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MARKOV CHAIN
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Boundary conditions in the form of equalities have been used by Feller,
Dynkin, and others to characterize the range of the resolvent operator
for certain continuous time Markov chains. Along similar lines Denzel,
Kemeny, and Snell were able to establish a characterization and Riesz de-
composition for the excessive functions of a more restricted class of Markov
chains through the use of boundary conditions in the form of inequalities.
The present paper sets out to clarify and build upon this work by reanalyz-
ing these excessive functions in a more general setting. Here the boundary
theory developed by Chung is brought to bear on the problem so that the
results can be derived in canonical form for probabilistic interpretation.

0. Introduction. The Laplace transform of the transition matrix for a con-
tinuous time Markov chain can be considered as an operator on the class of
bounded functions which are defined on the state space of the chain. In his
pioneering work ([7], [8]), Feller characterized the range of this resolvent operator
by certain equations called lateral conditions involving a “normal derivative”
at the boundary. Subsequently, Dynkin ([6]) was able to accomplish this char-
acterization with similar boundary conditions for a wider class of transition
matrices. Since each‘excessive function for the Markov chain is the pointwise
limit of a sequence chosen from the range of the resolvent, it would seem likely
that the excessive functions should be characterized by boundary conditions
which are related in some way to those of Feller or Dynkin. This was demon-
strated in a paper by Denzel, Kemeny, and Snell ([5]) for a continuous time
Markov chain which has one minimal “fast” exit boundary. These authors also
took up the task of extending to these excessive functions the Riesz decomposi-
tion known for the superregular functions of the embedded jump chain. More
recently, Pittenger [11] has shown that similar boundary conditions can also be
produced for certain Markov processes.

The present paper seeks to extend more fully the results of Denzel, Kemeny,
and Snell to the case where the passable part of the Martin exit boundary for
the chain is completely atomic and finite. Moreover, by using the analytic and
probabilistic results of Chung ([2], [3],-[4]), and by working directly with time-
dependent quantities rather than with their Laplace transforms, greater insight
is afforded in the derivation of this material. For example, once boundary
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1076 MICHAEL W. CHAMBERLAIN

conditions are obtained in canonical form for the excessive functions of a chain, it
is then a simple matter to characterize a non-recurrent boundary atom as sticky
or non-sticky according to whether or not all excessive functions enjoy a certain
right continuity at that atom. And Feller’s normal derivative, when divorced
from the Laplace transform, is a natural aid in the decomposition problem.
But before these topics can be considered, certain preliminary facts must be
established.

1. Background and notation. It is assumed that the reader has a knowledge
of the results contained in [2], [3], and [4]. The following paragraphs will serve
as a summary of some of the important points referred to later.

Let (X,, 5,) be a continuous time Markov chain on a probability space
(Q, &, P) with the standard, stochastic transition matrix P(f) = (p,;(¢)), where
t is positive and where i and j range over the denumerable state space I, =
I U {#}. Without loss of generality, we assume that the chain is Borel measurable
and right separable with respect to the rationals. The matrix P(7) satisfies

(1.1) P =0,
(1.2) Pl =1,
(1.3) P(s)P(t) = P(s + 1),
(1.4) lim,_,, P(t) = I,

where I is the identity matrix and 1 is the vector consisting of all ones. From
these properties, it follows (see [4]) that P(f) has a continuous derivative for all
positive ¢ and also a right-hand derivative at t = 0, denoted by Q = (¢,;). It is
assumed that on I

0<gl < +o0
and

(1.5) 01 =0,

where q is the diagonal matrix (—d,;q,;).

If 7, is the time that the chain makes the nth change of state, then y, = X(z,)
defines the jump chain associated with X,. This discrete time Markov chain has
state space I, and transition matrix R = I 4 ¢~'Q. The chain y,, with a strictly
positive initial distribution 7, induces an exit boundary B and a metric on I and
B so that almost surely y, converges to a point y,, of B. If P(y,, = b) > 0 for
some b € B, then b is called an atomic boundary point. Letting v = lim,_,, z,,
the first infinity of the jump chain, there exists a subset A of B so that {r < oo}
and {y., € A} differ by a null set. The set A, the passable part of the exit bound-
ary, is assumed throughout this paper to be nonvoid, to contain all of the atomic
boundary points, and to be finite.

