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Let &~ be the space of processes, progressively measurable with respect
to an increasing family of g-algebras {7} and having finite mean. Then
T ()f(t) = E(f{t + 5)| F1), fe 2, defines a semigroup of linear operators
on . Using .77(s) and known semigroup approximation theorems, tech-
niques are developed for proving convergence in distribution of a sequence
of (possibly non-Markov) processes to a Markov process. Results are also
given which are useful in proving weak convergence. In particular for a
sequence of Markov prcesses {Xx(#)} it is shown that if the usual semigroups
(Tw()f(x) = E(fXa(£))| X(0) = x)) converge uniformly in x for f continuous

with compact support, then the processes converge weakly.

1. Introduction. A number of authors [13, 15, 27, 28, 32, 33, 34, 35] have
applied operator semigroup approximation theorems to prove convergence of
sequences of Markov processes. Our primary purpose in this paper is to develop
techniques for applying these theorems to prove convergence of sequences of
non-Markov processes to Markov processes. The work of Borovkov [6] and
Gikhman [10] provide examples of the type of theorem we have in mind and
served as the major motivation for the work in this paper.

These techniques, based on a semigroup of operators that may have other
applications as well, should also be useful in dealing with sequences of Markov
processes.

We have also included a number of results concerning weak convergence of
sequences of Markov processes. In particular Theorem (4.29) states that under
very general circumstances uniform convergence of the semigroups of a sequence
of Markov processes implies weak convergence in the Skorokhod topology. This
result is close to work of Skorokhod [28], and is also reminiscent of a theorem
of Liggett [19] who shows that if the finite dimensional distributions of a sequence
of diffusion processes (or birth and death processes) converge to those of a dif-
fusion, then the processes converge weakly.

Let (Q, &, P) be a probability space and { &, : t € [0, o0)} (or {&,: t € (— o0,
oo)}) be an increasing family of s-algebras, &, c .&. Let & be the linear
space of real valued, processes f(z, w) = f(r) progressively measurable with
respect to {&,} such that f{7) has a finite expectation for all 7. It can be shown
(see Appendix) that for every s E(f(¢ + s)| ) has a version that is progressively
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SEMIGROUPS OF CONDITIONED SHIFTS 619

measurable. (Throughout, we will identify processes f and g if P{f(#) = 9(¢)} = 1
for all .) We define

(1.1) T = E(f(t + )| F) -

It is easy to check that .77(s) is a semigroup of linear operators on &, and it is
natural to call .77(s) a semigroup of conditioned shifts.
There are a number of different possibilities for norms. We define three:

(1.2) I1f1l = E(§5 e*| f()] dr) 5
(1.3) 11l = sup; E(|f()]) 5
and

(1.4) [|flls = E(§5 | f(2)]*dr)t .

Each of the above is a norm on a space of equivalence classes of processes in &~
and each has certain advantages. The first is the weakest; under the third the
space of processes with finite norm is a Hilbert space; and for the second .77(s)
is a semigroup of contractions. We observe that under ||+||;, ||77(5)|] < e* and
under ||+||s, [T (5)|| =< eV™.

In what follows we will concentrate on ||«|| = ||+||, and we will now use &
to denote the space of progressively measurable processes having finite norm,
(or more precisely the space of equivalence classes of processes having finite
norm). We will note occasionally how a similar development is possible for
[|+|]; and ||«||;. Following the development of semigroups in Dynkin [8], let <,
denote the subspace of .~ on which .77(s) is strongly continuous, and let .o
denote the (strong) infinitesimal operator.

We define a notion of convergence weaker than strong convergence as follows:
For {f,} c &

(1.5) plim, o fo=f

if and only if

(1.6) sup, ||ful] < oo

and

1.7) lim, ., E(|f.() — f(O)]) =0 for every t.

Let ., denote the subspace of . on which .7 (s) is p-right continuous and
define the p-infinitesimal operator by

Sf = plim, o (T = )

if the limit exists and is in <%,. The properties of the p-infinitesimal operator
are much the same as those of the weak-infinitesimal operator as discussed in
Dynkin [8]. For example () C £,

(1.8) (A — ) = (e b T(s)f ds
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for every fe S’i,, and 2 > 0;

(1.9) TOf —f = 3T w)Sf du
for every fe 9(52/ ); and
(1.10) TG — = (T (wfdu

for every fe 2,
We observe that the fixed points of .77(s) are precisely the processes that are
martingales with respect to {_&,}. (This observation essentially appears in Meyer

[22], page 186.) More generally, any f¢ 9(.,0/ ) is a process of bounded varia-
tion in the sense of Follmer [9] and

(1.11) Z(1) = f(t) — f(0) — § S/f(u) du

is a zero-mean martingale with respect to {&,}. This follows from (1.9) by
observing

B2t + 9) — 20| 7) = E(f(t + 9)|-57) — 1) — §4 BT fw)| 57 du
= TN = f1) — T WSZS0) du
=0.

We note that f(¢) = Z(f) + f(0) + {} R f(u) du is the (Fisk-Orey-Rao) decom-
position of f(f) into a martingale and a previsible process.
This leads to the following generalization of Dynkins Identity:

(1.12) PROPOSITION. Suppose ¢ is a stopping time with ¢ > ¢ almost surely,
f(v) is right continuous and E(sup,s, |Z(?)]) < oo.

Then
(1.13) E(f(z)| &) — f(t) = E(\; S7f(s) ds| 57) -

The proof is immediate since the Optional Sampling Theorem 1mp11es
E(Z(z)| &) = Z(r). The conditions are satisfied if E(r) < oo, f(f) and SIf(1)
are bounded and f{(¢) is right continuous.

In Section 2, in the case of Markov processes, we examine the relationship of
the above semigroup to the semigroup usually studied. In Section 3 we develop
the general technique for proving convergence of the finite dimensional distri-
butions of a sequence of processes to those of a Markov process and in Section
4 we consider the question of weak convergence. Section 5 is intended to be
a user’s guide to the application of semigroups in the proof of convergence
theorems. If it is helpful thanks should be given to the referees and to Donald
Iglehart whose suggestions led to its inclusion. In general the author is very
appreciative of the careful reading given the original manuscript by the referees.
Their efforts helped to clarify a number of points.

