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STABLE DENSITIES UNDER CHANGE OF SCALE AND
TOTAL VARIATION INEQUALITIES

By MAREK KANTER
Sir George Williams Campus, Concordia University

In this paper it is shown that if g is the density of a symmetric stable
density, then for ce (0, 1) u (1, o), the graph of g(x) intersects the graph
of cg(cx) at only two points. The argument proceeds by introducing a new
characterization of unimodality for densities and involves a representation
for symmetric stable random variables that is also useful for simulating
such random variables. Finally our results are applied to prove some in-
equalities concerning the total variation norm of the difference of two
symmetric stable densities.

1. Introduction. Some of the basic properties of stable densities are still
unknown (or at least unproved). In this paper we show that the picture that
is usually drawn to illustrate how centered normal densities behave under change
of scale (see Figure 1) is valid for any symmetric stable density g(x, a) of fixed
index a € (0, 2]. More precisely, we show that for any ce (0, 1) U (1, o) the
graph of g(x, a) crosses the graph of cq(cx, @) at exactly two points symmetric
around the origin. We proceed by first proving that what we shall call “the
single intersection property” holds for the density of positive stable random
variables. Namely, if p(x, @) is the density of a positive stable random variable
of index a € (0, 1), then for ¢ € (0, 1) U (1, co) the graph of p(x, a) crosses the
graph of cp(cx, a) exactly once for x > 0. The “single intersection property”
for a positive random variable Z turns out to be equivalent to the unimodality
of log Z. If Z is a positive stable random variable of index & € (0, 1) we use
a result of Chernin and Ibragimov [1] to prove that log Z is unimodal. This
result of Chernin and Ibragimov enables us to write positive stable random
variables in terms of uniform and exponential random variables. This repre-
sentation is of use in another context, i.e. in direct Monte-Carlo simulation of
stable random variables.

Our paper is organized as follows. Section 2 contains certain facts we shall
need from the theory of totally positive kernels as exposited in Karlin as well
as a quick introduction to stable densities. Section 3 contains our treatment of
the single intersection property for densities as well as some new characteriza-
tions of unimodality. This section will also contain a number of theorems about
the behavior of the total variation norm ||.|| on densities. (If p,(x) and p,(x) are
densities on (—oo, +o0) then ||p, — p,|| = (22 |pi(x) — pi(x)| dx.) Section 4
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698 MAREK KANTER

contains our proof of the fact that the single intersection property holds for
p(x, @) and for ¢(|x|, «). Section 5 ends with a picture which illustrates the
geometry of how symmetric unimodal densities ¢(x) cross under change of scale
when ¢(|x|) has the single intersection property. This section also contains some
counterexamples and an argument that shows that neither p(x, a)/cp(cx, ) nor
q(x, a)/cq(cx, a) are monotone as x varies in (0, o), for c € (0, 1) U (1, co) and
a near 2. This makes us feel that the regularity properties we prove here for
stable densities are about as much as we can hope for.

2. Preliminary facts about stable and totally positive densities. For 0 <
a < 2 we shall let g(x, a) denote the symmetric density function on (—oco, + oo0)
with characteristic function exp(—|¢|*) for ¢ real. (We let ¢,(x, @) denote the
density cg(cx, @).) For 0 < a < 1 we let p(x, a) denote the density function on
(0, oo) with Laplace transform exp(—s®) for s > 0. (We let p,(x, @) denote the
density cp(cx, @).) The proof of the existence of these densities can be found
in Feller ([2], page 424 and page 540).

If X,, - -+, X, are independent random variables all with density ¢,(x, a), then
it is clear that n~®(X, + ... 4 X,) also has density ¢,(x, ). (A similar state-
ment is true about p.(x, «).) For this reason we say that the densities ¢,(x, a)
and p,(x, a) are strictly stable of index @. The densities ¢ (x, a) and p,(x, a) are
the only stable densities we will study in this paper, though there are many
others, not necessarily symmetric or giving mass 1 to (0, o0).

We now give a quick summary of what we shall need to know about totally posi-
tive kernels and densities. The following definitions are taken from Karlin [5].

