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SOME ITERATED LOGARITHM RESULTS FOR SUMS OF
INDEPENDENT TWO-DIMENSIONAL
RANDOM VARIABLES!

BY SHEY SHIUNG SHEU
University of California, Berkeley

Let Z; = (X;, Y5), i = 1, be independent two-dimensional random vari-
ables, defined on a probability triple (Q, %, P), such that E(X;) = E(Y;) =
E(X; Y;) =0, E(Xi2) < oo, E(Y;?) < oo for all i. The purpose of this paper
is to investigate the limit points of {(Su(w)/L(n), Tn(w)/M(n)),n = 1,2, ---},
where w € Q, S» = 173 Xi, Tn = 17, Yi, L(n) =[2E(S»?) log log E(S:2)]3,
M(n) = [2E(T,?) log log E(T»?)]}. The author will show the limit sets are
the closed unit disk almost surely under some general conditions. An ex-
ample with all limit points lying on the two axes with probability one will
be constructed.

1. Introduction. Let R* be the k-dimensional Euclidean space. Denote the
one-point compactification of R* by R* = R* U {oco} with the usual topology.
Let {a,, n = 1} be a sequence of points in R*. A point x, in R* is a limit point

(accumulation point) of {a,} if either x,e R* and Ve >0, Vn, 3mom=n

and |a, — x,| < ¢, where | | is the Euclidean norm, i.e. |(y, ---, i) =
O+ - +y, or x, = oo and {a,} is unbounded. The collection of all such
x, is called the limit set of {a,}. Now Hartman-Wintner’s law of the iterated
logarithm [6] can be stated in the following manner: suppose X, X,, ... are
i.i.d. real-valued random variables, defined on a probability triple (Q, o7, P),
with means zero and variance one. Then, with probability 1, the limit set of
{[Xy(@) + --- + X,(®)]/(2nloglogn)}, n = 3} is [—1, 1]. The author is inter-
ested in the analogue of this result for the multidimensional variables. Namely,
suppose we have, say, 2-dimensional random variables Z, = (X,, Y,), n = 1;
let us assume E(X,) = E(Y,) = E(X,Y,)=0 for all n; let S, = Y7, X,
T, = N Y L(n) = [2E(S,?) log log E(S,%)]}, M(n) = [2E(T,?) log log E(T,3)]:.
What can be said about the limit sets of {(Sn/L(n), T,/M(n))} under reasonable
conditions? The main results of this paper are Theorem (2.10) and Theorem
(2.14).

The following notations and conventions will be used throughout the article.

(1.1a) (Q, &7, P) is the probability triple on which the random variables
considered in each statement are defined.
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(1.1b) Z, = (X,, Y,), n = 1, is a sequence of independent random variables
in R2
(1.1¢c) log, = log log .

2. Statement of results. The limits sets related to the law of the iterated
logarithm are not random. In fact,

2.1 PROPOSITION. Recall (1.1b). Let {¢(n)} and {(n)} be two sequences of
numbers such that

(2.2) lim, .. ¢(n) = 0,  lim,_. ¢(n) = oo .

Let
S, = Z?=1 Xi ’ T, = Z?=1 Y.

Then there exists a unique nonempty closed subset H of R® such that

(2.3) Plw | the limit set of {(S,(w)/¢(n), T (0)/¢(n))} is H} =1.

In fact,

(2.4)  H={x,e R|x, isalimit point of {(S(w)/$(n), Tu(w)/g(m))}
for almost all we Q}.

The proof is based on the Kolmogorov 0-1 law and the fact that R* is a sepa-
rable metric space. Following (2.1), we make the

(2.5) DEerINITION. In Proposition (2.1), H is called the a.s. limit set of
{(Sa/$(n), Tafp(m))}-

Thus, the goal is to determine H with given ¢ and ¢.

For the case when Z,’s are i.i.d., it has been known in the literature that the
a.s. limit set of { 7., Z,/(2n log, n)#} is the closed unit disk if Z, has mean 0 and
covariance matrix (} ). We use a result due to Strassen [13] to prove that the
converse is also true. Hence,

(2.6) PROPOSITION. Suppose Z, = (X,, Y,), n = 1, arei.i.d. Let
W, =24
Then the a.s. limit set H of {W,[(2nlog, n)}} is the closed unit disk if and only if
E(Z)=(0,0), Cov(Z)=@(Y-.

