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AN EXAMPLE IN WHICH STATIONARY STRATEGIES
ARE NOT ADEQUATE

By LESTER E. DUBINS! AND WILLIAM D. SUDDERTH?

University of California, Berkeley and
University of Minnesota
An example is given of a gambling problem such that, on the one hand,
for every initial state, there is a strategy which brings one to the goal with

arbitrarily high probability and, on the other hand, for some initial state,
every stationary strategy reaches the goal with probability zero.

Introduction. In [1, Section 3.9], the question was raised whether there is,
for every leavable gambling house I' and bounded utility #, a stationary family
of nearly optimal strategies. Somewhat more precisely, let U(f) be the most
that is achievable from an initial state of f, and let S(f) be the most that is
achievable with stationary families of strategies. Say that stationary families
are adequate if S = U, and the question is whether stationary families are indeed
adequate. For many gambling problems (T, #), the question has been answered
in the affirmative ([1], [2], [3]). In those cases, stationary families were shown
to be not only adequate but even uniformly adequate. Say that the stationary
families are uniformly adequate for (T, u) if, for every ¢ > 0, there is a stationary
family ¢ of strategies such that, for every initial state f, ¢ achieves at least
U(f) — e. Ornstein [2] has given an example of a gambling problem in which
stationary families are not uniformly adequate. It is the purpose of this note to
give an example in which stationary families are not even adequate. In
Ornstein’s example every gamble is discrete. In that example, as for all leavable
problems with a bounded # in which all gambles are discrete, stationary families
are adequate (Proposition 1, below). It is not surprising, therefore, that, in our
example, purely finitely additive gambles play a crucial role. Introduce those
finitely additive gambles that are needed for the example, thus.

DEFINITION OF §(f—). For any bounded, real-valued function Q defined on
a linearly ordered set, F, there is a notion of lim inf on the left of a point of f,
namely

(1) liminfy, , Q = sup, ., inf,, ., Q9),
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which is meaningful unless f should be the least element of F. A definition of
lim sup is obtained from (1) by interchanging “sup” and “inf” throughout.

Plainly, if the set of f’ less than f has a largest element, say f*, then the
lim inf of Q on the left at f is simply Q(f*).

LEMMA 1. For any linearly ordered set F and any f ¢ F for which there is an f
with f' < f there is a finitely additive probability measure, defined on all subsets of
F—t0 be designated by o( f—)—such that, for any bounded, real-valued function Q
defined on F,

2) liminf, ,Q < 6(f—)Q < limsup, . Q.

Proor. If the set of f’ less than f possesses a largest element, say f*, then
0(f—) is simply the dirac-delta measure §(f*) that assigns probability one to the
singleton {f*}. For the general case, let % be the field of subsets of F consist-
ing of all finite disjoint unions of intervals. Designate by 3(f—), that unique
probability measure on .&" that assigns probability one to every interval [f”, f)
with f* < f. As is well known and easily seen, every probability measure on
the subfield .5 can be extended to be a gamble defined on all subsets of F.
Designate any such extension of 6(f—) by “6(f—)”, too. That (f—) satisfies
(2) is trivial to verify. []

THE EXAMPLE. Let F be the set of ordinals less than or equal to the first
uncountable ordinal, Q, and, for each feF, f =1, and each real number e,
O0<e<,let

) r(f) = (1 — )o(f—) + e6(Q—).

Let I be that house based on F which is defined thus. At 0 only the one-
point, dirac-delta measure that assigns probability one to the singleton {0} is
available. That is, I'(0) = {§(0)}. For f > 0, T'(f) is the set of all 7,(f), 0 <
¢ < 1. For clarity, note that I'(Q) is simply {6(2—)}. Let u(f) be 1 or 0 ac-
cording as f is 0 or greater than 0. That is, the gambler desires to arrive at 0;
other fortunes are worthless to him.

Proof that stationary families are inadequate for (T, u). As is easily verified by
induction, it is possible to go from any f to 0 with arbitrarily high probability,
that is, U(f) = 1 for all f.