DEerINITION 2.1. Let f(f) be a function with values in [—oo0, +oo], defined
on I, a subset of the real line. Let S=(f) = sup S~(f(#), - - -, f(t,)) where the
sup is taken over all sets ¢, < --- < t, with ¢, in I and n is arbitrary but finite.
Here $~(x,, - - -, x,) is the number of sign changes of the indicated sequence,
zero terms discarded.

We let S*(f) be defined similarly in terms of S*(f(1,), -- -, f(t,)), where
S*(xy, - -+, x,) denotes the maximum number of sign changes of the indicated
sequence, zero terms being given arbitrary sign.

DerINITION 2.2. A real function (frequently called kernel) K(x, y) of two
variables x, y ranging over two subsets of the real line / and J is said to be totally
positive of order r on I x J, if for all x;, < --- < X, )y < +++ < oM< 1,
and (x;, y;) €l x J, we have det (K(x,, y;)) = 0. If strict inequality holds the
kernel K is said to be strictly totally positive of order r on I x J.

DerInITION 2.3. A density f(x) is said to be a (strict) Polya density if the
kernel f(x — y) is (strictly) totally positive of all orders.
The following theorem is crucial to our work.

THEOREM A. Suppose K(x, y) is Borel measurable and (strictly) totally positive of
order r on I x J. Let f be a real Borel function on J with S=(f) < r — 1. Define
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gonlby g(x) = \;K(x, y)f(y)dy, and assume this integral exists for all x in I.
Then S=(9) = S(f)(S*(9) = S~(/)-

See Karlin [5, page 233] for a more general version of this theorem.

We note that by [5, page 18] any kernel of the form K(x, y) = exp(f(x)9(y))
is strictly totally positive on (0, o) x (0, oo) if both f and g are strictly increas-
ing on (0, co). From this it follows simply that K(x, y) = k(x)k(y) exp (f(x)9(»))
is strictly totally positive on (0, o) x (0, co) if (1) & and k are both greater
than 0 on (0, co) and (2) fand g are both strictly increasing on (0, co); since
det (h(x )k(y;) exp(f (x)9(7;))) = TL,; h(x)k(y;) det (exp(f (x)(y,))-

We now make some remarks about densities to explain our conventions. First
we note that if a random variable X has a density function f then f is defined
only up to sets of measure 0. We shall, of course, try to use as regular a version
of the density of X as possible, if the density exists; however, we also note that
it is convenient sometimes to assign the value + oo to the value at some point
of the density of X. This happens, for instance, if X is unimodal, i.e. there
exists some point m such that the distribution function of X is convex to the
left of m and concave to the right of m. If X is unimodal and has a density,
we choose a version f(x) of its density that is increasing to the left of m and
decreasing to the right of m. In some cases we then have that lim,_,, f(x) = oo,
which “forces” us to assign the value + oo to f(m).

The following theorems concerning kernels totally positive of order two will
also be useful to us.

THEOREM B. Let f(x) be a real valued density. Then f(x — y) is a totally posi-
tive kernel of order 2 iff log f(x) is concave on some interval I and — oo outside of
I. (See Karlin [5, page 159]).

THEOREM C. Let X and Y be independent random variables. If X is unimodal

and Y has a density f with f(x — y) totally positive of order 2, then X 4+ Y is
unimodal. (See [3].)

3. The single intersection property; connection with unimodality and total
variation. LetJ be a finite or infinite interval in R. For any function f defined
on J with values in [ — co, + o] let I=(f) denote the closure in R of {x|f(x) < 0}
and I*(f) denote the closure in R of {x|f(x) = 0}. If f, and f; are [—co, + o]
valued functions defined on J with f; — f, well defined (i.e. f; and f, do not as-
sume the same value + oo or — oo at the same point y in J) we say that f; crosses
/> at y, in J° (the interior of J) if fi(y) — fi ») has exactly one strict change
in sign in any sufficiently small interval containing y,. It can be seen that
S*(fy — fi) = Lifand only if {I-(f, — f,), I*(f; — f2)} = {U, U’} where U and
U’ are intervals in R with U n U’ = {a} for some real a. In that case f, crosses
f. at a. It can also be seen that S=(f, — f,) = 1 if and only if {I=(f; — f3),
I*(fy — f))} = {U, U’} where U and U’ are intervals in R with U n U’ = [a, b]
and inf,.; x < a < b <sup,.,x. In that case we shall call the set [a, b] the
crossing set for f; — f,.
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The following lemma gives a new characterization of unimodality which we
shall need. The notation T, - f stands for the d translate of a function f, i.e.