Note. For ||+||, the weaker notion of convergence corresponding to (1.6) and
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(1.7) would require sup, ||f,||s < co and
(1.14) lim, ., mit < T: E(f,(1) — /(1)) > ¢} = 0

for all T, ¢ > 0, where m denotes Lebesgue measure. In this case (and for the
similar definition corresponding to ||+||,) £, = £, and hence &=

2. Markov processes. We will only consider processes taking values on a
complete, separable, locally compact space E with metric p, although much of
what we will say can be generalized if the need arises. Let <% denote the Borel
subsets of E and B = B(E, &), the real valued, bounded, Borel measurable
functions on E. Let X(7) be a right continuous, E-valued stochastic process
progressively measurable with respect to the increasing family of g-algebras
{F}. Let _# denote the linear space of processes f(¢, X(¢)), where f(z, x):
[0, ©) X E— R is bounded and jointly measurable in ¢ and x, and let _#;
denote the linear space of processes f(X(f)) where fe B(E, <£'). We observe
that X(¢) is Markov if .77 (s) leaves ] invariant and is Markov and temporally
homogeneous if .77(s) leaves _#; invariant. In the latter case .77(s) induces a
semigroup of operators T(s) on equivalence classes of functions in B(E, &%):
two functions f,, f, € B(E, &%) are equivalent if P{X(¢) € I'} = O for all ¢, where
T = {x: fi(x) # fi(x)}.

In this case X(¢) has a transition function P(¢, x, I'), and T(s) can be repre-
sented by

(2.1) T(s)f(x) = §fO)P(t, x, dy) -
The existence of P(t, x, I') can be verified in much the same way as the existence
of regular conditional distributions.

Since in general X(f) does not uniquely determine a transition function, T(s)
may have more than one representation of this form. We will assume that we
have selected one such representation. Let 4 denote the weak-infinitesimal
operator for T(sj given by (2.1), considered as an operator on B(E, £5’) under
the supremum norm. (See Dynkin [8].) If f € Z(4) then g(¢) = f(X(¢)) € D7)
and .o7g(r) = Af(X(2))-

3. Convergence to Markov processes. In this section we consider a sequence
of processes { X, (¢)} which we assume to be defined on the same probability space
and adapted to the same increasing family of c-algebras {&,}. Since we are
only concerned with convergence in distribution, this assumption serves only
to simplify notation. Note that if X,(¢) is defined on (Q,, &, P,) and adapted
to {&, .}, then we can always consider (Q, &, P) = (I[, Q., II & ., 1. P.)
and 7, = [[.F .. :

(3.1) ProrosiTION. Let X, () be a sequence of E-valued stochastic processes
and let X(7) be an E-valued Markov process with semigroup T(s). Suppose T(s)
is strongly continuous (in the sup norm) on a subspace K C B(E, ££) which
contains C (the space of continuous functions vanishing at infinity) and such
thatfeé, g € K implies f - g € K.
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Suppose
(3-2) lim, .. E(f(X.(0)) = E(f(X(0)))
for evey fe K and
(3.3) lim, ... E(JE(f(X.(t + $))|-70) — TOAX)) = 0

for all s, = 0 and every fe K. Then the finite dimensional distributions of
X,(¢) converge to the finite dimensional distributions of X().

REMARK. The assumptions on K are not very restrictive. In many applica-
tions K = C. In general if L, is the largest subspace of B(E, &) on which T(s)
is strongly continuous and ¢ c L, then fe Candgel, implies . g € L,. (Note
we are assuming P{X(r) € E} = 1 for all 7).

Proor. It is sufficient to show

(3-4) lim, o E(A(Xu(t))f o Xu(t2)) - - - [e(Xa(8i))
= E(L(X(0)AX(8)) - - - fu(X(1)))
for all #;, > 0 and f, e C.
We first observe that for g ¢ K
(3:3)  |E(9(Xu(1) — E(9(X()| = [E(E@X.0) | 0) — T(N9(X.(0))]
+ |E(T(1)9(X.(0))) — E(T(1)9(X(0))] -
The first term on the right goes to zero by (3.3) and the second by (3.2).
We now illustrate the proof of (3.4) in thecase k =2 and 0 < £, < ¢,

|E(f(Xu(t))f o Xu(12)) — E(S(X(1))fo(X(2)))]
= [E(AX () E(S(Xu(@) | 771)) — E((X(0) Tt — 6)f(X (1))
= [E(AXO)ESXu(1) | 1) — Tt — t)f (X))
+ [E(AX(0))T(1: — 0)fo(Xu(1) — [u(X(10)) T8 — 6)fo(X(2)))] -

The first term on the right goes to zero by (3.3) and the second by (3.5), since
[T — L)) is in K.

We observe that (3.3) describes a type of approximation of T(s) by .77(s).
The results in [14] give semigroup approximation theorems for very general types
of convergence. We will use these results to obtain conditions implying (3.3).
Let {X,(#)} be a sequence of E-valued processes, and let %" be the Banach space

of bounded sequences {f,} c £~ with ||{f,}|| = sup, ||f.]|. For {f,} e .2 and
fe B(E, &) define
Py =1

For fe B(E, <7) define

(3.6) ISl = infps,—p sup, [Ifal] -
One can check that || f]|, = sup, lim sup, _.. E(|f(X,.(?))])-
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We may consider || f||, as a norm on a space of equivalence classes of meas-
urable functions, i.e., f; and f, are equivalent if || f; — f;||, = 0. The equivalence
class of a function f will be denoted by f. Let L denote the completion of this
space with respect to 0

While P is multivalued when considered as a mapping into B(E, £7’), it is a
contraction as a mapping into L and hence it may be extended to a closed
subspace of 2. Furthermore P{f,} =0 implies P{Z(s)f,}] =0 and
P{\§ e~ T (s5)f, ds} = 0 for 2> 0. Consequently P is precisely the type of
operator considered in [14]. Theorem (2.13) of [14] implies

3.7) THEOREM. Forf, g € L, define Af = § if there exists a sequence {f,} C
() such that P{f,} = f and P{.7f,} = §. Let L, be a subspace of L and let
A, be the restriction of A to

DA) = {feD(A) n L,: Afe Ly} .

If 2(A,) and FP(A — A,) are dense in L, for some 2 > 0, then the closure of A,
generates a strongly continuous semigroup Ty(s) on L,. If f, g € B(E, &7), [, § e L,
and § = Ty(s)f, then

(3.8) p-lim (E(f(X,(1 + 5))[F1) — 9(Xu(1))) = 0.

3.9) COROLLARY. Let K be a Banach subspace of B(E, %) with the supremum
norm and suppose T(s) is a semigroup of operators on K. Suppose each fe K is in
some equivalence class in L, (denote it by f) and T(s)f is in To(s)ffor all s = 0.
Then for fe K

(3.10) lim, o, E(|E(f(Xu(t 4 5))[F2) — TOAXL())]) =0
forall s, t = 0.

REMARK. Not a great deal can be said in general about ||+||, and L. However,
what is important for applications is that ||«||, is weaker than the supremum
norm. With this in mind the following is an immediate consequence of Theorem

(3.7), Corollary (3.9) and Proposition (3.1).

(3.11) THEOREM. Let K be a Banach subspace of B(E, <Z) with the supremum
norm satisfying the conditions of Proposition (3.1) and suppose T(s) is strongly con-
tinuous semigroup on K with infinitesimal operator A corresponding to a Markov
process X(t). Let {X,(?)} be a sequence of E-valued processes and let D be the set
of fe Z(A) such that there exists {f,} C Q(LQA/ ) with

(3.12) plim fo — f(X,(+)) =0
and
(3.13) p-lim 7f, — Af(X,(-)) = 0.