Hence, whenever E(Z)) = (0,0) and Cov (Z,) exists, then a.s. limit set of
{W,/(2n log, n)}} is an ellipsoid.

When the variables do not have the same distribution but the two coordinates
for each variable have equal variances, Kolmogorov’s result [8] can be easily
extended. We remind you of (1.1b).

2.7 PROPOSITION. Suppose Z, satisfies
(2.8a) E(X;,) = E(Y;) = E(X,Y)=0,
(2.8b) EX}) =EY}?) =06< 0, Vi.
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Let
(2.8¢) 5= 2,0’ W,= 21t Z,.
Let
| Xi| = esssup,cq [ Xi(o)] ,
|Y,| = esssup,cq | Yi(@)| .
Then the a.s. limit set H of {W,[(2s,?log, s,*)}} is theclosed unit disk if
(2-9) St 00, sUpg, (Xl + [Yil) = o((s.*/10g, 5,7)) -
Proposition (2.7) is proved by using linear functionals on R* then applying
the one-dimensional result.

For the case when two coordinates have unequal variances, we construct an
example in Section 4 which amounts to saying the following:

(2.10) THEOREM. There exists a sequence of independent random variables,
Z, = (X,, Y,), n = 1 such that X, and Y, are independent for each n and
E(X,) = EY,)=0, E(X}) < oo, E(Y?) < o0, Vi,

but the a.s. limit set of

{(S,/(2s,2log, s,)}, T, /(21,2 log, t,°)} is {(a,b)|ab = 0,]a| <1, |b| < 1},
where
st = Nl E(XY), 6= N E(YY), So=lkX,  T.=X LY.

It is well known that the law of the iterated logarithm is strongly related to
the Central Limit Theorem, and conditions stronger than Lindeberg’s are needed.
We present in Theorem (2.14) a condition on the rate of convergence to the nor-
mal law.

To state (2.14), assume (1.1b) and

EX)=0, EY)=0, EXY)=0,
EX)=0'< 0, EY)=7r2< o0.
Define
s(n) = s, = 2,0, t(n)=t'= i, 7},
S(n) =S, = XX, T(n) =T,=21.Y;.

To avoid triviality, assume that s5,> — oo and #,* — co. Let

(2-11) p(n) = o(Foy @) = SUP_s ycen [Fu(¥5 ) — RAX, )| 5

where @ is the standard 2-dim normal distribution function and F, the distri-
bution function of (S,/s,, T,/t,).

Define two subsequences {n,} and {m,} by induction. Take any r,, v > 1, 7,
fixed. Let ‘

(2.12) n, be the first n such that s*(n) = 3 and #(n) = 3, when n,, ---, n,_,
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are defined, n, is the first n such that
s(n) Z 748%(ny) or (n) = 7ot'(m_y) -

(2.13) Let my = n,; when m,, ..., m,_, are defined, m, is the first n such that
s%(n) = 105 (my_y) and 1¥(n) = 7,1 (m,_,).

(2.14) THEOREM. Suppose 38 > 0>
(2.15) p(n) = O(min {1/(log s,2*%, 1/(log 1,2)**+#}) .

w7 =

Let H be the a.s. limit set of

PRSI

{(Su/(25,1 l0g, 0%, Tj(20,7 logy 1)) and  (a, Bye Re.
Then (a, b)¢ Hif 36 > 05

(2.16) Y0 1/(log s¥(n,))?-*(log £(n,))"~* < oo,
and (a,b)e Hif 36 > 0>
2.17) 25-0 1/(log s%(m,))**+(log £i(m,))**+* = oo .

(2.18) ReMARK. In (2.16), when a=0 or b =0, (logs*n,))*”? or
(log #*(n,))**~* should be considered equal to 1 respectively.

As applications of (2.14), we show

(2.19) COROLLARY. Assume (1.1b), (2.8a), (2.8b), (2.8¢), and 5,>— co. Sup-
pose, furthermore, all Z,’s are normal. Then the a.s. limit set H of {W,,[(2s,}l0g, 5,%)}}
is the closed disk with center origin and radius d if and only if

(2.20a) T, 1/(log s(m))#=* = oo, Vi >0,
(2.20b) 50 1/(log s3(n,))™+* < oo, V3 >0.

(2.21) CoRrOLLARY. Under (1.1b), (2.8a), (2.8b), (2.8¢), and s5,> — co, the
a.s. limit set of {W,[(2s,? log, s,%)} is the closed unit disk if 3B > 0, 2 < o0 3

(2.22) E[(X? + Y)(log (X + Y+ < 2o, Vi.
3. The proofs.