If X, is stopped at the first infinity = and absorbed in some new state, then
the resulting chain, the minimal chain, has a substochastic transition matrix
@(7) which satisfies (1.1), (1.3), and (1.4). All ®-recurrent states are lumped
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together, and we assume that @ is the only ®-recurrent state if one exists. @(7)
also has the initial derivative matrix Q, and, in fact, ®(f) can be derived ana-
lytically from Q (see [4]) as the increasing limit of the matrices (¢{%(7)) defined
recursively by

(1.6) o) = b, e
and
(1.7) asF(t) = aP(1) + Tuws 6 €44 9q, 053(s) ds .

For the convenience of notation, we will let ¢,(¢) stand for the matrix (a{¥(?)),
and e~%(¢) will be the diagonal matrix with diagonal entries e~?¢. Then (1.6)
becomes

(1.8) o(t) = e (1),
and (1.7) can be written as
(1.9) Opia(t) = 0i(t) + €77 x {qR, 0,)(?) .

Here and later, « denotes convolution, and the notation {a, 8) or af will stand
for the inner product 3};;.,, a(i)B(i)-

For each ae A, z° is defined to be r when y., = @ and infinity otherwise.
Then for all nonnegative ¢, the vector function

(1.10) L(f) = 1 — (D), 1)

can be written as

(1.11) L(t) = Seer L) »

where L(f) = P,(c < t) and L(f) = P,(¢* < t). Each L*(¢) satisfies
(1.12) (@), L)y = Los + 1) — L)

and has a continuous nonnegative derivative /() satisfying the exit law equation
(see Section 4 of [2] and Section 13 of [3])

(1.13) D(s)e(r) = e(s + 1) .

Further properties of this natural class {{°(f)} of exit solutions include:

(1.14) I*(t) = QL(¥), 01t 0;
(1.15) lim,_,, Ly (1) = 1, 0<?tL o,

almost surely on A* = {r* < oo}. At this point, some results for the minimal
transition matrix ®(7) are presented in order to set the scene for the investigation
of functions which are excessive with respect to nonminimal chains.

2. Excessive functions for the minimal chain. Some of the theorems of this
section are known, but most often in terms of the Laplace transform. To be
complete, proofs have been supplied which use only the time-dependent quantities
themselves.
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2.1) LEMMA. Onl x 1,
(2.2) i o(0)du = Spoo RAg .
Proor. For n = 0, by (1.6),
i o) du = 3,59, .
Assume (2.2) is true for n = m. Then by (1.7),
§o o) du = 6,;9,7 + Xiws §5 €7 'qu 7 0LP(s) ds dt
=049, + D rad 2o Rk, J)}g,;7
= LRI, J)g7
and induction completes the proof.
Following fairly standard notation, on I x I define the matrices

G =\ Ou)du
and

N= Y5 ,R*.
Notice that G has finite entries since ¢ is the only possible ®-recurrent state.
2.3) COROLLARY. G = Ng™.

A sequence C = {C(i)} of nonnegative finite numbers indexed by I, is called
a ®-excessive function if ®(#)C < C for all t. The same sequence is known as
an R-superregular function if RC < C.

2.4) LeEMMA. C is ®-excessive if and only if C is R-superregular if and only if

2.5) c=0
and
(2.6) QCc 0.

Proor. If C is ®-excessive, then (2.5) is true and t~{®(r)C — C} < 0 forall
positive ¢, which implies (2.6) by Fatou’s Lemma. Now assume (2.5) and (2.6)
are both true. Obviously, (2.6) is equivalent to

(2.7) RC<C
forn=0,1,2,....

We prove inductively that, for all ¢,

(2.8) o, (HC < C.

It will then follow by the Monotone Convergence Theorem that ®(f)C < C.
For n = 0, we have ¢(f)C = e *(¢#)C, which is no greater than C. Assume (2.8)
is true for n = m. Suppressing the time variable ¢, we have by (1.9)

0pnnC=0,C+ e 7%x{qR,0,C>.