Suppose D and (X — A|p) are dense in K in the supremum norm for some 2 >0
(A|, denotes the restriction of A to D.) Then for every fe K and all 5,t > 0

(3-14) lim E(|E(f(X(1 + 9)|-7) — TEfX0))) = 0.
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If in addition lim, _, E(f(X,(0))) = E(f(X(0))) for every f € K, then the finite dimen-
sional distributions of X,(t) converge to those of X(t).

Proor. Denoting the equivalence class of a function by f, let K = {f: fe K}
and let L, in Theorem (3.7) and Corollary (3.9) be the closure of K under ||+|],.
The fact that Z2(4,) and Z2(4 — A,) are dense in L, follows from the fact that
D and ZZ(2 — A|,) are dense in K. Since ||+||, is weaker than the supremum
norm, these conditions also imply that (2 — 4)~'f is in the equivalence class
(A — Ay)~'f for all fe K. This in turn implies the conditions of Corollary (3.9).

The following theorem specializes the above results to a sequence of Markov
processes. In introducing the mappings 7, : E, — E we have in mind such situ-
ations as E, being a subset of E and 7, being the natural injection; E, consisting
of vectors and 7, being a projection; or E, consisting of sets and 7, giving the
cardinality, perhaps normalized in some way.

(3.15) THEOREM. Let K be a Banach subspace of B(E, &%) satisfying the con-
ditions of Proposition (3.1) and suppose T(s) is a strongly continuous semigroup on K,
with infinitesimal operator A, corresponding to a Markov process, X(t). Let {Y,(f)}
be a sequence of Markov processes with measurable state spaces (E,,, £%,) and weak
infinitesimal operators A,, and let y,: E, — E be measurable mappings. Define

nI

X,(t) = 5,(Y,(¢)) and assume

(3.16) lim, ., E(f(X.(0))) = E(f(X(0)))
for every fe K.
Let D be the subset of (A) such that for f e D there are f, ¢ Z(A,) such that
(3.17) sup, sup, E(|f.(Yn(1))]) < oo,
(3.18) sup, sup, E(|4, fu(Y.(1))) < oo,
(3.19) lim, .. E(f,(Y.(0) — f(X(0)) =0 for every 1,
and

(3.20) lim, ., E(|4, f,(Y.(2) — Af(X, (1)) =0  forevery t.
If D and F2(2 — A|p) are dense in K (i.e., A is the closure of A|,) then the finite
dimensional distributions of X,(t) converge to those of X(t).

REMARK. Most applications of semigroup approximation to the convergence
of sequences of Markov processes up to this point have involved strong conver-
gence which in our context would mean

(3:21) lim,_.. sup, |fu(y) — f(n.(y))] = 0.

The type of convergence used above is obviously much weaker. However, we
will see in the next section that the use of strong convergence can in many cases
give us stronger results, namely weak convergence in the Skorokhod topology.

In order to be able to apply Theorem (3.11) to a sequence of non-Markov
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processes one must be able to find elements of (7). Potentially useful ele-
ments of (%) can be constructed as follows:

Suppose g € B(E, £7') and g(X,(t)) is right continuous. Then g(X,(?)) is in Z,
and for ¢ > 0

(3.22) S = LS+ 5)]7) ds
is in 2(%') with
(3.23) SP0) = L (B@le + )T — 90

We could prove discrete parameter analogs of Theorem (3.11) and Theorem
(3.15) but in the light of (3.22) and (3.23) it is simplest to show how to apply Theo-
rem (3.11) to sequences of discrete parameter processes {X,(k)}, k =0, 1,2, ....

Ordinarily what one wants to do is to prove that Y, (r) = X,([#/e,]) converges
to a Markov process X(f) where ¢, > 0 and lim,,_.,¢ = 0. Observe that if g(Y,(¢))
is right continuous and bounded and

| £ = L Vi E@(Y,(t + 9)| ) ds,
then
10 = L (BOErfe] + D)) — 9X(l1/=D) -

Ordinarily this is what will be needed to obtain the desired result. If [t/e] = k
then typically

E(g(Xu(k + 1))|-7) = E(@(Xu(k + 1)) [ X,(0) - - - X,(k)) .

4. Weak convergence. Many of the results in this section appear either ex-
plicitly or implicitly in other places, particularly in Skorokhod [28], Gikhman
and Skorokhod [11] and Borovkov [6].

We assume that the reader is familar with the theory of weak convergence in
the space D(0, 1). (see Billingsley [3].) By weak convergence in D(0, co) we mean
weak convergence in D(0, T}) for each T, in some sequence with lim,_,, T, = co.
(See Lindvall [21].) Modifying the appropriate theorem in Billingsley we have
the following criteria for tightness in D(0, co). Recall that E is a complete,
separable, locally compact metric space.

4.1) THEOREM. Let {X, (1)} be a sequence of E-valued processes whose sample
paths are right continuous and have left limits (i.e., whose sample paths are in
D40, 0)). Let

w(X,,0,T) = inf(ti, max; sup, _ < c<e, O(Xa(5), Xu(7))
where {1,} ranges over all partitions of the form 0 =, < t, < -+- <t,,, < T <1,
with min,g,, (t; — t,_,) = 0. The sequence of processes is tight if and only if
(4.2)  forevery T>O0 and 17 >0 thereisa compactset K such that

liminf, P{X,()eK all 0 t<T}>1—19;
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and

(4.3) forevery ¢>0, >0, and T >0 thereisa 6>0
such that
limsup, ., P{w'(X,,0, Ty = ¢} < 7.

We now state several lemmas. Some proofs are straightforward and are
omitted.

(4.4) LEMMA. Let {X,(1)} be a sequence of E-valued processes with sample paths
in Dy(0, o0). Suppose Condition (4.2) is satisfied and that for every ¢ > O there is
a sequence of processes {X,*(t)} that is tight such that sup, p(X,(t), X,(¢)) < ¢. Then
{X.(0)} is tight.

Proor. Observe that w'(X,, d, T) < 2e¢ + w'(X,%, 9, T). Consequently
Pw'(X,,d,T) = 3¢} < Plw(X,5,0,T) = ¢}
(4.5) LemMa. Let X(t) be a right continuous pure jump process. Lett,, 7, -
be the jump times of X(t) and let A, = 7, — 7,_; (v, = 0). Suppose there is a distri-
bution function F(x) such that P{A, < x} < F(x) for all k. Let K(T) = max {k:
ty_1 < T}. Then for all integers L > 0
(4.6) P{w'(X, 8, T) > 0} = P{min, ., 4, < 6}

< LF(0) + € (¢ e dF(x) .

