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A NOTE ON THE “LACK OF MEMORY” PROPERTY OF
THE EXPONENTIAL DISTRIBUTION

BY GEORGE MARSAGLIA AND ALBERTO TUBILLA
McGill University

The exponential distribution is often characterized as the only distri-
bution with lack of memory. This note points out a stronger result: the
exponential is the only distribution that is occasionally forgetful.

Let X be a nonnegative random variable with tail distribution R(x) =
P[X = x]. Suppose that we say the distribution of X is forgetful at t, if
P[X=1t]>0and

PIX=Z1t, 4+ x| X = t] = R(x) x=0;

that is, given that X > ¢, the amount that X exceeds #, (the residual lifetime)
has the same distribution as the unconditioned X.
Put in the form of a functional equation, since
PIX = t,+ x| X = t,] = R(t, + x)/R(t,) ,
we see that X (or its distribution) is forgetful at ¢, if R(z,) = 0 and
R(t, + x) = R(ty)R(x) , x=0.

Now if X is forgetful for every t = 0 then R(t + x) = R(Y)R(x) forallt, x = 0
and the standard method of developing R on the rationals and invoking right-
continuity shows that R must be exponential.

The question is: for what set of #’s can a distribution be forgetful? Our
principal result is as follows:

THEOREM 1. If the distribution of X is forgetful at two incommensurable values
t, < t, (that is, t,[t, is irrational) then X is exponential:
P[X = x] = R(x) = e~#=, x=0.
We prove this theorem by establishing a general result on the set of values
t for which the functional equation R(¢ + x) = R()R(x), x = 0 is valid.

THEOREM 2. Let f(x) be an arbitrary real-valued function defined for x = 0 with
f(0) = 1. Let T be the set of all nonnegative t’s for which:

(1) fit + %) =[O (x) forall xz0.
Then t = Oisin T. If T contains at least one other value then one of these three
conditions must hold:

(A) T is dense in the interval [0, co).
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(B) T consists of the point t = 0 and for some y > O either the open interval
(75 o0) or the closed interval [y, oo).
(C) Tis a lattice of the form 0, 8, 29, 30, - ..

In particular, if T contains two incommensurable values t, < t, where f does not
vanish then T is dense in the interval [0, co).

In case A, the additional condition that f be right-continuous ensures that the only
nonconstant solutions to (1) are exponential: f(x) = e~#*, x = 0.

In case B, f is arbitrary for 0 < x < r and f vanishes for x > 7.

In case C, all solutions to (1) can be constructed by arbitrarily assigning f(x) in the
first lattice interval 0 < x < 0 and then f is completely determined by the requirements

f(no + x) = f(o)f(x) for 0<x<0 and n=1,2,3, ....

The proof depends on the fact that T is closed under addition and (ordered)
subtraction—that is, if s, r are both in 7T then

(i) t + sisin T; in particular s, 2s, 3s, ... are all in T.
(ii) t — sisin T provided s < ¢ and f(s) # 0.

Proof of (i) is trivial, while (ii) follows from writing, for all x = 0,

JOSt = 9)f(x) = f(Ofix) = flt + x) = fs + (1 — 5 + %)) = f)f(t — 5 + %),
then dividing by f(s).

Proof of the theorem now separates according to whether f vanishes in T:

If f vanishes in T, let y = inf{v: ve T, f(v) = 0}. Then y = 0 implies case
A—that T is dense in [0, c0), since T contains arbitrarily small numbers and, by
(i), all positive integral multiples of them. If y > 0 then case B holds, since
f(x) = 0 for x > y and if there were a t € T with ¢ < y then f(¢), f(21), f(31), - - -
could not vanish.

If f does not vanish on T, let § = inf {s, se T}. Then 6 = 0 implies that T is
dense, for it contains arbitrary small numbers and all their multiples, while
0 > 0 implies that T is the lattice 0, 8, 26, 30, - .. since T is closed under or-
dered differences and any points in T between the lattice points would lead to
a smaller ¢.

Since if 1,/t, is not rational, the lattices

t, 2t,, 3t,, 4t,, - - - and 1y, 2t,, 3t,, 4t,, - - -

come arbitrarily close to one another, it follows that incommensurable points
t, and t, in T (where f does not vanish) lead to § = 0.
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