By (2.7) and (2.8),
{qR,0,C> < qC,
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while
e xgC={(I—e g }gC=C—o¢,C,
and so (2.8) is true for n = m 4 1.

The decomposition contained in the next theorem is suggested by the work
of Feller ([8] Lemma 11.2) and Dynkin ([6] Lemma 2.2) on characterizing the
range of the resolvent operator for the minimal transition matrix. For our
purposes, with respect to the minimal chain, a finite, nonnegative C is said to
be @-invariant if ®(f)C = C for all ¢, whereas C is a ®-potential if C is P-exces-
sive and lim,_,,, ®(f)C = 0. And with respect to the jump chain, C is R-regular
if RC = C, or C is an R-potential if C is R-superregular and lim,_,, R*"C = 0.
(2.9) THEOREM. If C is a ®-excessive function, then C is continuous from the
left at A in the sense that

C(a) = lim, _,., C(x,)
exists and is a finite constant almost surely on A°, ae A. Moreover, on 1,
(2.10) C = (D(1), Cy — §6<D(u), QCH>du + 3,4 Cla)L?(t)

with equality if {y, C) < +oo. A necessary and sufficient condition that equality
hold in (2.10) for all ®-excessive functions is that every R-regular ®-potential be
bounded.

Proor. Assume C is @-excessive and {7, C) < +oo. Cis R-superregular by
Lemma (2.4). Hence, by Theorem 10-41 and Lemma 10-42 of [10], we can
decompose C into the sum of an R-potential function and an R-regular function
as follows:

(2.11) C = (N, C — RC) + §3, f(B)K(+, B) dpu(b) ,

where 4 is the harmonic boundary measure and f is the fine boundary function
of C. Now by Proposition 10-21 of [10],

K(i, b) dpx(b) = dP (1., = b)
on B. From this identity and the discussion on page 32 of [3], we have
I — ®(2), §2, fB)K(+» b) dp(B))(D) = §u, f(O)P (1 € dB; T < 1)
= Daeaf(@LS() -
Moreover, by Corollary (2.3), (N, C — RC) equals —(G, QC). Then equality

in (2.10) follows directly from (2.11) dpon calculating C — (@(¢), C), since by
Theorem 10-43 and Proposition 10-45 of [10], we have almost surely

lim, .. C(xa) = f(1) »

and, in particular, on A®

lim,_, C(x,) = f(a),
a finite constant which is our C(a), a € A.
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For the general ®-excessive C, C(y,) can be seen to converge almost surely
to a finite limit by considering for each i in I the nonnegative supermartingale
formed by multiplying C(y,) with the indicator function of the set {y, = i} (see,
for example, Section 4-3 in [10]). Hence, for a € A one can choose integer m
so that on a subset of positive probability of A®,

lim,_, C A m(y,) < m

where C A m, the minimum of C and m, is bounded and ®-excessive. So, by
what has previously been shown, C A m(y,), and therefore C(y,), has a finite
constant limit C(a) almost surely on A®. The equality in (2.10) for C A m be-
comes an inequality for C, by letting m tend to infinity, after several applications
of the Monotone Convergence Theorem and Fatou’s Lemma.

Assume equality holds in (2.10) for all ®-excessive C. If for some R-regular
C we know that {®(7), C) converges to zero as ¢t approaches infinity, then from
(2.10) we see that C equals Y} ,., C(a)L%(o0), which is bounded since A is a finite
set. Conversely, if C is ®-excessive then it is easy to check by (2.10) and Lemma
(2.4) that

U=C — lim,,, {®(), C) + (G, 2C)
is an R-regular @-potential. Assuming that U is bounded, by equality (2.10)
U=<(2(1), U) + Xaea U@L(),
and therefore
C =L, C) — §i{P(n), QC) du + Fioer U@L(1)
which yields by the inequality (2.10) for C,

c g ZaeA U(a)La(t) ; ZaeA C(a)La(t) *

Taking the limit at each a e A, we get U(a) to equal C(a) and equality must hold
in (2.10) for C.