REMARK. Observe that if lim,_, F(x) = O then the right hand side of (4.6) can

be made arbitrarily small by taking L large and ¢ small.

Proor. The equality in (4.6) follows immediately from the definition of
w/(X, d, T) and A,.
P{min, g, cx(py A < 0} < Tk P{A, < 0} + P{K(T) > L}
(4.7) < LF(9) + e"E(exp(— Ziiz1 Ay)
< LF(9) + e¥ [Ty E(e= )"
< LF(0) + e” {& e ™" dF(x) .
To obtain weak convergence results from Lemma (4.4) and Lemma (4.5) we

need an efficient method of approximating a process X(f) by pure jump processes.
Let 7, = 0 and for k > O define

(4.8) , = inf{t > 7,y 1 p(X(0), X(4_1)) > €} »

and A
4.9) 5, = sup {t < 7,0 p(X(1), X(7p)) = ¢} -
Let

(4.10) Xe(f) = X(0) for < (s + 7))
= X(t;) for (s, + 7)) =t < $(Sk41 + Ta) -
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Since i(s, + 7,) = 47, and
Spar F Thrr _ S + T > Tk + s _ Skt T T — Sk
2 2 - 2 2 2

in order to apply Lemma (4.5) it is sufficient to estimate the distributions of r,
and 7, — 5.

With this in mind we give the following lemma similar to a lemma of
Skorokhod.

(4.11) LeMMA. Let X(t) be right continuous and let r(x, y) = p(x, y) A 1. (Note
that r is still a metric.) Suppose y(9) is a random variable such that for some 8 > 0
(4.12)  E@(0)]|-F) = E(r}(X(r + u), X(1)) | F )ri(X(0), X(1 — v))  as.
forall t,u,v satisfying 0 <t <T,0=u<dAN(T—t)and 0 S v < (20) Nt
Let 7 be a stopping time with t < T — §. Then

(4.13) P{sup,, r(X(t + u), X(7)) = &, sup, ;.. H(X(7), X(t — v)) = ¢}

< (a5 + 242)EG(9)) |
= o

(4.14)  P{sup,, r(X(x), X(0)) = ¢} < 3a,E(r(9)) + aiﬁ(r“(X@), X(0))

where a, is a constant such that
(x40 = ay(x* +)f)  for x,y=20.
Proor. We will prove the lemma in the case 8 = 1. For general § the proof
is the same except that the triangle inequality for r(x, y) must be replaced by
r’(x, y) = ap(r'(x, 2) + 1°(2, 3)) -
First observe that (4.12) holds with ¢ replaced by any stopping time bounded
by T. This can be seen by approximating the stopping time by a decreasing

sequence of discrete stopping times. Similarly if 7, is a stopping time and z, is
a stopping time with respect to {#", ,,} such that 7, < 4, then

*.15)  EGO)[F pasy) Z E(r(X(72 + 0), X(71 4 ) [F cp4c)
X H(X(t, + 73), X(7; + 7, — ¥)) a.s.
Since the left hand side is independent of v, v may be replaced by any random
variable V with0 <V < (7; 4+ 7,) A 28. Let A =inf{t > 0: r(X(z + 1), X(7)) > ¢}
E(r(X(z + A A 9), X(2)) | Z )r(X(z), X(x — v))
< B(E((X( + 8), X(z + A A 0) [ 11a00)
X HX(t + A A0), X(2))| Z )
(4.16) + B(E(r(X(z + 8), X(z + A A )| F 110)
X r(X(z + A A 8), X(x — 1)].57)
+ E(r(X(x + 9), X())|-F )r(X(z), X(z — v))
< 3EG0)|.5,), for v<dAT,
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and hence
@17)  E(r(X(z + A A 9), X(2))(sUP,zsne H(X(r), X(z — ) < 3E(r(3)) -
The left hand side of (4.17) bounds

e’P{sup, ., "(X(z + u), X(7)) = &, sup,<;.. H(X(7), X(r — v)) = ¢}
and (4.13) follows.
Now let A = inf {r > 0: r(X(¢), X(0)) > ¢}

(4.18) r(X(A A 9), X(0)): < r(X(9), X(A A 9)r(X(A A b), X(0))
-+ H(X(0), X(0))r(X(A A d), X(0)) .
This gives

(4.19) E(r’(X(A A 9), X(0)))
= E(r(9)) + [E(r(X(9), X(0))E(r*(X(A A 5), X(0)))]t .
A little algebraic manipulation gives (4. 14).

RemARk. Relating Lemma (4.11) to X*(r), note that the left hand side of
(4.14) is P{r, < 0} and the left hand side of (4.13) bounds

Plty, — 85, < 0,7, > 0} .
Lemmas (4.4), (4.5) and (4.11) imply

(4.20) THEOREM. Let {X,(t)} be a sequence of processes with sample paths in
Dy(0, co) that satisfies Condition (4.2). Suppose for each T > 0 and n there are
random variables y,(0) such that for some 8 > 0

(4.21)  E(ra(0)| ) 2 E(r(Xa(t + u), X () | F )X, (1), X,(1 — v))  aus.

forallt, u, v satisfying0 <t < T,0<u<dA(T—1t)and0 < v < (20) A t.
If lim,_, lim sup, ., E(7,,(9)) = O and lim,_, lim sup, ., E(r(X,(3), X,(0))) = O
then the sequence {X, (1)} is tight.

REMARK. Intuitively (4.21) says that if we have had a significant change over
the last little time interval then we do not expect to have one over the next.
In fact the conditions of this theorem are necessary for tightness. Of course
E(r,(0)| #) = E(r*(X,(t + u), X,(1))| &) implies (4.21). Billingsley [4] con-
tains conditions that imply (4.21).

Before turning our attention to Markov processes, we observe that if Con-
dition (4.2) is satisfied then tightness of {X,(r)} is equivalent to tightness in
D(0, o0) of {g(X,(t))} for every real valued continuous function with compact
support. Alternatively if the finite dimensional distributions of {X,()} converge
to the finite dimensional distributions of a process X(f) with sample paths in
Dy(0, oo), then tightness of {g(X,(#))} for all continuous g with compact support
implies weak convergence of {X,(r)}. Condition (4.2) follows by considering
{9(X,(r))} where g has compact support K; and g = 1 on a compact set K,.
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Note
P{X,(H ek, all t <T}=PgX,(t))=1 all +t <T},

and
liminf, . P{g(X,(¢)) =1 all t < T} = P{g(X(1)) > § all t < T}.

To see this note that C(E), the space of continuous functions vanishing at in-
finity with the sup norm, is separable. For a countable dense subset g, ¢,, - - -
define :

5 L 19:4x) = 9.0
p(x,)) = Dia gy 5+ : .
2T 10dx) — 0.0

0 is a metric and for any compact set K there is an increasing, right continu-
ous, function v,(z), z = 0, with lim,_,»,(z) = 0 such that

o(x, y) < v(f(x,y))  forall x,yeKk.
If X(s) e K for 0 < 5 < T then

’ ’ 1
W(X, 3, T) < vy (Z{?:lw(gi(X), 5, T) + 2k_}>

for all k.