(3.1) Lemma. Let {U,, n = 1} be a sequence of random variables in R*. Then
- for any x,e R, the set ‘

3.2) A(x)) = {w e Q| x, is a limit point of {U,(w)}} is measurable.
PrOOF. Since R® satisfies the first axiom of countability,
A(xp) = Nyes {U eV 10},
where 7" is a countable family of open neighborhoods at x,. []

(3.3)  THE Proor oF (2.1). Define 4(x,) by (3.2) for each x,e R* by taking
Un(@) = (Sa(0)/$(n), T,(@)/¢(n)). By (2.2), A(x,) is a tail event. Applying the
Kolmogorov 0-1 law, P(A(x,)) = 0 or 1. Let H = {x, € R*| P(A(x,)) = 1}.
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(a) Claim: H is closed.
Indeed, take any {x,} in H such that

x, — %, some XeR?.
Because any limit set is closed,
nn A(xn) C A(i) *
P(N, A(x,)) = 1 = P(AFR) = 1 = FeH.
(b) Claim: P{w|H is the limit set of {(S,(w)/é(n), T, (0)/¢(n))}} = 1.

Note that y € H if for all open nbd V of y we have P((S,/¢(n), T,/d(n)) eV,
i.0.) = 1. Since H° is open, Yy e H° 3 open nbd D(y) of y 5 D(y) C H° and

P((S4/$(m), Ta/p(m)) € D(y), i.0.) < 1.
Again, by (2.2), the event {(S,/¢(n), T,/¢(n)) € D(y), i.0.} is a tail event. Hence,
by the Kolmogorov 0-1 law,
(3.4) P((S,/$(n), T,J$(n)) € D(y), i.0.) =0,
Since |J,. . D(y) = H° and H* is Lindeldf, there exists a countable subcovering
‘D(.yl)’ D(.yz)’ R 3

Hence,

U. ‘D(.yn) = H".

Let B, = (0| S,(0)/$(n), To(0)/¢()) € Ugs D(1), i.0.): for each m. Then (3.4)
implies P(B,) = 1, Vm. Let G be a countable dense subset of H. Let C, =
B,, N (N,ec A(x)). Then P(C,) = 1, Vm. Observe that Yw € C,,, the limit set
of {(S,(w)/¢(n), T,(®)/¢(n))} contains H but is contained in (Upr, D(y,))° =
Ne, D(y,)’. LetC = N, C,. Note Nr-, (D(y,)) = H. Hence, P(C) = 1 and
Vwe C, the limit set of {(S,(w)/é(n), T,(w)/¢(n))} is exactly H. Moreover, if
we choose D(y) in such a way that D(y) C H°, then by the compactness of
D(y) (in R?) we see

C = {o|the limit set of {(S,(®)/d(n), T,(w)/¢(n))} is exactly H}.

Since for each o, the limit set of {U,(w)} is unique and nonempty, H is unique
and nonempty. []

3.5) REMARK. From the above proof, one sees that if EC R?, E is closed,
En H = ¢, then P((S,/#(n), T,/¢(n)) € E, i.0.) = 0 by the compactness of E.
To prove (2.6), observe a simple fact:

(3.6) LEMMA. Let {a,} be an indexed set in R*. Suppose T: R* — R* is a con-
tinuous map and x,, x, € R*, is a limit point of {a,}. Then T(x,) is a limit point of
{T(a,)}- '

(3.7)  THE Proor oF (2.6). The proof of the “if”” part can be found in a paper
by Finkelstein [4]. For the “only if” part, suppose the a.s. limit set H of
{W./(2nlog, n)}} is the closed unit disk. Let S, = X7, X,. Since co¢ H,

i=1“*%

{W,(w)/(2n log, n)t} is bounded almost surely. By (3.6) and Remark (3.5), the
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a.s. limit set of {S,/(2nlog, n)t} is [—1, 1]. Applying a result by Strassen [13],
E(X;) = 0, E(X;*) = 1. Similarly, E(Y,) = 0, E(Y,’) = 1. Weknow321,,4, >0
and an orthogonal transformation 4 such that the cavariance matrix of (§: {)4Z,
is (¢ 9)-

Let Z/ = (1 })AZ;,, W,' = X7, Z/. By “if” part, we see the a.s. limit set of
{W.'[(2n1og, n)}} is the closed unit disk. But (f: ?)4 is a 1-1 onto linear map,
the a.s. limit set of {W,’/(2nlog, n)}} is the image of the a.s. limit set of
{W./(2n log, n)*} under the map (j: ?)4. Hence, thh unit disk is invariant under
the map (31 )4, which cannot hold unless 4, = 4, = 1. Therefore,

( 9) = Cov (2) = ACov (Z)4* = Cov (Z)) . .