(Ta - f)(x) = fx 4 d).
LemMMA 3.1. Let X be a random variable with density. Then X is unimodal if

and only if there is some version f of the density of X which is finite at all points ex-
cept possibly one and such that S=(f — T, - f) = 1 foralld e (—c0,0) U (0, 4+ o).

Proor. We prove one direction of the theorem by remarking that X unimodal
implies that there is some number m and some version f of the density of X
such that f is finite, increasing on (— oo, m) and such that f is finite, decreasing
on (m,oco0). If d>0 then T,.f=fon (—oo,m —d], f= T,-f on[m, o),
and T, - f — f is decreasing on [m — d, m]. It follows that S~(f — T, f) = 1,
since I7(f — T+ f) = (—o0, b,] and I*(f — T, - f) = [a,, oo) where a, < b,.
(For further reference we note here that [a,, b,] C [m — d, m].) The argument
for d < 0 is similar.

We now argue the reverse implication. We are given that S~(f — T, f) = 1
for all d > 0. Let F(x) denote the distribution function of X. We note that

3.1 APF(x) = $2_4 (T, f — f)dx

where AF(x) = F(x + d) — 2F(x) 4+ F(x — d). We can rewrite the right hand
side of 3.1) as (T, - f — f) * I;_4,0))(x); we then apply Theorems A and B to
conclude that S~(A,F) = 1 for all d > 0. This suffices to prove that F is
unimodal by the following argument.

We let F, stand for F « N, where N, stands for the normal distribution with
mean zero and variance e. Since the density of N, is a strict Polya density by
[5, page 19] we conclude in particular that S*(A,?F,) = 1. This implies that
for some real number ¢ = ¢(d,¢) we have {x|AjF,(x) > 0} = (—oo,c) and
{x| A/ F.(x) < 0} = (¢, +o0). Now let d tend to zero along some subsequence
d, such that c(d,, ¢) — r = r(¢). As is wellknown, F, is infinitely differentiable,
and since (d*/dx’)F(x) = lim,_,, A*F,(x)/d,* we conclude that (d?/dx?)F, is posi-
tive on (—oo, r) and negative on (r, + o) hence F, is unimodal. Now F, — F
in distribution as ¢ > 0, hence F is unimodal as well by [4, page 66].

REMARK 3.1. It is worthwhile to remark that by suitably rearranging the
above proof we get an even more general criterion for X to be unimodal, namely
X is unimodal if and only if S=(A,2F) = 1 for all d > 0, where F is the distri-
bution function for X. (Here we do not assume the existence of a density
for X).

REMARK 3.2. Using the argument in the first half of Lemma 3.1 it is easy to
see that if X has a density f with a unique mode m such that f is strictly mono-
tone on either side of m, then S*(f — T, . f) = 1foralld e (— oo, 0) U (0, co0).
Conversely if f is not strictly monotone on some side of mand S*(f — T, - f) = 1
for all d > 0 then f must be constant on some interval (since f in any case will
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be monotone on either side of m); this implies S*(f — T, - f) = co which is a
contradiction. We shall call a density f with S*(f — T,. f) =1 for all
de(—o0,0) U (0, 4+ o0), a strictly unimodal density.

We now introduce the single intersection property. It will play a crucial role
in our geometric approach to the study of stable densities. The notation f, stands
for the change of scale by c, i.e. f,(x) = ¢f(cx). If X is a random variable with
density f then X/c has density f,.

DEerINITION 3.1. Let J be a subinterval of R. Let f be a [— oo, +oo] valued
function defined on J. We say f has the single intersection property on J if f — f,
is well defined for all ce (0, 1) U (1, o) and if S=(f — f,) = 1 for all such c.
If S*(f — f,) = 1 for all ce (0, 1) U (1, co) we say that f has the strict single
intersection property on J.

THEOREM 3.1. Let X be a positive random variable with density. Then the follow-
ing are equivalent:

(i) There is some version p of the density of X with the single intersection prop-
erty on (0, o0).
(ii) The random variable log X is unimodal.