Of course in making use of the above observation we only need to consider a
dense (in the sup norm) collection of g. In particular for E = R" we can confine
our attention to smooth g.

We now consider the special case of a sequence {X,(¢)} of conservative Markov
processes. Let g be continuous with compact support I'. . We want to find 7,(9)

for g(X,(1)).
E((9(Xa(t + 1)) — 9(Xu(1))*-F7)
(4.22) = T.()g*(Xu(1) — 9%(X.(1))
= 29(X(ONTu(m)9(Xu(1)) — 9(Xu(1))) -

If we take

(4‘23) Tn(a) = Supué& [Supx XKT(x)lTn(u)gz(x) - g2(x)|
+ SUP.er 2|9(x)| [ Tu(#)9(x) — 9(x)]

where K, is the set visited by X, (¢) up to time T then (4.21) is satisfied with
B =2.

Note that 7,(d) is bounded by the constant c,(d) given by
(4.24)  €4(9) = SUPugy SUP.er (ITW(1)9*(x) — F(X)| + 219()] | Tu()9(x) — 9(X)])

+ SUP,g; SUP, o1 To(#)9(x) .

For a diffusion process or a birth and death process

(4.25) T,(w)9*(x) = E(T,(u — © A u)g*(X(z A u)))

where 7 is the first hitting time for I" (in the case of a birth death process take
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I to be the set from which the support of g is accessible in one jump) and since
P*(X(r ANu)) =0
(4.26) SUP, <5 SUP, o TW(#)9%(x) = SUP,g, SUP,cr | T, ()9 (x) — g%(x)| -

If {T,(#)} converges strongly on a Banach space K containing C to a semigroup

T(t) which is strongly continuous on K then the convergence is uniform on
bounded ¢-intervals and

(4.27) lim,_ lim,,_, ¢,(3) = lim,_,¢(8) = 0.

Consequently {g(X,(7)} is tight.

If Condition (4.2) is satisfied and T,(f)g converges to T(f)g uniformly on com-
pact sets for all g € K the convergence is again uniform on bounded t-intervals
and we still have
(4.28) lim,_,lim, .., E(7,(3)) = 0
and hence tightness for g{X,(7))}.

If we drop the assumption that Condition (4.2) holds then covergence of T,(f)g
uniformly on compact sets for each ¢ no longer implies that the convergence is
uniform on bounded #-intervals. However, if {X,(¢)} are diffusions or birth and
death processes and the limiting process is a diffusion, then the convergence is
still uniform on bounded t-intervals. This coupled with (4.26) implies
lim,_,¢,(d) = 0 for every continuous g with compact support, and hence
{9(X,(0)} is tight for every such g. Consequently, if the limiting diffusion has
sample paths in D(0, co) then {X,(7)} converges weakly. (Note: Weak conver-
gence in D(0, co) to a process with sample paths in C(0, co) implies weak con-
vergence in the uniform metric. See Billingsley [3] page 150.) This is Liggett’s
Theorem [19].

We summarize the above in the following

(4.29) THEOREM. Let K be a Banach subspace of B(E, &%) satisfying the condi-
tions of -Proposition (3.1) and suppose T(s) is a strongly continuous semigroup on K,
with infinitesimal operator A, corresponding to a Markov process X(t) with sample paths
in Dy(0, co0). Let {Y,(t)} be a sequence of Markov processes with measurable state
spaces (E,,, &B,) and weak infinitesimal operators A,, and let y,, : E, — E be measurable
mappings. Define X,(f) = ,(Y (1)) and suppose X ,(t) has sample pathsin D (0, co) and

(4.30) lim, ... B(f(X.(0)) = E(f(X(0))
for every fe K. '
For fe K let P, f(y) = f(1.(7))-
Suppose
(4.31) lim, .. sup, |T.())P, f(y) — T(f ()| = O

forallt = 0 and fe K. Then {X,(t)} converges weakly to X(t).
Let D be the set of f e Z(A) such that there exist f, € 2(A,) with



SEMIGROUPS OF CONDITIONED SHIFTS 631

and

(4.33) lim, ., sup, |4, f(y) — Af(.(»)| = 0.

It is necessary and sufficient for (4.31) that D and (X — A|p) be dense in K for
some A > 0.

If Condition (4.2) holds then uniform convergence in (4.31), (4.32) and (4.33)
can be replaced by uniform convergence on compact subsets.

ReEMARK. This theorem is very close to results in [28]. The conditions for
the convergence of the semigroups are a modification of those given by Trotter
[32] and are given in [13].

The following is an example in which we have uniform convergence on com-
pact sets of the semigroups but do not have weak convergence of the processes:
Let X,(¢) be the Markov chain on {0, 1,2, ...} with infinitesimal parameters
qe. =0allj; for i = 0,n, q3; =0 all j#i,n, —qf; =q}, = 1; g7, =0allj=+
0,n, and —q?, = ¢q% = n. Let X(r) be the Markov chain with infinitesimal
parameters ¢,; = 0 all j; fori >0, ¢;; =0all j 4,0, and —g;; = g, = 1. If
X,(0) = X(0) = i > 0 then the finite dimensional distributions converge but the
sequence does not converge weakly.

We close this section with a simple lemma that should be quite useful in
verifying that a sequence {g(X,(#))} is tight where g is a bounded real valued
function such that g(X, (7)) has sample paths in D(0, co) and {X,(#)} is a sequence
of Markov processes.

(4.34) LEMMA. Let {X,(¢)} be a sequence of Markov processes with weak infini-
tesimal operators {A,} and let g € B(E, &%) be such that g(X,(t)) has sample paths
in Dg(0, o) for all n.

Suppose g, € 2(4,) satisfy 9,> € 2(4,),

sup, sup, |4, 9.(x)| < o, snp, sup, |4, 9,4x)| < o
and

(4.33) lim, ., sup, |9,(x) — 9(x)| = 0.
Then {g(X,(2))} is tight.

PrOOF. By (4.26) it is enough to prove that {g,(X,(¢))} is tight. Furthermore
by the uniform boundedness of 4,9, it is enough to prove the sequence

(4.36) Z,(1) = 9u(Xa(0)) = 0u(¥,(0) — §§ 4, 9.(X,(s)) ds
is tight. But Z,(¢) is a zero mean martingale hence it follows that for any par-
tition s = u, < u, < --- < u, = t we have
E(2(r) — Z(s)7'|-F)
(4.37) = 2 B((Z(12) — Z(w))’| )

= 2o E(E((9n(Xa(#i11) — In(Xa()))' |- 0) | F)
+ O(max; (U, — Uy))
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But
E((9u(Xa(:11)) — 9u(Xo(4)))*] )
= E(9,X(X(1:41)) | 57 ,) — 9.2(Xn(1y))
(4.38) — 20,(Xo () E(Gu(Xp(1112)) | F0) — 9u(Xn(4:)))
= E(§ur1 4,9,5(X,(v)) dv|.7,)
— 20, (X, (1)) E(Yiit1 A, 9,(X,(v)) dv| 7)) .

