXAMPLE OF THEOREM (2.2). Assume as in Example (2.13) that
E(X) =0, EX?) =1, X, = —M, and P(X, = t) ~ c¢/t*. Then Sawyer’s result
again gives P(T; = s) ~ ¢’[s'. Example (2.13) says

lim sup, ., W,/(n(1g n)i(lglg n)*)t = 0 a.s.
Proposition (2.16) gives

limsup, ., V,/(2"1g2"1glg 2"t = o a.s.
Thus Theorem (2.2) is applicable and yields

lim sup, _,,, W,/(n(1g n)}(Iglg n))t = oo a.s.
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