(3.8) THE PRrOOF OF (2.7). Take a point (a, b) on the unit circle.
Consider V, = aX, + bY,,n = 1. Let

U,= Z?=1 V.

By (2.8a, b, ¢), and (2.9), one sees E(V,) = 0, E(V,?) = ¢/, and sup,, |V,| =
o((s,}[log, 5,%)}), 5,2 — co. By Kolmogorov,

(3.9) limsup U, /(25,2 log, s,”)t = 1 a.s.
This is true as long as a* + 5* = 1. Using (3.6), we deduce
(3.10) Hc {(xy)|x*+y<1}.

(3.11) Claim: H D {(x,y)|x*+ y* = 1}.
Suppose the above claim is not true. Then 3(a,, b,) and B,(a,, b,), > 0, such
that
(3.12) P(W,/(2s,*log, 5,%)t € By(ay, b,), i.0.) =0
by Proposition (2.1), where a4 b =1 and By(a, b)) = {(a, b)||(a, b) —
(ap by)| < 0}. Let V,' = a)X, + b,Y,, n>1, and U,* = Y r, V. Using ele-
mentary geometry and (3.10), (3.12), we have

limsup U,°/(25,*log, s,5)} <1 — 02 < 1 a.s.
which contradicts (3.9).

To probe H O {(x, y)|x* 4+ y* < 1}, take another independent copy {Z," =
X, YN} or {Z,}. Consider A, = 32, (X,, Y, X/, Y/). Corrying out the
same arguments as before, we see the a.s. limit of {A,/(2s,? log, 5,%)}} contains
{(a, b, ¢, d)|a® + b* + ¢* 4+ d* = 1}. Then taking the projection, we have
(3.13) Ho{xp)|x*+)y2< 1.
The theorem follows from (3.10) and (3.13). []
We shall work on Theorem (2.14). The following lemma (3.14) is known.
(3.14) LEMMA. Let Y be N(O, 1).

(@) P(Y=1) < 2r) e, t 2 0. In particular, when t > 1, P(Y =2 ) <

e~t,

(b) Let —co < a < b> oo, m = max {a, b%}.
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Then P(a <Y < b) = (2x)~%b — a)e=™?. In particular, when b — a > (2x)4,
P@a<Y<b)= e ™2

(3.15) LemMA. Let Z; = (X,, Y;), 1 < i < n, be independent such that E(X,) =
EY)=0,EX)=0< o0, Y})=t2< 00,1 i< n Lets?= r 0l
=t S, =2 X, T, =3k, Y, 1<k<n. Then for any x,y, —oco <
X< 00, —o0 <y < oo,

P(U;c‘=1 [Sk g xsn, Tk g ytn]) é 3P(S'n g (x - 3!)‘9”’ Tn g (}’ - 3§)tn) .

Proor. Let

Ak=[skgxsmTkgytn]9 l<k<n,
B,=A°Nn ... nA_ n A4, 2<k<n,
=A4,, k=1,
G =[ZknXs = =34, Tl Y. = —34,], l<sksn-1,
=1Q, k=n,
and also, let D =[S, = (x — 3%)s,, T, = (y — 3%)1,] -
Then
P(D) 2 P(D 0 (Uk=14w)) = P(D 0 (U?-1 By)
= Lix P(D N By) = 32, P(B, N Cy)
= 2l%-1 P(B,)P(C,) by independence.
But
P(C) = P(Nien Xy = —3%s,, 10y, ¥, = —34z,)
21— P(ErpnX < —34s,) — (D V. < —3tt,)
>1— 2ik1 08 _ Dt T8 by Chebyshev
3s,’ 3,
>1-}3—-3=4%, l1<k<n—1.
Of course,
P(C,) = P(Q) > %.
Hence,