Hence
E((Zu(1) — Z,(5))'| )
= E({¢ 4,9,X(X, (1)) du| Z,)
(4.39) — 2E(§: 9o(Xo () A, 9.(X,(0)) du | )
< (t — 5)sup, |4,0,°(x) — 20.(x) 4, 0,(x)|
=(t—5)M, .

The tightness of {Z,(r)} now follows by Theorem (4.20). Alternatively for
Hh=Etst,

(4.40)  E((Z(tr) — Zu(O)(Za(1) — Zu(1)))) = M1, — 1)t — 1) -

Since sup, M, < oo, this inequality implies {Z,(#)} is tight (see Billingsley [3],
page 128).

5. Applications and relationship to other work. As was indicated in the
introduction, the primary motivation behind the results in Section 3 was a desire
to give a “semigroup” proof of the results of Borovkov and Gikhman. How-
ever, rather than reprove their general results using Theorem (3.11) we will
consider two special results: Billingsley’s Central Limit Theorem for martingales
[2] and a result of Jagers [12] on diffusion approximations for age dependent
branching processes. Each example illustrates how special properties of the
processes involved can be used to verify the conditions of the general theorem.
In addition we will apply Theorem (4.29) (actually its discrete parameter equiva-
lent) to a sequence of infinite particle systems.

In order to be able to apply Theorem (3.11) one must know a good deal about
the infinitesimal generator of the limiting sernigroup. In particular one must
know the form of the generator for a core, that is a subspace D C Z(4) such
that A is the closure of A4|,.

For diffusion processes regularity theorems for partial differential equations
frequently give information useful for'ﬁnding cores. If D is a subspace contained
in 2(A) and dense in K, and T(f): D — D then D is a core. Consequently, if a
regularity theorem implies T(r): C* — C? (the bounded twice continuously dif-
ferentiable functions) and D = C? n Z(A) is dense (as it almost surely is) then
D is a core. -

For example, let T(¢) be the semigroup on C(R™) corresponding to Brownian
motion on R". Then Z(4) > C*n Cand T(¢): €2 n € —C*n €. Hence C* n C
is a core. (For n = 1 2(4) = C* n C but this is not true for n > 1.)
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Frequently even simpler subspaces are cores. For Brownian motion and many
other diffusions Cy*, the space of infinitely differentiable functions with compact
support is a core.

5.1 THEOREM (Billingsley). Let ...Y_,, Y_,,Y,, Y, Y, .. be a stationary
ergodic sequence with E(Y,) = 0 E(Y,?) = o¢® and suppose

E(Yk+1| Yk, Yk—l’ c ) =0.

Then X, (t) = n=* X;{*1Y, converges weakly to Brownian motion B(t) with E(B(t)) = 0
and Var (B(t)) = o’t.

Proor. There are two important properties to exploit: the fact that X, (7) isa
martingale and the ergodicity of {Y¥,} which implies

):0.

The elements in 2(A4) that we have at our disposal are of the form

(5.2) limm_,mE<.TL_ S YR — ot

(5.3) f) = LV E@X( + 5)] ) ds

where 7, = a(Y,: k < [nt]). If g e C and ¢ is small it is reasonable to expect
that f(r) is close to g(X,(f)). Assuming g € C;® it is natural to attempt to study
the limiting behavior of

(54 ) = — E@Xlt + 9) = 9(0)] )

by expanding g in a Taylor series about X,(¢).
Doing this one obtains
> 1 1 ’
S0 = — (- DIt Yl 700/ (0)
1 ”
(5.5) + o BTt Y[ 209" (Xa(1)
+ SE(g IO (Xo(f + €) — Xo(1) — 2)(07(X() + 2)
— 9"(X(1) dz| F) -
Using the Martingale property and defining W, to be the third term on the right
this becomes

P 1 , "
(5.6) A0 = $E (- DL Y ) 07(X0) + W

If ne is large, (5.2) implies the conditional expectation multiplying g”(X,(?))
is close to ¢*.
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Using the stationarity the second term can be estimated by

(5.7 E(W.)) = %E((Xn(f 1 €) — X,())'o(|Xu(r + ¢) — X,(1)])

= 3E (% (2 Y)'o (% |20 Yk|>>

where m = [n(t 4 ¢)] — [nt] and w(z) = sup, sup,,<, |9”(x + y) — 9"(x)|.

In order to prove convergence of the finite dimensional distributions using
Theorem (3.11) we will produce a sequence {¢,} with lim,_, ¢, = 0 such that
f.(?) given by (5.3) satisfies

(5.8) sup, sup, E(|fu(1)]) < oo,

(5.9) sup, sup, E(|-7f,(9)]) < oo,
(5.10) lim,_, E(|f,(t) — 9(X,(1))]) = 0
and

(5.11) lim,_.. E(|-7F,(1) — 40’9"(X,(1))]) = O .

Since for each fixed m the right hand side of (5.7) goes to zero as n goes to
infinity, we may find a sequence m, with lim,__ m, = co and

1 m 1 m
(X2 Vo <-; |26 Ykl)) =0.
m, n

(5.12) lim, .. E(

We may assume lim,_., m,/n = 0, and we define ¢, = m,/n. With this choice
of ¢, we have

lim,_., E(|7f,(1) — 40%0"(X,(1)))

< lim,_, 4 sup, |9"(x)|E <| 1
m

[nt+m,,] 2 2
Zk=[m]’l1 Y*?—¢

)

The limit in (5.10) follows in much the same way and (5.8) and (5.9) are im-
mediate since stationarity implies the expectations are independent of ¢.
Weak convergence follows from the results in Section 4 by noting

n

=0.

E((X,(t + u) — X,(0)*]F)
(5.13) =k (% D Y| ﬁ)
< E <Supl§[nT] -’1'1— P Yk2|5ft>

= E(r.(0) |7 ) -
We have

(5.14) lim,__, _’11_ U Y, = ot
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- almost surely and in L,. Since the left hand side is increasing in ¢ convergence
must be uniform on bounded ¢ intervals. This implies

lim,_,,, E(7,(0)) = 6%
and hence the conditions of Theorem (4.20) are satisfied.

(5.15) THEOREM (Jagers). Let {Z,(t)} be a sequence of age dependent branching
processes with the same age distribution function G(t), satisfying G(0+) = 0, and
off spring distribution generating functions f,(z). Suppose

(5.16) A= {tdG(t) < oo,
(5.17) lim, . n(f,/(1) — 1) = «a,
(5.18) lim, ... f,"(1) = 8 ,
and

(5.19) sup, f£,"(1) < oo .