The following corollary complements Lemma (2.4) and gives the counterpart
to the decomposition in [5] of a ®-excessive function into the sum of an invariant
function, a “space” potential, and a “boundary” potential.

(2.12) COROLLARY. Assume that C is ®-excessive and that equality holds in
(2.10). Then

(i) € =lim, . <D(1), C) + <G, —QC) + Yioer C(A)L*(c0);
(ii) C is ®-invariant if and only if C is R-regular and C(a) = O for all a e A;
(iii) C is a ®-potential if and only if C — Y, C(a)L*(c0) is an R-potential.

Proor. The Monotone Convergence Theorem applied to the equality (2.10)
establishes (i). Assume that C is @-excessive (or R-superregular by Lemma (2.4)).
Then @(f)C = C is equivalent to

(2.13) §5 (D), QCY du = Y,e4 C(a)L*(1) = 0.
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Since @(#) is a standard transition matrix, (2.13) will be true for all t when and
only when QC = C(a) = 0, ae A. And lastly, by (i) C is a ®-potential if and
only if ‘
C = (G, —QC) + Zieea C(a)L*(0) ,
where (G, —QC) = (N, C — RC) is an R-potential.
3. Boundary conditions. In the treatment of excessive functions for non-
minimal chains, we employ Chung’s “canonical decomposition” ([2], [3]). Under

the assumption that the exit boundary atoms are distinguishable, the transition
matrix P(f) is written

@3.1) P(t) = ©(f) + Yaenl®x E%2),
where £,%(t) = P(X(z® + f) = j|t* < o) is the distribution of the post-z* chain,
which has state space

IP={jel,: §4) > 0,¢:>0}.

If p,%(7) is the probability that the post-z* chain at time # is at state j and has not
yet reached A — {a}, and if F*¥(¢) is the probability that, starting at a, the chain
first switches to boundary atom b before time ¢, then on J,

(3.2) §°(1) = 0,%(1) + Zwa 10 65°( — 8) dF(s) -

For each a € A, there is a canonical ®-entrance law %), satisfying the en-
trance law equation

e(S)P(1) = e(s + 1),

and there is a measure E°(f) so that
(3.3) p%(0) = §7°(t — 5) dE*(s) .
Properties and interrelationships of these and other canonical quantities which
are of importance to the present paper are too numerous to list here, and so as

they are needed references will be made to [2] and [3]. However, one remaining
important formula should be noted, namely, the one representing £(¢) in terms

of p():
(B4 &) = Do Dayageniay §6 0% — HAF 5 -0 Foama®n)(s) .

The definitions of excessive, invariant, and potential functions for a non-
minimal chain are the same as those for the minimal chain, with P(f) in place
of @(¢). The following result is trivial, but it is of such frequent (and often
implicit) use that it should be stated at this point.

(3.5) LEMMA. If e(f) is a P-entrance law and C is a P-excessive function, then
{e(t), C) is non-increasing as t increases.

The next theorem introduces a boundary condition for excessive functions
analogous to that of [S]. We note that Pittenger, in (5.5) of [11], has presented
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in a much more general setting a boundary condition which, after some modi-
fication, is of a similar form and, in fact, is an exact equality for the sticky
atom case. With a different approach, we shall obtain a condition, based on
the behavior of the chain between the “change of banners,” which is expressed
in terms of the canonical quantities 5%(+) and F**(.) of [3], and which enables
us in Section 4 to decompose functions which are excessive with respect to
nonminimal chains. The constant d°® is defined in Section 17 of [3] as the
probability that, starting from a, the last exit from a before switching occurs
in finite time, and is a switch to 5. The symbol ¢° is 0 if @ is a recurrent trap
and 1 otherwise.

(3.6) THEOREM. C is P-excessive if and only if C is ®-excessive and C satisfies
the boundary condition

(3.7)  3°C(a) — Lsra d°C(b) — lim, 4 {7*(1), C — C(a)L*(e0)) 2 0
forall acA.