Proor. Assume (i) first. Since p has the single intersection property on
(0, oo) we must in particular have p — p, well defined for all c € (0, 1) U (1, o).
This forces p to be finite everywhere on (0, co) except possibly at one point
where the value +oco is assumed. The density f of log X is calculated to be
f(t) = e’p(e’) defined on (—co, + o) with the exception of at most one point
where the value -4 oo is assumed.

Now p(x) > p,(x) is equivalent to f(#) > (T, - f)(¢) for x > 0, where ¢ = log x
and d = logc. We conclude that $S=(p — p,) = 1 for all ce (0, 1) U (1, o0) if
and only if S=(f — T, - f) = 1forallde(—c0,0) U (0, +c0). By Lemma 3.1
we conclude that log X is unimodal. The argument to show (ii) implies (i) pro-
ceeds exactly as above, but in reverse order.

CoOROLLARY 3.1. Let X be a symmetric random variable with density. Then there
exists a version q of the density of X with q — q, well defined on (— oo, o) for all
ce (0, 1) U (1, o) and with S~(q — q,) = 2 if and only if log |X| is unimodal.

Proor. Apply Theorem 3.1 separately to the positive part of X and the nega-
tive part of X.

We end this section with some inequalities concerning the total variation
norm || || on densities.

THEOREM 3.2. Let g(x) be a unimodal density on (—oo, co). Then for d, <
dy < dywehave ||Ty -9 — Ty - g|| < [|Ty,- 9 — Ty - 9|l

Proor. Without loss of generality we may suppose d, = 0. Referring back
to the notation of Lemma 3.1, we define a;, b; by setting (I~(9 — Ty, - 9,
I*(g — T, - 9)) = ((—o0, b, [a;, c0)) for i = 2, 3. We note that the unimodality
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of g implies that [a,, b,] C [m — d,, m] where m is any mode for g (as we have
seen in the proof of Lemma 3.1) we conclude that T, . g is decreasing on
(as, o) hence T, - g = T, - g on [a,, co). Since g = Ty, - g on [a,, o) by defi-
nition we conclude

(3-2) §o 19(x) — 9(x + dy)| dx = §, |9(x) — 9(x + dy)| dx .

Now letd = d; — d,. Forx <a,wehaveT, .g =g =T_,-g, where the last
inequality follows since g is decreasing for x < a,. We get

12 |9(x) — 9(x + dy)] dx < (. |9(x — d) — 9(x — d + d;)| dx
= {27 9(x) — 9(x + dy)| dx .

We conclude that
3-3) §2. 9(X) — 9(x + dy)| dx < [, |9(x) — 9(x + dy)| dx .

We conclude from (3.2) and (3.3) together that
1219(x) — 9(x + dy)| dx = §IZ]9(x) — 9(x + dy)] dx .

COROLLARY 3.2. Let X be a positive random variable with density p(x) which
has the single intersection property on (0, o). Then for 0 < ¢, < ¢, < ¢; we have
“Pcl - Pc‘z” = “Pcl - Pcall‘

ProoF. Let g be the density of log X. By Theorem 3.2 and Lemma 3.1 we

know that
IlTlogc1 g — T'logc2 * g” é IITlogcl g — Tlogca * gll .

However for any c, ¢’ € R we have
lPe — porll = 2sup, (P[X € cA] — P[X € c'A])

where the sup is taken over all Borel subsets of (0, co). Using the fact that
log x is a bimeasurable 1-1 map from (0, o) to (— oo, o), we can rewrite the
last expression as

2 supy (P[log X elog ¢ 4 B] — P[log X elog ¢’ -+ B])
where the sup is taken over all Borel subsets of (—co, +o0). This in turn equals

1Twoge + 9 — Thogr 9] and the conclusion of this corollary is now evident.

CoROLLARY 3.3. Let X be a random variable with density q(x). Suppose both
q(x) and g(—x) have the strict single intersection property on (0, co). Then for
0< e <cy <y we have

19, = 9e,ll = 1196, — 4l -
Proor. Apply the last corollary to each of g(x) and ¢(—x) separately.