Let a = ajl and b = BA.

Suppose Z,(0) = n and all initial particles are of age zero.

Define X,(t) = Z,(nt)[n. Then X,(t) converges weakly to the diffusion process X(t)
which is absorbing at zero, has X(0) = 1, and has generator Af = Lbxf" 4 axf’.

PrOOF. We may consider the semigroup for X(r) on C(0, co), the space of
continuous functions vanishing at zero and infinity. Then Z(4) = {fe C* n C:
bxf" + axf’e C}. A convenient core is the subspace of functions in Z{(A) that
vanish for x sufficiently large.

Let m, = f,’(1) and 8, = f,”"(1). The special properties of the branching pro-
cesses we will need are properties of E(Z,()) and E(Z,(t)(Z,.(t) — 1)) where E,
denotes the expectation under the assumption that the process begins with a
single initial particle of age 5. (£ without subscript, will denote the expectation
under the original assumption of n particles of age zero.) These properties may
be obtained from renewal theory. Letting M, (f) = Ey(Z(t)) and

B, (1) = E(Z,(1)(Z.(1) — 1))

we have

(5.20) M,(1) = (1 — G(t)) + m, §¢ M,(t — u) dG(u)
and

(5.21)  B,(t) = B, Vs My(t — w)*dG(u) + m, §§ B,(t — u) dG(x)

= &,(1) + m, §§ B,(t — ) dG(y) .
(See [1], page 144). Letting 7, 75, - - - be independent random variables with
distribution G(r) and Y(r) = max {k: Y ¥, 7, < t} we may write
(5.22) M,() = E(m,}®)
and
(3:23) B,(1) = E(LiY mt E,(t — Lia7d)-
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From these identities it readily follows that

(5.24) lim, _,, sup,<, [M,(nt) — e*| =0 and
(5.25) lim,_... sup,zp |22 — B (et _ est)| = 0
n a
for every T > 0.
Furthermore
(5.26) SUp,<y |Ef(Z(nt)) — €| = u,(s) and
(5.27)  supp| - E(Z(ui)(Z(nt) — 1)) — L (et — e)| = v,(5)
n 24

converge to zero as n goes to infinity uniformly on bounded s intervals.
For f e Z(A) and f(x) = 0 for x sufficiently large

% E(fiX,(t + ) — fX()) |57

- L E(X,(t + &) — X,(0)]F)f"(Xa(1))

(5-28) + —l— E((X,(1 + ¢) — Xo(0)*| F )" (Xu())

LB (X4 ) — X0 — )
&

X (f"(Xt) + 2) = f(X (1)) dz] F) -
The branching property implies

(529 LEX( 49— X0)|F) = L D E(Zun) — D)
13 ne
where s,, 5,, - - - are the ages of the Z,(nt) particles. Consequently

(30 B(| 200+ 9 - 2017 - 00 (1))

= Lp(L mapo ) = — E(Dar we) -
Similarly

E(H_ E(X,(t + ¢) — X,(0)|.57) — X.(0) % <g:e—_e_>

(5.31) + 200 () = exo (X0 — (E=)

€

)

< Le(L mnrove) + - B(o S ue)
13 n en n

LB (L B (s + (s + o)) -
€ n
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We note that 7,(1) = Ey( 72" u,(s;)) satisfies

(5-32) ra(t) = (1 = G()u, (1) + m, §§y(r — u) dG(u)
and hence
(5.33) ra(t) = E(m,”Yu,(t — 379 7)) .

Since the u,(s) are uniformly bounded and converge to zero uniformly on
compact sets, lim, _, 7,(f) = 0. Similarly the right hand side of (5.31) converges
to zero for every ¢ > 0. Therefore there is a sequence {¢,} with lim,_ ¢, =0
such that the right hand sides of (5.30) and (5.31) go to zero with ¢ replaced
by ¢,.

The third term on the right of (5.28) can be shown to be negligible by esti-
mating conditional third moments in a manner similar to the above estimation
of first and second moments.

Letting

1
0.(1) = = Sin EX(t + 9) ds
we conclude from (5.30) and (5.31) that

lim,, .o, E(.579,(1) — ($0X,(0f"(X(1)) + aX,(f (X, ()]) = O,

and convergence of the finite dimensional distributions follows by Theorem
(3.11).

To verify weak convergence we verify the conditions of Theorem (4.20) for
9(X,(#)) where g is continuously differentiable with g(x) = 0 for x > M > 0.
Suppose |g(x)|, |9’(x)] < C. Then

E((9(X,(t + u)) — 9(X.(0))'|7)
(5.34) = Zoan(X(D))CE(X,(t 4 1) — X,(1)'] 7))
+ Yo o Xul ) CPLX(t + 1) < M|
Now
E((Xur + 1) — X, ()| -F)

(5.35) = %(Zi E, ((Za(nu) — 1)) + Xiu; E,(Z(nu) — 1)E, (Z,(nu) — 1))
< X,(1} [% sup, E,((Z,(ni) — 1)) + sup, |E(Z,(nu) — 1)@.

Noting that

Leanr, e (Xn(D)PLX (1 4 1) < M|}
(5.36) = X, o (Ka(D)P{(X(1 + 4) — X (1)) > (X,(1) — M)*|F )}

= How o) AL o 7
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we have the left hand side of (5.34) bounded by
70) = SUPLy ACHM + 1)[ - sup, E((Z,(m) — 1Y) + Sup, [ E(Z,(n) — D)} |
Using (5.24) and (5.25) it can be shown that
lim,_, lim sup, ., sup, <, sup, —%— E(Z,(nu) — 1)) =0

and
lim,_, lim sup, .. sup, <, sup, |E(Z,(nu) — 1) = 0.

Hence the conditions of Theorem (4.20) are satisfied.

We now consider a discrete parameter approximation to the simple exclusion
model of an infinite particle system. (See Spitzer [29].) The basis for our result
is the existence theorem of Liggett [20] that essentially characterizes the genera-
tor for the process. The model in which we are interested is one in which each
of the particles is independently undergoing a Markov chain on a countable state
space S except that if a particle attempts a transition into an occupied state the
transition is not made.

The state space for the infinite particle process can be thought of as the collec-
tion of functions E = {(x): : S — [0, 1]} where 5(x) = 1 means x is occupied
and 7(x) = 0 means x is unoccupied. Suppose a(x) > 0 and };,.sa(x) < oo.
Then p(7, 7) = X ,es a(X)|7(x) — 7(x)| defines a metric on E under which E is
compact.

We will assume that the exponential waiting times in each state have parame-
ters 1 and that at the end of the waiting time the probability of a particle in x
attempting a transition to y is given by p(x, y). We will also assume p(x, x) = 0.