Proor. Assume C is P-excessive. Since £°(.) is a P-entrance law, {(£%(t), C)
is non-increasing in ¢ for each b ¢ A. Furthermore, by (3.1) C is ®-excessive,
and also

C 2 1% (&°(+), CY(1) = LA(NCE(1), C

for all e A. Taking limits at A for ¢+ > 0, and using Fatou’s Lemma for t = 0,
we get forallac A

(3.8) C(a) = <&(1), C .

Fix ac A. From (3.2) and (3.8), we have that

C(a) — {0%(1), €Y Z Lpsa(E(+) C) = F(1)
and so, from Corollary 1 to Theorem 14.7 of [3],
(3.9)  {9°C(a) — (7*(+), € — C(@)L*(o0))} * EX(1) Z Fipwa (E°(+), C) x F(1) -
Subtracting
Livra CONF?(00) — 0®()] % EX(1) = Lpra F'()C(0)
(see Theorem 14.7 of [3]) from both sides of (3.9) yields
(3.10)  {0°C(a) — Zpra [F**(00)—0(+)IC(0) — <n°(+), C — C(a)L*(00))}x E*(1)
Z ora {KE(+), € — CO)} x F(7) -

For b ¢ A, the function {£%(f), C) increases, as ¢ tends to 0, to a limit which is
no larger than C(b) by (3.8). Also, C — C(a)L*(c0) is ®-excessive, and so

lim,_,, {*(¢), C — C(a)L*(co)) also exists. Then dividing both sides of the ine-
quality (3.10) by E*(7) and letting ¢ decrease to 0, we obtain

(B3.11)  3C(@) — Tpue d*C(b) — lim,_4 (77(1), € — C(a)L¥(00))
= Tpne d{lim,_ (E%(1), C) — CB)} »
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where the last sum must be 0, as the following reasoning makes clear. If b is
nonsticky, then d** = 0 by Corollary 2 to Theorem 17.1 of [3]. And if b is
sticky, then

C(b) = lim, o (&%(1), € = lim, ., (E*(1), L"(00)C(B)y = L*(c0)C(b) = C(b)
by Theorem 17.2 of [3]. So (3.7) follows from (3.11).
Conversely, assume @-excessive C satisfies (3.7) for each aec A. Since
C — Y4ea C(B)L¥(00) is D-excessive, we have
lim,_o (7%(1), € — Zsea CB)L'(00)) = SUP,>o (7°(1), € — Zsea C(O)LY(0)) -
And since E°(.) is absolutely continuous for positive ¢,
0 < EX(1){3°C(a) — Fppe d°C(b) — lim, o (7%(1), € — C(a)L%(c0))}
= E*(){0°C(@) — Zssa F*(0)C(0)
— SUP {7%(1), C — Fpea C(B)L(c0))}
(3.12) < EY(){3°C(3) — Tssa F*H(0)C(0)}
— <7%(+), € — Zsea C(O)LY(c0)) x EX(1)
= C(@){0° + a*(+)} * E%(1) — Zppa COOHF**(c0) — a®*(«)} » E*(1)
— 7°(+), €5+ EX(1)
= C(a) — Zissa F*(OC(B) — <0*(1), €

for each a e A. Hence the telescoping series
2150 Dayeriay $6{C(an) — Ty Fou'(t — )CO)d(F o1 % - - - % Flamstn)(s) ,
which has value C(a), is no smaller than
Qim0 Z"l»"':“,‘ §i {on(t — 5), CHA(F**1 % - - - % Fon-1%s)(5),

which equals {¢%(¢), C), by (3.4) and the Tonelli Theorem, for each ac A. So
by (2.10),

C = KO(1), C) + Xiaea C(@L(t) Z (D(1), C) + Haea I * C6%(+), CX(1)
or
by (3.1).

(3.13) CoROLLARY. If C is ®-excessive, then C is P-excessive if and only if
forallae A, C(a) = E¥{C(X,)} fort = 0.

