A NOTE ON THE "LACK OF MEMORY" PROPERTY OF THE EXPONENTIAL DISTRIBUTION

BY GEORGE MARSAGLIA AND ALBERTO TUBILLA

McGill University

The exponential distribution is often characterized as the only distribution with lack of memory. This note points out a stronger result: the exponential is the only distribution that is occasionally forgetful.

Let X be a nonnegative random variable with tail distribution $R(x) = P[X \ge x]$. Suppose that we say the distribution of X is forgetful at t_0 if $P[X \ge t_0] > 0$ and

$$P[X \ge t_0 + x | X \ge t_0] = R(x) \qquad x \ge 0;$$

that is, given that $X \ge t_0$, the amount that X exceeds t_0 (the residual lifetime) has the same distribution as the unconditioned X.

Put in the form of a functional equation, since

$$P[X \ge t_0 + x | X \ge t_0] = R(t_0 + x)/R(t_0)$$
,

we see that X (or its distribution) is forgetful at t_0 if $R(t_0) \neq 0$ and

$$R(t_0+x)=R(t_0)R(x), x\geq 0.$$

Now if X is forgetful for every $t \ge 0$ then R(t + x) = R(t)R(x) for all $t, x \ge 0$ and the standard method of developing R on the rationals and invoking right-continuity shows that R must be exponential.

The question is: for what set of t's can a distribution be forgetful? Our principal result is as follows:

THEOREM 1. If the distribution of X is forgetful at two incommensurable values $t_1 < t_2$ (that is, t_1/t_2 is irrational) then X is exponential:

$$P[X \ge x] = R(x) = e^{-\beta x}, \qquad x \ge 0.$$

We prove this theorem by establishing a general result on the set of values t for which the functional equation R(t + x) = R(t)R(x), $x \ge 0$ is valid.

THEOREM 2. Let f(x) be an arbitrary real-valued function defined for $x \ge 0$ with f(0) = 1. Let T be the set of all nonnegative t's for which:

(1)
$$f(t+x) = f(t)f(x) \qquad \text{for all } x \ge 0.$$

Then t = 0 is in T. If T contains at least one other value then one of these three conditions must hold:

(A) T is dense in the interval $[0, \infty)$.

Received April 11, 1974.

AMS 1970 subject classifications. Primary 60E05, Secondary 62E10.

Key words and phrases. Characterizations, exponential distributions, functional equations.

- (B) T consists of the point t = 0 and for some $\gamma > 0$ either the open interval (γ, ∞) or the closed interval $[\gamma, \infty)$.
 - (C) T is a lattice of the form $0, \delta, 2\delta, 3\delta, \cdots$

In particular, if T contains two incommensurable values $t_1 < t_2$ where f does not vanish then T is dense in the interval $[0, \infty)$.

In case A, the additional condition that f be right-continuous ensures that the only nonconstant solutions to (1) are exponential: $f(x) = e^{-\beta x}$, $x \ge 0$.

In case B, f is arbitrary for $0 < x < \gamma$ and f vanishes for $x > \gamma$.

In case C, all solutions to (1) can be constructed by arbitrarily assigning f(x) in the first lattice interval $0 < x \le \delta$ and then f is completely determined by the requirements

$$f(n\delta + x) = f(\delta)^n f(x)$$
 for $0 < x \le \delta$ and $n = 1, 2, 3, \cdots$

The proof depends on the fact that T is closed under addition and (ordered) subtraction—that is, if s, t are both in T then

- (i) t + s is in T; in particular s, 2s, 3s, ... are all in T.
- (ii) t s is in T provided s < t and $f(s) \neq 0$.

Proof of (i) is trivial, while (ii) follows from writing, for all $x \ge 0$,

$$f(s)f(t-s)f(x) = f(t)f(x) = f(t+x) = f(s+(t-s+x)) = f(s)f(t-s+x)$$
, then dividing by $f(s)$.

Proof of the theorem now separates according to whether f vanishes in T:

If f vanishes in T, let $\gamma = \inf\{v : v \in T, f(v) = 0\}$. Then $\gamma = 0$ implies case A—that T is dense in $[0, \infty)$, since T contains arbitrarily small numbers and, by (i), all positive integral multiples of them. If $\gamma > 0$ then case B holds, since f(x) = 0 for $x > \gamma$ and if there were a $t \in T$ with $t < \gamma$ then $f(t), f(2t), f(3t), \cdots$ could not vanish.

If f does not vanish on T, let $\delta = \inf\{s, s \in T\}$. Then $\delta = 0$ implies that T is dense, for it contains arbitrary small numbers and all their multiples, while $\delta > 0$ implies that T is the lattice $0, \delta, 2\delta, 3\delta, \cdots$ since T is closed under ordered differences and any points in T between the lattice points would lead to a smaller δ .

Since if t_1/t_2 is not rational, the lattices

$$t_1, 2t_1, 3t_1, 4t_1, \cdots$$
 and $t_2, 2t_2, 3t_2, 4t_2, \cdots$

come arbitrarily close to one another, it follows that incommensurable points t_1 and t_2 in T (where f does not vanish) lead to $\delta = 0$.

SCHOOL OF COMPUTER SCIENCE MCGILL UNIVERSITY P.O. Box 6070 MONTREAL, P.Q., CANADA