We modify Liggett’s approach somewhat in defining

Tu,o(X) = 7() X #u,0
=) Ap) x=u
=) V@) x=wv.
Note that 7, , is the state obtained from 7 if a transition is attempted from « to v.

(5.37) THEOREM (Liggett). Let D be the collection of functions on E that depend
only on 7(x) for x in a finite subset of S. (Note D is dense in C(E).) For f¢e D define

(5-38) Af(7) = Zia,y PO Y[ (02,0) = f()) -
Suppose
(5.39) sup, 3., p(x, ) < oo .

Then the closure of A generates a positive, strongly continuous, contraction semigroup
on C(E).

Let p,(x,y) = (1 — n™%d,, + n~'p(x, y). We consider a sequence of discrete
parameter processes {Y, (k)} with the following properties: at each time step all of
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the particles attempt transitions according to the transition probabilities p,(x, y).
Transitions are suppressed to currently occupied states. It is possible for more
than one particle to jump to an unoccupied state, but if this occurs we will
assume the particles coalesce into a single particle.

For 6 = {(x;, y1), (X3 ¥3)» * * *» (Xm» Ym)} With x; 5= x; for i & j define
(5.40) 70(2) = 7(2) min, 7,,,(2) + (1 — 2(2)) max, 7,,,(2)
and let 0, = {x;, x5, - - -, X,}.

For fe D let I be the subset of S upon which f depends. Then

T.f(n) = E, f(Y(1))
= 20 f() I1i Pu(xis ¥:) Mies—r-o, (1 — Xoer Pau(2, ®))
(5.41) X Tleer-s, Pal2; 2)

= T 1) L TL P 30 Taesro, (1= - Boer 2, 0)
X Hzer—a,,(l - _rll—>

where the summation is over all # = {(x;, y;) - - - (Xn, Ym)} such that x, + x; for
i+ j,x; + y;and if x,¢ T then y, e .

(5.42) THEOREM. Let Y, (k) be defined as above, let X, (t) = Y, ([nt]) and let
X(t) be the process corresponding to A in (5.38). If X,(0) = X(0) then X,(t) con-
verges weakly to X(t) as n goes to infinity.

PROOF. A discrete parameter analog of Theorem (4.29) can be obtained in
which the role of the infinitesimal operator is played by

(5-43) A, f(n) = n(T, f(n) — f(n)) -

Alternatively, 4, generates a continuous parameter Markov process and the re-
sults in [17] imply X, (¢) converges weakly to X(¢) if and only if the corresponding
continuous parameter processes converge weakly. Consequently, since D is a
core for 4 we need only prove that

(5.44) lim, .. sup, |4, f(7) — Af(7)| = 0
for all fe D.
But

4, ) = AN S | Daer Zyer (f1) = f)P(51 )

X <H;es_r_, <1 - —rll—p(z, x)) _ 1)]

(5.45) | Zoer Does (0m) — fIp(x. )

X (HzeS—r(l — —rll—p(x,y)><1 — —'11—> — 1>‘

1
+ 2sup, |f(n)| Zoms1 = 1L p(xi yi) -
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Let M = sup, >, p(z, x). The first two terms on the right of (5.45) go to zero
since

1
HzeS—I‘ (1 - _n“ P(Z, x)) 2 e~ M/m s
and the third term goes to zero since the coefficient of 1/n™* is

(5.46) Ziyger **t Diyper 1Tt 2izer P(X5 12)
+ Zzlel‘ ce meer I Zyes (i p)
= @D)"M™ + (1) .

There are of course a variety of other approaches for proving convergence to
Markov processes. There is a vast literature on the central limit theorem for de-
pendent random variables and for many of these results there is a corresponding
invariance principle, that is convergence of the partial sum process to Brownian
motion.

Rosen [26] uses characteristic functions to give convergence of partial sum
processes to diffusions with time dependent generators of the form a(?)f”" +
b(¢)xf’. A similar approach is used in [16] and by Norman in [23, 24, 25] to
give a central limit theorem for the deviation of certain Markov chain models
from deterministic models given by ordinary differential equations. In [25],
Norman obtains convergence of the one dimensional distributions that is uni-
form for all time not just for bounded time intervals. Stone [30] proves con-
vergence theorems for sequences of one dimensional diffusions and birth and
death processes using arguments involving local times. Rosenkrantz [27] obtains
similar theorems using semigroups, but by considering the resolvents rather than
the infinitesimal operators. Stroock and Varadhan [31] give very general con-
ditions for the weak convergence of Markov chains to diffusions using their
characterization of diffusion processes as solutions of a “martingale problem.”
Conditions for convergence of Markov chains to diffusions can be obtained
using the stochastic integral representation of the diffusion. (See Gikhman and
Skorokhod [11] page 459 and Kushner [18].)

The semigroup approach seems to give a unified method for a wide class of
problems. However, it is frequently the case that special properties of the pro-
cesses involved suggest special techniques (for example, Jagers’ use of generating
functions to obtain the result discussed above) that are either more direct or are
in some sense more appropriate to the problem.

6. Appendix. The following lemma is essentially contained in Doob [7] page
358. It is not necessary to assume that the martingale is separable. A process
X(t, o) is progressively measurable with respect to { &} if X(+, +):[0,¢] x Q > E
is Z([0, t]) x &, measurable for every t = 0. (<Z([0, ¢]) is the Borel subsets
of [0, r].)

6.1) LEMMA. Every martingale has a version that is right continuous except at
a countable set of points, and hence is progressively measurable.



SEMIGROUPS OF CONDITIONED SHIFTS 641

(6.2) THEOREM. Let(Q, 5, P) bea probability space and let { &} be an increas-
ing family of g-algebras in & . If X(t) is progressively measurable and E(|X(?)|) < oo
for every t, then for every s = 0 Y(f) = E(X(t + s)| 5 ,) has a progressively meas-
urable version.

Proor. Let 57 be the linear space of progressively measurable processes with
finite mean such that X(¢) e 2# implies Y(¢f) = E(X(¢ 4 s5)| ;) has a progres-
sively measurable version for every s = 0. Observe that 5 is closed under
limits of monotone increasing sequences (i.e., X, ,,(f) = X,(¢) a.s. for all ¢) pro-
vided E(lim,_,, X,(f)) < oo for all z. Consider a process of the form

X(t, 0) = Xiac %Ai(t)gzzi(w)
where 4, € ([0, o)), B,e & and ¢ € A4, implies B,e & ,. Then
EX(t+5)]F) = Z?:lci%.‘li(t + S)E(gﬂil%)

has a progressively measurable version since E(27%,|.%,) is a martingale and
X(#) e 7. The Monotone Class Theorem for functions (see Blumenthal and
Getoor [5] page 5) implies £# contains all progressively measurable processes
with finite mean.
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Added in proof. Proposition (1.12) is essentially a special case of a result in
Airault, Héléne, and Hans Follmer (1974). Relative densities of semimartingales.
Invent. Math. 27 299-327.