C = (1), C)

There are other equivalent expressions for the boundary condition (3.7) in
Theorem (3.6) which are of some use and interest. One which we notice in the
second part of the proof of that theorem is

(3-14)  3°C(a) — Lssa F*'(0)C(0)
’ i — lim,_, (7%(1), C — Yyea C(B)L(0)) = 0.
Another form resembles the type of equation which Dynkin ([6] Theorem 1.13)
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used to determine the range of the resolvent operator. The fundamental dif-
ference, as noted in [5], is that for excessive functions the boundary condition
is an inequality. From (14.28), (17.9), and Theorem 14.5 of [3], and by (1.11),

0% = 0% Xpea F*(00) + lim,_, (o%(?), 1))
= Lsea F¥*(00) + lim, , {p*(1), 1 — L(0))
= Ylsea A + lim,_, (p*(f), 1 — L%(o0)) .
So (3.7) is equivalent to
(3.15)  Nyend{C(8) — C(a)} + lim,_, (7°(), C — C(a)y < 0.

A final form, involving the normal derivative of Feller’s ([8] Theorem 14.1)
lateral conditions will be developed in the next section.

Some partial probabilistic results could now be derived from Theorem (3.6).
However, a sharpening of this theorem will yield the more satisfying Corollary
(3.21). The weakness of Theorem (3.6) is in not explicitly describing the behavior
of P-excessive functions at the recurrent boundary atoms. Since these recurrent
atoms also play a critical role in the next section, the following material is now
developed.

To say a boundary atom a in A is a recurrent non-trap for P is equivalent
to saying that a is a recurrent state for the discrete parameter Markov chain
{zu; n = 0}, discussed in Section 19 of [3], which has state space A and transition
matrix F = (F*(c0)). The notions of communication and recurrence class for
bdundary atoms will be defined, as usual, in terms of this chain (see, e.g.,
Sections 1.3, 1.4 of [4]). A recurrent boundary class A, for P then is either a
singleton, containing a recurrent trap, or contains two or more elements which
enjoy these properties: for any a, € A,,

(3.16) A, ={beA: F*a, b) >0 for some n = 0};
(3.17) Flxxa, Is stochastic.
Now from (3.3), (3.4), and (3.16), it is easy to see that the class of states
I = Upen, {i: 2(¢) = 0}
is equal to I for any a € A,. For any ®-excessive C, the symbol C(A,) will be

used when and only when C is constant on A,, in which case C(A,) is defined
to be this constant.

(3.18) THEOREM. Let A,, A,, ---, A, be any collection of recurrence classes
of boundary atoms for P, andlet A, = A — \Jp, A,. Then the class of P-excessive
functions consists of all ®-excessive C which satisfy:

C = C(AY on I, 1<k<m;
0°C(a) — Ylppa d**C(b) — lim,_, (p*(t), C — C(a)L*(0)> = 0,
forall ae A,
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Proor. By Theorem 14.8 of [3] and (3.17) above, ¢°*(0) = 0 for ae A, and
b¢A,. So by (3.14), all we need to do is fix a ®-excessive C and, for example,
prove that

(3.19)  3°C(a) — Tyes, F*(c0)C(b)
= lim, , {9*(#), C — Xea, C(B)LY(0)) = 0

for all ae A, if and only if

(3.20) C=C@A,) on T4,

If A, is a singleton containing only the recurrent trap a, then (3.19) reduces to
(7(+), € — C(@)L¥(0)y = 0

since this function of ¢ is nonnegative and non-decreasing as ¢ decreases. But
L?(c0) = 1 on I" since a is a recurrent trap, and so (3.19) and (3.20) are equiv-
alent in this case. .

Assume now that A, contains more than one element, and assume (3.19) is
true. Take C(a) as the minimum value among the values C(a) for ac A,.
By (3.17) and (3.19),

0= C@) — Zyen, F¥(0)C(0) = C(af{l — Zyen, Fe*(0)} = 0,
and so necessarily C(b) = C(a) if F(a, b) > 0. It follows by induction that
C(b) = C(a) if F*(a, b) > 0 for some positive integer n. Hence, by (3.16), C is
constant on A,, and C(A,) is well defined. By (3.17) and (3.19) again,
—1im, , {7*(1), € — Zses, C(B)L*(c0)) Z 0
for a e A,. This inequality, as in the recurrent trap case, implies that

C = Zves, C()L(o0) = C(A)L(c0) = C(A)
on
It = Usea, i 7:(+) # 0}
since, by Theorem 12.2 of [3], L(co) = 1 on I*1. Conversely, if (3.20) is assumed
to be true, then (3.19) follows since {7°(+), C — C(A,))y = 0 for all a e A,.