P(D) 2 § Xi=1 P(By) = $P(U=1 Bi) = $P(U-1 4y) -

(3.16) THE PROOF OF (2.14). Remember (2.12) and (2.13). First note that
the convergence or divergence of the series in (2.16) does not really depend on
7o in the sense that given any other 7, y > 1, define a subsequence {v,} by the
procedure described in (2.12) but using 7 instead of r,, then

(3.17) 2 1/(log $(v))*~%(log £3(v,))**~? < oo if and only if (2.16) holds.
This is true because if 7 > 7,, thed v, > n,, Vk; therefore, (2.16) = (3.17); if
7 <70 then 3 integer I5y' > r,, hence, v, = n,, Vk; therefore, (2.16) —
2k 1/(10g $*(v5,))”~*(log £2(vy)) "2 < 00 = (3.17) by the fact that both s%(n) and
t’(n) are non-decreasing. Reversing the roles of y,and 7, one sees (2.16 < (3.17).
The same argument can be applied to (2.17), too. Hence, we may take 7, to
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be any value we like as long as 7, > 1. Without loss of generality, assume that
a>0,5>0. Given ¢ >0, ¢ is small. Let L(j) = (2slog, s}, M(j) =
(21*1og, 1Y)t j = 1. Define the event 4; = [S; = (a — ¢)L(j), T; = (b — &)M(j)]-
Let C, = Un,_,isn,_, 4~ Then
P(Cy) = P(Un,_ysism,—1[S; = (@ — )L(my), T; = (b — e)M(n,,)]) -
Since
$(my) < 8 — 1) < 708% (M) » () < B — 1) < 108(m)
we can choose 7, so close to 1 that (a — ¢)L(n,_,) = (@ — 2¢)L(n, — 1) and
(b — e)M(n,_,) = (b — 2¢)M(n, — 1).
Thus,
P(Cy) = P(Un,_ysisn,1[S; 2 (@ — 2e)L(m, — 1), T; = (b — 2)M(n, — 1)])
< 3P(S(ny-s) 2 (a — 29)L(m, — 1) — 3is(n, — 1),
T(m, — 1) 2 (a — 25)M(m, — 1) — 341(n, — 1))
by (3.15).
If k is sufficiently large, we have
(@ — 2¢)L(n, — 1) — 3is(n, — 1) = (a — 3¢)L(n, — 1),
(b — 2e)M(n, — 1) — 34(n, — 1) = (b — 3e)M(n, — 1).
Hence,
P(C,) < 3P(S(ny_,) = (a — 3e)L(m, — 1),
(3.18) T(n, — 1) = (b — 3e)M(n, — 1))
< 3[3p(m — 1) + P(X 2 (a — 3¢)(2 log, s(m, — 1))},
Y 2 (b — 3¢)(2 log, £'(n, — 1)1)]
by (2.11), where X, Y are two independent N(0, 1). Now by (2.15),
p(n, — 1) < K,min {1/(log s*(n, — 1)), 1/(log (n, — 1))*+#)

= K, min {1/(log s*(m,_,))"**, 1/(log £*(n, _,))***} ,
where K, is an absolute constant. Since for each i, s%(n,) = 7,5%(n,_,) and £*(n;) >
Tot’(n;_y), we have s’ (m,_,) = 7,t*~Vs*(n,) and r*(n,_,) = 7,t*~V¢(n,). Hence,
(3.19) ' o(n._y) < K /[3(k — D]+, some K, > 0.
Next, .
P(X = (a — 3¢)(2 log, s%(n, = 1)}, ¥ 2 (b — 3¢)(2 log, (n, — 1))})
(3.20) < 1/(log s*(n, — 1))“=**(log t¥(n, — 1))*=%* by (3.14a)

< 1/(log 5¥(m, ) *~**(10g 1, ,))"*~*"

< 1/(log 5*(m,y))*~’(log £*(n, _y))**~*
when ¢ is sufficiently small. With (3.18), (3.19), (3.20) and (2.16), we obtain
2k P(C) < 0.
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By Borel-Cantelli,
P(Cy, i.0.) = 0= P(A4;, i.0.) = 0= (a,b)g H.

To prove the second part of the theorem, let || || be the max norm; i.e.
[|(a, b)|| = max (|a|, |b]). Given ¢ > 0. Clearly,

gyt Zmy=t) - @ > 2]

< (2o k) =@ o] > o [[| (S, T > .

