CORRECTION NOTE

CORRECTION TO

"ON DISTINGUISHING TRANSLATES OF MEASURES"

BY MAREK KANTER

Sir George Williams University

The proof of Theorem 3 of [1] contains a gap which we fill with the three Lemmas that follow. We also note that $f_N(x)$ should be changed to $f_N(x + \alpha m)$ on page 1776 of [1], line 21, where $f_N(x)$ is defined.

Our notation is the same as in [1]. The setting is, as before, a general real stochastic process $X = (X(t) | t \in T)$. We let S stand for the set of all real valued functions on T and we let $\mathscr A$ stand for the σ -field of subsets of S generated by coordinates. For a fixed element $m \in S$ and $\alpha \in R$, the real line, we let P_{α} stand for the measure induced on $(S, \mathscr A)$ by the process $(X(t) + \alpha m(t) | t \in T)$.

We say that the measures P_{α} are simultaneously Borel distinguishable if there exists an \mathscr{S} measurable function f such that

$$P_{\alpha}[f = \alpha] = 1$$
 for all $\alpha \in R$.

In our earlier paper [1] we called the parameter α "consistently" distinguishable in this case, a terminology which seems at variance with the usual terminology which reserves the term "consistently" for the convergence (a.s.) or in probability of "finitely defined" functionals to the true parameter α .

LEMMA 1. Let $(X_n | n \ge 1)$ be a sequence of independent identically distributed random variables. Suppose $m = (m_n | n \ge 1)$ is a sequence of real numbers such that $\sup_{n\ge 1} |m_n| = \infty$. Then there exists a sequence f_k of $\mathscr M$ measurable linear functionals defined on S such that

$$f_k(x + \alpha m) \rightarrow \alpha$$
 a.s. $\forall \alpha$.

PROOF. Pick a subsequence n_k such that $|m_{n_k}| \to \infty$. For

$$x=(x_1,x_2,\cdots)\in S$$

define

$$f_k(x) = x_{n_k}/m_{n_k}.$$

Now

$$(X_{n_k} + \alpha m_{n_k})/m_{n_k} = \alpha + X_{n_k}/m_{n_k}$$
.

Also it is clear that

$$X_{n_k}/m_{n_k} \rightarrow 0$$
 a.s.,

taking a subsequence if necessary. It follows that

$$f_k(x + \alpha m) \rightarrow \alpha$$
 a.s. $\forall \alpha$.

Lemma 2. Let $(X_n | n \ge 1)$ be a sequence of independent identically distributed 189

random variables. Let $m=(m_n | n \ge 1)$ be a sequence of real numbers such that $\sum_{1}^{\infty} (m_n)^2 = \infty$. Then for any compact interval [-a, a], there exists a sequence f_k of $\mathscr M$ measurable functionals defined on S such that

$$f_k(x + \alpha m) \rightarrow \alpha$$
 a.s. $\forall \alpha \in [-a, a]$.

PROOF. We assume that $\sup_n |m_n| = K < \infty$, otherwise Lemma 1 applies. Choose M > 0 such that $P[|X| < M] \ge \frac{1}{2}$.

Let

$$h(s) = M + aK$$
 if $s > M + aK$
 $= s$ if $|s| \le M + aK$
 $= -M - aK$ if $s < -M - aK$.

Let $b=E(h(X_1))$ and let $c_n{}^\alpha=E(h(X_n+\alpha m_n))$ for $n\geq 1$. We can assume that $m_n\geq 0 \ \forall n$, by the reasoning in [1]. Finally we correct the proof of Theorem 3 in [1] by noting that $0\leq \frac{1}{2}m_n\,\alpha\leq (c_n{}^\alpha-b)$ is valid for $\alpha\in [0,a]$. (This inequality is asserted for $\alpha\geq 0$ in [1] which is false.) For $\alpha\in [-a,0]$ we have $(c_n{}^\alpha-b)\leq \frac{1}{2}m_n\,\alpha$.

With these restrictions on α , the rest of the inequalities in [1] are valid, and we can finish our proof by following the reasoning in [1]. \square

Lemma 3. If for every compact interval $[-\theta, \theta]$ there exists an $\mathscr A$ measurable function b_{θ} such that

$$P_{\alpha}[b_{\theta} = \alpha] = 1$$
 for $\alpha \in [-\theta, \theta]$

then the measures P_{α} are simultaneously Borel distinguishable.

PROOF. In this proof θ and k will be positive integers. For $x \in S$, define

$$f(x) = \lim_{\theta \to \infty} b_{\theta}(x)$$

if this limit exists. If the limit does not exist, define f(x) = 0. Clearly f is \mathcal{A} measurable.

We need to check that

$$P_{\alpha}[f = \alpha] = 1$$
 for all $\alpha \in R$.

However for fixed α and $k > \alpha$ we have

$$P_{\alpha}[b_{\theta} = f_k = \alpha] = 1$$
 for all $\theta \ge k$.

We conclude that

$$P_{\alpha}[\lim_{\theta\to\infty}b_{\theta}=\alpha]=1$$
.

THEOREM. Let $X = (X_n | n \ge 1)$ and $m = (m_n | n \ge 1)$ be as in Lemma 2. Then the measures P_{α} are simultaneously Borel distinguishable.

PROOF. Follows from Lemmas 2 and 3. \square

REFERENCE

[1] KANTER, M. (1969). On distinguishing translates of measures. Ann. Math. Statist. 49 1773-1777.