(3.21) CoROLLARY. If aisa recurrent boundary atom, then for each P-excessive
C, the boundary condition (3.7) is an equality and

C(a) = E*{C(X))}, t>0.
If a is a sticky boundary atom, then for eqch P-excessive C,
C(a) = lim,_, E*{C(X,)} .

Conversely, if a is nonrecurrent, then there exists a bounded R-regular, ®-potential
C satisfying

C(a) > E*{C(X,)}, ot >0.
Furthermore, if a is also nonsticky, then

C(a) > lim,_, E{C(X,)} .
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Proor. 'l{he first statement follows from Theorem (3.18) since C = C(a) on
{i: £&2(-) # 0} by (3.3), (3.4), and (3.17), while the proof of the second statement
is contained in the proof of Theorem (3.6). From (3.14), (3.12), (3.2), and
Corollary (3.13), we have for any P-excessive C

E*(){0°C(a) — Xsea F*(00)C(b) — limy s {7*(t), C — Tpea C(B)LY(c0))}
= C(a) — Zsea FHNC(B) — {o%(t), C)
= C(a) = Zea KEY(+)s € = F(8) — {o%(®), C)
= C(a) — <§4(1), C)

for all positive #. Obviously, the remainder of the corollary follows upon dem-
onstrating in those two cases the existence of a bounded R-regular ®-potential
C which is P-excessive, and for which the boundary condition (3.14) is a strict
inequality at a.

Let A, be the set of all P-recurrent atoms of A, and assume A, = A — A, is
nonempty. From the theory of discrete time Markov chains, we have that
lim,_,, T = 0, where T is the substochastic matrix gotten by restricting F to
Ay x A,. Then for fixed g, € A,, it is possible to choose a nonnegative integer n
so that

(3.22) Zber T”+l(aa b) é Zber T”(a’ b)

for ae A,, with strict inequality if a = a,. Define C to be Y, A, C(@)L%(o0)
where C(a) equals }3,.,, T*(a, b) for a € A,. Then the boundary conditions (3.14)
for C are just

(3.23) 5°C(@) — Tyer F¥(00)C(b) 2 0

for all ae A. Now the inequality (3.23) is an equality if a € A, by (3.17). And
(3.22) implies (3.23) if a € A,, with strict inequality when a = a,.

4. A representation theorem. As has already been mentioned, the boundary
conditions for excessive functions turn out to be the boundary conditions used
to characterize the range of the resolvent operator with equalities replaced by
inequalities. In [5] and in the preceding section, the comparison was made with
the Dynkin [6] boundary conditions. Here, in Lemma (4.2), the analogy will
be made to the canonical boundary conditions for the range of the resolvent in
[1], which involve the normal derivative introduced by Feller ([8] Theorem 11.1).
In order to do this, the normal derivative must first be defined for excessive
functions.

4.1) LemMA. If y(+) is a Q-entrance law, and if C is a ®-excessive function
for which (2.10) is an equality, then — oo < [5, QC] < 0 where

[, QC] = —<7(t), C) + §§ (n(w), QC) du + 3,4 {1(t), L*(00))C(b)
is constant for t > 0.
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. Proor. LetC = C — },., C(b)L}(0). From (1.12), (1.14), and the equality
(2.10), we get

C = (O(1), Cy — §i{(PD(u), QC) du .
Consider the nonpositive quantity
D(5) = —<n(t), € + §5<p(w), QC) du .
Fors = 0and ¢ > 0,
D(t 4 5) = —=<n(1) PH)C) + §¢<n(w), QC) du + §¢+* (p(w), QC) du
where, by the Tonelli Theorem, the last integral equals

g §i Cn(t + u), QC) du = (o(e), §5{D(w), QC) duy .
0

D(t 4 5) = —{9(1), ©(5)C — §3{D(v), QC) duy + §§ {n(u), QC) du = D(f)
= —9(1); C) + Zsea 0(t); L*(0))C(b)
+ §6 <n(w), QC) du = [, OC] .