The proof will be complete once it is shown that, for every stationary family
of strategies, the probability of reaching 0 from Q is zero. To this end, associate
with each /> 0 a number ¢(f), 0 < ¢(f) < 1, and let 7(f) = 7.,(f). That is,

4) 1(f) = (1 —e(f)a(f—) + «(/)o(@~) .

Complete the definition of y by letting 7(0) = 6(0). Associated with 7 is the
stationary family of strategies that prescribes the gamble y(f) whenever the state

is f.
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The program is to show that, starting at Q and using this stationary family,
the probability of reaching 0 is 0. This will of course complete the proof. The
program can be restated, thus. Let ['* be that subhouse of I' which has avail-
able at f the gamble y(f) only, and let U*(f) be the probability, starting at f,
of reaching 0 in the house I'*. It suffices to show that U*(Q) = 0. More will
be shown. Namely,

LEMMA 2. There is a countable ordinal [’ such that U*(f) = O for all f = f".

Proor. For each initial state f, let Q(f) be the probability in I'* of taking a
monotone path to the goal 0. That is, Q(0) = 1; for f > 0, M(f) is the set of
histories & = (f,, f3, - - -) such that, for some positive integer n,

®) f>H> - >f=0;

and Q(f) is the probability of the event M(f). As will now be shown,
(6) oMz where f>[,

and

(™) Q) = A —e«(fMN(f=) for f=1,

where

(®) Q(f—) = inf ., O(f) .

An induction on f will establish both (6) and (7), thﬁs. As is evident, (6) and
(7) hold for f = 1. Suppose they obtain for all f less than some ordinal g < Q,
and compute thus.

‘ 0(9) = §<, () dr(f19)
) = (1 —«(9)3(g—-)Q
= (1 — «9)2(9—) >

where the first equality holds in virtue of the definition of Q, the second holds

for all bounded Q in virtue of the definition of y(g), and the last holds since, in
view of the inductive assumption,

(10) Q(9—) = lim; ., O(f"),

so, for f = g, equality holds in (2). This completes the proof of both (6) and
(7). Since there can be at most a countable number of f at which Q(f) > 0 and
(7) holds, there is a countable ordinal f” such that

(11) Q(f)=0 forall fx=f".

To complete the proof of Lemma 2, it suffices to show that Q = U*, which
incidentally shows that Q is U*, since the reverse inequality is trivial. Since Q
plainly majorizes u, it suffices, in view of [1, Theorem 2.12.1], to verify that

(12) 1) = Q(f) forall f.
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For this, compute thus.

r(NQ = (1 — e(f)I(f—)Q + «(/)o(Q—)Q

(13) = (1 —e(f)(f—)Q
= (I —e(MA(f-)
= 0(f),

where the respective equalities are justified by (4); (2) and (11); (6) and (8); (7).
This completes the proof of Lemma 2.

In view of Lemma 2, no stationary family has any positive probability of
reaching 0 from Q, that is, S(Q) = 0. Since U(Q) = 1, stationary families are
inadequate.

Of course, if for every f, the dirac-delta measure d(f) is added to the gambles
available at f, obtaining thereby a slight enlargement of I', namely I'%, the so-
called leavable closure of I', U is still identically equal to 1 and no stationary
family of strategies is of any use at Q. Thus, stationary families are inadequate
for I'~.

In [1] a distinction was made between stationary families of strategies and
stationary strategies. As is trivial to verify for the I' and I'* of the example
above, nothing can be achieved with stationary strategies that cannot be achieved
with stationary families. Hence, even stationary strategies are inadequate.

Conceivably, if F is denumerable, then stationary families are uniformly
adequate for leavable houses with a bounded #, but it is unknown whether this
hypothesis even implies that stationary families are adequate.

Stationary families are adequate for discrete houses. Let U, be the utmost that
is achievable if gambling cannot continue beyond time m, where m is a finite,
positive integer, and let U, = lim U,,.

PROPOSITION 1. Let I' be a leavable house in which every gamble is discrete and
let u be bounded. Then U =S = U,, and, consequently, stationary families are
adequate.

Proor. As shown in [3], S majorizes U,. Hence, U > S = U,. Moreover,
as is implied by [1, Theorem 2.15.5. g], under the hypothesis of Proposition 1,
U, is U. This completes the proof.
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