Therefore,

p I S(mk)L?mf)(Mk 1) T(mk)]v};mll:;mk-l)) — (a, b)“ > 2e>

= P (|G womy) = @] >*)

+2([(Fo S >)-

Subtracting both sides from 1,

p(”( S(my) — S(m_ 1) T(m,) — T(m,,_l)) — (a, b)“ < 25)

L(m,) M(m,)
=7 ([(803. ) - ol

(|| Al = <) -

But
(3:22)  P(H(S(my_)L(my), T(m,_.)/M(m))lf Z ¢)
= P(|S(my_o)/L(mp)| 2 ) + P(\T(m_)/M(mp)| 2 ¢) .
By (2.11) and (3.14a),
(3:23)  P(IS(m_)/L(my)| = €)

S 2p(my,_y) + exp(—[e’s’(m,) log, s%(my)}/s(m,._,)) ,
where

(3:24) p(m,_,) < K, min {1/(log s*(m,_,))"**, 1/(log £*(m,_,)}"**}
< KJ(k — 1)+e, . some K, >0,
by the definition of {m,},
and
(3.25)  exp(—[e's’(m,) log, s(m,)}/s'(m,_.)) < 1K(log sX(m,))ye”
< Kyfkre? some K, > 0.
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If we choose 7, so large that y,e* = 2, then by (3.23), (3.24) and (3.25),

(3.26) T4 PS(my )/ L(my)| = €) < oo .
Similarly,

(3:27) 2 P(T(myy)[ M(my)| = €) < oo

With (3.22), (3.26) and (3.27), one sees that

(3-28) Z P(S(me_n){L(my), T(my_,)| M(my))|| 2 €) < o

Again, applying (2.11), (2.15) and (3.14D),

(329)  P(|(S(my)/L(my), T(my)[M(my)) — (a, b)|| < ¢)
> —4P(mk) + 1 /(log sz(mk))aﬂnslalﬂﬁ(log t2(mk))b2+2elbl+¢2
= —K,/k*? + 1/(log s*(my))****(log 1¥(m,))"+*
if ¢ is sufficiently small. By (2.17), (3.21), (3.28) and (3.29), we conclude that
S(my) — S(my_y)  T(my) — T(my0) | _ — oo
2k P(“( Lim) M(my) ) (@ b)“ = 26) =
By independence and Borel-Cantelli,
S(my) — S(my_,) T(my) — T(my_,)\ _ e i _
(3.30) P(“( iy, A2 K ) (@, b)“ <2, 1.0.) =1.

Using (2.15) and a result of Petrov [11] in the one-dimensional case, we see that
for almost all w, k() > Vk = ky(®),

S(mk—p (0) é 2L(mk-1) é 2/7‘05L(mk)
T(m,,, 0) < 2M(m,_;) < 2[rM(m,) .

Thus, if 7, is sufficiently large, then (3.30) implies
P(||(S(my)[L(My), T(m,)[M(my)) — (a, B)|| < 3¢, i.0.) =1.
Since ¢ is arbitrary, (a, b) e H. []

(3.31) THE ProoF oF (2.19). In this case, Z,’s are normal; therefore, (2.15)
is trivially satisfied. Sinces,’ = 1%, n, = m,. Suppose (2.20a, b). With (2.20a)
and (2.17), we see that (a, b) € H if a® 4 b* < d*. With (2.20b) and (2.16), we
see that (a, b)¢ Hif a® + b* > d*.
Hence,

H = {(a, b)|a® + b* < d% .

Conversely, suppose H = {(a, b)|a* + b* < d?}. Then (2.16) — (2.20a) and
(2.17) = (2.20b). [

(3.32) THE PRrOOF OF (2.21). By a multidimensional CLT, viz, Bhattacharya
[1], we know

(3.33) o(F,,®) < KA +A+T), for some K> 0.



TWO-DIMENSIONAL LIL 1149

where
I' = max,_, o,/s, ,
3

X, + bY,
A=3xr, SUP(a,5):02452=1 S[lali+in[sa”] Li‘j_—i ap,
X+ Y

A = Z?=1 SIXi3+Y1220,,3] '_‘L--:!-;_i ap.

By (2.22) and Jensen’s inequality,
E(X7)(log E(X)** < E[X(log X2} < o2, vi.
Hence,
o.iﬁ é exp(zl/(l+ﬁ)) s Yi s
(3.34) T < Lexpgavarny.
Sn
Next,
X+ Y2
A= 2t S[xiuyi?gs,,?] 'z—t‘l— ap
1 »

(B39 S gy T (K + Yog (X7 + Yoyt ap

< 2/(log s,%)**
by (2.22).