4.2) LEMMA. A ®-excessive C for which (2.10) is an equality is P-excessive if
and only if

4.3) 0°C(a) — Ylyen F*¥(0)C(b) + [7° QC] =0
forall ae A.

Proor. If C is P-excessive, then by two applications of Fatou’s Lemma, the
Tonelli Theorem, and by (2.10),

§6 (n*(w), —QC) du < lim inf,_, {§ {n*(u + 5), —QC) du
< lim inf,_, {9°(s), i <P(n), —QC) du)
=< 1lim, , {7*(s), € — C(a)L*(e0)} ,
which is finite by (3.7). Also, since this last limit is an increasing limit, {7%(¢),
C — C(a)L*(o0)) is finite for all ¢+ > 0, as is (p*(¢), C(a)L*(o0)), or C(a)a**(t),
and hence so is their sum {7°(¢), C). Then by Lemma (4.1), [5*, QC] is finite, so
4.4 [7*, QC] = —lim,_, {7°(t), C — Xsea C(B)L?(0)) ,

and (4.3) follows from (3.14). Conversely, if (4.3) holds for all ae A, then
[7°, QC] necessarily is finite for all a € A, and (3.14) follows from (4.4).

4.5) THEOREM. Let A, be the set of all nonrecurrent atoms for P. If C is a
P-excessive function for which (2.10) is an equality, then for t > 0,
C = (P(1), C) — §5<P(u), QC) du + Flaen, §5 Cla, 1 — w)l*(u) du
where, for a e Ao,
C(a, 1) = 2iTeo Doy, mrageny B(an) §§ Eon(t — $)d(F 1 5 - - - & Flam1%a)(s) ,
and B(a) is the nonnegative quantity 6°C(a) — 3, F**(c0)C(b) + [7*, QC].
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Proor. From Lemma (4.1), we know that, for 0 < s < ¢,

[7% QCl = —<n*(t — ), €5 + §57 <7°(w), QC) du + Fiyen 0®(t — 5)C(P) -
Then since E%(t) is absolutely continuous for positive ¢, as in (3.12),
(4.6)  B(@)E*(r) = §6{9°C(a) — Lser F**(c0)C(b) + [7°, QCI} dE%(s)
= C(@) — Xsea F(N)C®) — (1), C) + §5{p"(u), QC) du
is nonnegative and equals zero if a¢ A, by Corollary (3.21). Then a simple

computation, of the type used in the last part of the proof of Theorem (3.6),
using (3.4) and (3.17) and the equality (4.6), yields

C(a, 1) = C(a) — K€1), € + §5{§%(w), QC) du,

a quantity which is nonnegative and equals 0 unless a € A,. The proof is now
complete since (3.1) and (2.10) allow us to write

C = (P(1), C) — §i(P(u), QC) du
F Ziaen, §0{C(a) — (&°(t — 1), € + §57 <€%(s), QC) ds}i*(u) du .
The next corollary is the multiple boundary atom analogue to the representa-
tion of Section 10 in [5], with the important exception that here, P is not assumed

to be transient. This result is the extension of the representation in Corollary
(2.12) to functions which are excessive with respect to a nonminimal chain.

4.7) COROLLARY. Any P-excessive function C for which (2.10) is an equality
can be written as the sum of a P-invariant function, a P-potential function, and a
®-potential function. In the notation of Theorem (4.5),

(4.8) C = lim,_, {P(?), C) — §& P(u) du, QC) + 3,4, C(a, 00)L%(0),
where on A, I, is the identity matrix and
C(+, ) = {Iy — F(0)|sgxa,} 'B -

Proor. The decomposition (4.8) follows from Theorem (4.5) by the Monotone
Convergence Theorem and the fact that E%(+) is a probability measure when a
is not a recurrent trap.
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