4. Application to stable densities. The following result is stated in [1] and
can be gotten by imitating their calculations earlier in this paper. (We have
corrected a slight misprint in the formula presented there.)
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LEMMA 4.1. Let a € (0, 1) and let p(x, a) be as in Section 2. Then for x = 0

@) sy = L0 ()T e exp (—(L) ) de

j —; X

where
a(o) — <sin (@p) )ﬂ-w-l ( sin (1 — a)go))
?7 = sin (p) sin (ap)

CoOROLLARY 4.1. Let L and U be independent random variables where L is ex-
ponential with density exp(—x) for x = 0, and U is uniform on [0, z]. Then for
a € (0, 1) we claim that p(x, a) is the density of (a(U)[L)*~®/«,

Proor. Let h(x) = =~ {§ a(p) exp(—xa(¢)) dp. Clearly h(x) is the density
of L/a(U). By a trivial change of variable we conclude that the density of
(a(U)/Lyd-=r= is p(x, a).

REMARK. It is convenient to rewrite a(p) as (b(¢))*~*~' where b(p) =
(sin (a@)/sin (¢))*(sin ((1 — a)¢)/sin (¢))'==. This form is used in [6].

LemMMA 4.2. Let h be a differentiable strictly increasing function defined on (0, 1).
Let U be a random variable uniformly distributed on (0, 1). Then the density p(y)
of the random variable h(U) is finite everywhere. Also

(1) If K(s) is increasing then h(U) is unimodal.
(2) If d/dslog h(s) is increasing then log h(U) is unimodal.

Proor. The function # is strictly increasing hence the density of 4(U) at the
point y = h(x) must be lim,, (A~ '(y + Ay) — h7'(y))/Ay = 1/h'(h7*(y)). By
continuity of #, the range of % is some bounded or unbounded interval I. It is
clear that p(y) = 0 for y¢ I, and p(y) > O for y e I.

To show that p is unimodal it suffices to show that p(y) decreases on 7, which
is clear. This proves (1). To prove (2), just apply (1) to log A(x).

ReMARK. Under the hypotheses of Lemma 2 one can show that
d*/dy*log (p(y)) < O iff WA — 2(k")* = 0. In other words the condition that
KR — 2(h")* = 0 suffices to conclude that p(y) is a totally positive density of
order 2. (See Theorem B.) We do not prove this in detail because when a = %,
if we let h(¢) = log (b(¢)) (Where b(¢) = (sin (ag)/sin (¢))*(sin (1 — a)g)/sin p)'=),
it turns out that A’4”" — 2(#")* < 0. Hence, the following theorem is the most
we can prove about the random variable log Z, where Z is positive stable.

THEOREM 4.1. Let Z be a random variable with density p(y, a) for a € (0, 1).
Then for c € (0, 1) U (1, co) then densities p(y, a) and p(y, a) on (0, co) are equal
exactly once (where they cross).

Proor. Write Z as p(U)"*L=-"/= as in Corollary 4.1 where U is uniform, on
(0, ) and L is exponential. We have log Z = a~'log b(U) + (a — 1)/a log L.
By Lemma 4.2, to check that log 5(U) is unimodal we need only to prove
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log b(¢) is strictly increasing and d/dg log b(¢) is increasing on (0, ). However
djdp log b(¢) = a(d|de) log (sin (ap)/sin ¢) + (1—a) d/dp log ((sin (1—a)g)/sin ).
Now d/dy log (sin (ap)/sin ¢) = a cot (ap) — cot ¢. This expression is positive
for 0 < a < 1, as we can check by differentiation with respect to a. Similarly
d|dy log (sin (1 — a)¢/sin ¢) is positive, and we conclude log b(¢) is strictly
increasing in (0, zr). We differentiate again to get d*/dy® log (sin (ayp)/sin ¢) =
—a?[sin*(ap) + 1/sin*(¢). This expression in positive for 0 < a < 1 because
(sin (ap)/sin ¢) > a as we can check by differentiating with respect to a. So
we conclude as before that d/dy log b(¢) is increasing and hence that a~* log 5(U)
is unimodal. By Theorem 3.1 we see that S~(r — r,) = 1 where r is the density
of b(U)V=.

Now for y > 0 the density of L7 is y=(x~!)7+V/r exp{—(x~*)"} for x = 0.