And,
X, + bY, |?
A= Z?:l Sup(a,b) S[aXi+bI’ilés,,] Lsi_i‘l ap

(3.36) ! i § (X + Y)(log (X2 4 Y2))+P dP

= s,f(log S,f)”'"
< 4/(log s,*)'+¢ .
Put (3.34), (3.35), (3.36) in (3.33), to see that
o(F,, ®) = O(1/(log 5,%)+%) .

Note that s5,* = 1%, n, = m,, and log s*(n,) grows linearly.
Hence, “

2 l/(log s¥(n)) ¥ =0 if @4k <1,

<o if @4b>1.

By Theorem (2.14), we conclude that the a.s. limit set is
{@b)|a + b < 1. 0

4. An example. We present here an example for Theorem (2.10). ‘The idea
is to construct Z,, n > 1, so that when {S,/(2s,?log,s,%)?} clusters around
any point, {T,/(2t,’log, ¢,*)}} will stay around 0; and vice versa. To achieve
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this, let us take two independent copies of fair-coin-tossing variables; i.e.
Vi Vi -+, Uy, U, -« - iiiid. 41 with probability 1 each. We know
Yt V./(2nlog, n)} — 0 in probability.
Therefore, 3{n,}
4.1) i V(2n, log, )t — 0 a.s.

Define Z,, Z,, - - -:
0 b 0 bl b 0 b Ul 9 U2 bl 9 Unl b

() ons (V)o
0 0

Write Zn = (X'n’ Yn)’ S'n - Z?:l Xi’ Tn = Z?:l Yi’
5,2 =ES,, t2=ET,), nx1.

When S,/(2s,log, 5,%)} visits around a, —co < a < o0, T,/(2t,*log, t,%)} is
equal to }.7% U,/(2n, log, n,)}, for some n,, which tends to zero almost surely.
Similarly, if we look at those n’s when T,/(2t,? log, %)} visits around b, — o0 <
b < oo, S,(25,2log,s,? is equal to 7% V,/(2n, log, n,)}, for some n,, which
also tends to zero almost surely. Therefore, the a.s. limit set sits in the two
axes. Applying the one-dimensional result, one argues that the a.s. limit set
is exactly {(a, b)|ab = 0, |a| < 1, |b| < 1}. Formally,

(4.2)  Claim: the a.s. limit set H of {(S,/L(n), T,/M(n))} is {(a, b)|ab = 0,
la] £ 1, |b| < 1}. To show this claim, let ¢ > 0 and let
Ap = S/ L(k)| = &, |Tu/ M(K)| 2 €],
B, = Uznk_1<isznk_1+mk A;,
G = Uan_1+mk<i§2nk A;.
where m, = n, — n,_, and n, = 0. Since {4,, i.0.} C {B,, i.0.} U {C,, i.0.}, we
have
P(A4,, i.0.) < P(B,, i.0.) + P(C,, i.0.).
But
P(B,, i.0.) < P(|T,,_[M(n,_)| = ¢, i.0.)=0,
P(C,, i.0.) < P(S, [L(m)| = ¢, i.0.) =0
by (4.1). Hence, P(4,,i.0.) = 0. Since ¢ is arbitrary, H C {(a, b)|ab = 0}.
Furthermore, all X, and Y, are bounded by 1 and 5,* — oo, 1, — co. Using
Kolmogorov’s result and Lemma (3.6), one sees
Hc {(@b)la < 1,5 < 1)
Hence,

(4.3) Hc {(a,b)|ab=0,a| <1, b < 1}.
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To show the other direction of inclusion, suppose
4.4) (ay, b)) ¢ H for some (a,, b,) such that a0, =0, |a| =1, |b| < 1.

Without loss of generality, assume b, = 0. Remember H is closed. By (4.3)
and (4.4), 3¢ > 03 if E={(x,y)||x — a,| < ¢}, then En H= @. Applying
Remark (3.5),
P((S,/L(n), T,/M(n)) € E, i.0.) =0.
Hence,
P(|[S,/L(n)] — a)| < ¢, i.0)=0,

which contradicts the one-dimensional result. [J

4.5) RemARk. It is obvious that we can make E(X,*) > 0, E(Y,?) >0 for
all n by adding “small” variables to each Z, and the result remains valid.
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