We conclude that for y = 0

p(x, a) = e _1_ (l>(r+1)/r e_(u/x)rr(y) dy
Yy \x

where y = (1 — a)/a. The density p,(x, «) has the same representation with
r, replacing r. Now the kernel K(x,y) = 1/y(y/x)7*V/m exp{—(y/x)'} Is
strictly totally positive by [5, page 18], hence we conclude that S*+(p(., @) —
p.(+, @)) < 1. This means that p,(x, a) and p(x, a) are equal no more than once.
By [4, page 48] both p and p, are continuous; it follows that they are equal ex-
actly once (where they cross) since otherwise one would dominate the other. []

REMARK. Let y > 0 and let Z have density p(x, a). The above proof shows
that the density of Z7 is equal to the density of ¢Z7 exactly once (where they
actually cross).

THEOREM 4.2. Leta € (0,2]. Letce(0,1) U (1, o). Let q,(x,a) = cq(cx, a).
Then q(x, a) and q,(x, a) are equal only twice, at points symmetric about 0 (where
they actually cross.)

Proor. Since (¢(x, a) and ¢,(x, «) are symmetric, it suffices to show that
9(x, @) equals ¢,(x, a) only once for x = 0. Let Z have density p(x, @/2) and
let X be normal with mean 0 and variance 1. If Z and X are independent, then
some multiple of ZtX has density g(x, a) by Feller [2, page 562]. (In fact 2 is
the correct multiple, but we do not need this information.)

For x > 0 we conclude that for some k > 0

g(x, @) = K2 jo L emmamipyy ay

@n)t 7y
where £ is the density of Z*. A similar expression holds for ¢,(x, @), except that
h,, the density of ¢='Z}, is substituted for &. Now S—(# — h,) = 1 and the kernel
y~le~tk=m? s strictly totally positive on (0, co) x (0, c0) by [5, pége 18]. It
follows that S*(¢ — ¢,) < 1 where ¢ = ¢(x, a) defined for x > Oand ¢, = ¢,(x, a)
is also defined for x > 0. We argue as in Theorem 4.1 to show that g = ¢,
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exactly once on (0, co) and that the point of equality is a cross-over point. (Note
that we need not worry about equality at 0 since ¢(0) = {*= (2z)~e~#“ du > 0;
hence ¢,(0) = ¢g(0) + ¢(0) for ce (0, 1) U (1, o0).)

5. The monotone likelihood ratio property, some counterexamples and a
picture. A density p(x) on (0, oo) is said to have the monotone likelihood prop-
erty if p(x)/p,(x) is 2 monotone function of x for all c € (0, 1) U (1, o). It is
seen (after rewriting p(x)/p,(x) as p(e”)/p(e*?) for y = log x, d = log c) that this
property is equivalent to the condition that log (Z) have a totally positive den-
sity of order 2. We consider now the densities g(x, a) for which we have shown
that g(x, a)/q,(x, @) crosses 1 only once for x € (0, co). We now show that we
cannot strengthen this result to show that g(x, @)/q,(x, a) is monotone on (0, o).
We first need the fact that for a € (0, 2), the density ¢(x, @) is proportional to

x~'=« for x large; which follows by applying L’Hopital’s rule to the fact shown
in Feller [4, page 547] that {7 q(y, a) dy is proportional to x~= for x large and
a €(0,2). From this we conclude that lim,_, q,(x, )/g(x, a) = ¢~ for a € (0, 2).
If « =2 then we compute g,(x, 2)/9(x, 2) = exp{—(c* — 1)x?}. From this we
conclude first that ¢,(x, 2)/g(x, 2) is monotone on (0, co) (hence log |Y] has a
totally positive density of order 2) and secondly that lim,_,, ¢,(x, 2)/g(x, 2) = 0
or oo if ¢ > 1 or ¢ < 1 respectively. We use these two facts to show that
q.(x, @)/q(x, @) is not monotone on (0, co) for all « € (0, 2).

By way of contradiction suppose that ¢ > 1 and that g,(x, a)/g(x, ) is mono-
tone on (0, co); it must then be decreasing since ¢,(0, a) > ¢(0, «). We conclude

(5.1) lim, ., g,(x, a)/q(x, @) < 9.(y, @)/q(y, @)
for any y > 0. Let a — 2 in (5.1); we get
(5.2) lim,_, lim, ., ¢,(x, a)/q(x, @) < lim,_, 4,(y, @)/q(y, @) .

Now let y — oo in (5.2), and relabel y by x, getting:
(5.3) lim,_, lim,_, q,(x, @)/q(x, a) < lim,__, lim,_, g,(x, &)/q(x, @) .

Since the right-hand side is 0 and the left-hand side is lim,_, c-« by the previous
remarks, we see that (5.3) is a contradiction.

Hence we see that cg(cx, a)q(x, @) cannot be decreasing in x for any infinite
set of a containing 2 as a limit point.

It follows that log | X| does not have a totally positive density of order 2 for
sucha set of a. Let now Z have density p(x, «/2) and let Y, symmetric Gaussian
with E(Y?) = 2, be independent of Z. We know YZ} has density g(x, a), so
if log (| Y|Z*) does not have a totally positive density of order two, then neither
does log (|Z|) by Ibragimov’s theorem in [3]. (Remember that log (|Y|) has a
totally positive density of order 2 by the previous remarks)..

COUNTEREXAMPLE 5.1. It might be conjectured that if ¢(x) is a real valued
unimodal density function then S~(q — ¢,) = 2 forallce (0, 1) U (1, co). This
conjecture is false, as the following argument shows.
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Let %, a, b be positive numbers. Define g(x) = # for 0 < x < a. Define
g(x) = ()h for x = 2a and interpolate linearly between x = a and x = 2a. We
define g(x) = 0 for x = 2a + b and interpolate linearly between x = 2a and
x = 2a + b. Let us now consider g,(x) = 2¢(2x). We have ¢,(0) = 2k > h =
g(0). Also g,(a) = 2g(2a) = 3h/4 < h = g(a), Now if we choose & sufficiently
large it is clear that g,(2a) > q(2a) because gy(2a)/q,(a) = b/(a + b) while
9(2a) = $h < $h = ga).

We conclude that g(x) crosses 2¢(2x) at least four times. To finish, choose &
so that g(x) is a density.

COUNTEREXAMPLE 5.2. It might be conjectured that if (z) is a symmetric con-
tinuous density on (— oo, 4-co) with $*(g — ¢,) = 2 for all c€ (0, 1) U (1, o)
then ¢(z) is unimodal. By Corollary 3.1 all we need to disprove this conjecture
is an example of a symmetric non-unimodal random variable X with density,
such that log (| X]) is unimodal. One such example follows.

Let a, b, h, k be positive numbers. Let f(y) = ae**»¥=" for y e (— oo, b] and
let f(y) = ae~*=@==" for y ¢ [b, +00). If & > 1 then a can be chosen to make
f(x)adensity. f(x)is clearly unimodal and corresponds to the density of log | X|.
If X is symmetric then its density g(z) is equal to ae~*+*|z|* for |z| < e* and is
equal to ae®~V¥|z|~* for |z| > e’, hence X is not unimodal.

We now present a picture. It illustrates how g, q,,, and g, intersect when
¢, > ¢, > ¢, and ¢(x) is a unimodal symmetric continuous density function with
S+(q — q,) =2 forallce (0, 1) U (1, c0). One main goal of this paper was to
prove this picture when ¢(x) = ¢(x, @), a € (0, 2).

The picture needs a few words of justification to explain why x,, < x,; and
X, < Xg5, Where +x,; denote the two points where ¢, and g.; CTOSS. To see this,
we note that ¢, (0) = ¢;4(0, a) >0 so ¢, (0) > 4.,0) > 4.(0). We now let
¢, — +oo, fixing ¢, and ¢,. In that case, g, (0) — + oo, hence g, (d) — 0 for
any 6 > 0 (Otherwise, {2 g, (y) dy would exceed 1.) It follows that x,, < x5
for ¢, large. Hence, X, < Xy, for ¢, large, otherwise ¢,, would intersect g, more
than twice.
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Now let ¢, decrease. If for some ¢; > ¢, we have x;, > x;, then by “continuity”
there is some ¢, € (¢,, oo) for which x;, = x;;. This implies x,; = x;, = x;; which
contradicts the fact that {*Zq,(y)dy =1 for i =1,2,3. We conclude that
Xpy < Xy
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