CONVERGENCE OF CONDITIONAL p-MEANS GIVEN A σ -LATTICE

By D. LANDERS AND L. ROGGE

University of Cologne and University of Konstanz

Let $P_n \mid \mathscr{N}, n \in \mathbb{N}$, be a sequence of probability measures converging in total variation to the probability measure $P \mid \mathscr{N}$ and $\mathscr{C}_n \subset \mathscr{N}, n \in \mathbb{N}$, be a sequence of σ -lattices converging increasing or decreasing to the σ -lattice \mathscr{C} . Then for every uniformly bounded sequence $f_n, n \in \mathbb{N}$, converging to f in P-measure we show in this paper that the conditional p-mean $P_n \mathscr{C}_k f_j$ converge to $P \mathscr{C}_n f$ in P-measure if n, k, j tends to infinity.

The methods used in this paper are completely different from those used to prove the corresponding result for σ -fields instead of σ -lattices.

Let P be a probability measure on a σ -field $\mathscr M$ of a basic set Ω . In this paper let $1 . Denote by <math>\mathscr L_p(\Omega, \mathscr M, P)$ the system of all $\mathscr M$ -measurable functions $f \colon \Omega \to \mathbb R$ with $P(|f|^p) < \infty$ and $P(|f|^p)^{1/p}$ by $||f||_p$. Let $\mathscr C \subset \mathscr M$ be a σ -lattice, i.e. a system of sets which is closed under countable unions and intersections and contains Ω and the empty set $\mathscr O$. A function $f \colon \Omega \to \mathbb R$ is $\mathscr C$ -measurable iff $\{\omega \colon f(\omega) > a\} \in \mathscr C$ for all $a \in \mathbb R$.

 $\mathscr{L}_p(\Omega,\mathscr{C},P)$ denotes the system of all \mathscr{C} -measurable functions belonging to $\mathscr{L}_p(\Omega,\mathscr{A},P)$. A conditional p-mean $P^\mathscr{C}f$ of a function $f\in\mathscr{L}_p(\Omega,\mathscr{A},P)$ with respect to the σ -lattice \mathscr{C} is the projection of f on the closed convex cone $\mathscr{L}_p(\Omega,\mathscr{C},P)$ (see [2], page 315 for the case p=2 and [4] for the general case). The conditional p-mean is P-a.e. uniquely determined and has the following properties:

- (i) $a \le f \le b$ imply $a \le P^{\mathscr{C}} f \le b$ (see [4]);
- (ii) a slight generalization of a result given in [1] yields a martingale theorem for conditional p-means: If \mathcal{C}_n increases or decreases to the σ -lattice \mathcal{C} then

$$||P^{\mathscr{C}} n f - P^{\mathscr{C}} f||_p \to 0$$
 as $n \to \infty$.

The following is shown in [1]:

(iii) Let $\varepsilon > 0$ and $f \in \mathscr{L}_p(\Omega, \mathscr{A}, P)$ with $||f||_p > 0$ be given. There exists $\delta \equiv \delta(\varepsilon, f) > 0$ such that for every convex subset C of $\mathscr{L}_p(\Omega, \mathscr{A}, P)$, $g, h \in C$, $||f - g||_p$, $||f - h||_p \le \inf\{||f - c||_p \colon c \in C\} + \delta \text{ imply } ||g - h||_p \le \varepsilon$.

Let $||f||_{\infty} = |\sup \{|f(\omega) : \omega \in \Omega\}$ and $||\mu||$ the total variation of a signed measure μ . A sequence of probability measures $P_n | \mathscr{N}$, $n \in \mathbb{N}$, converges in total variation to a probability measure $P | \mathscr{N}$ if and only if $P_n | \mathscr{N}$ converges uniformly to $P | \mathscr{N}$, i.e. if $\sup \{|P_n(A) - P(A)| : A \in \mathscr{N}\} \to 0$.

147

Received April 18, 1975.

AMS 1970 subject classification. Primary 60B10.

Key words and phrases. o-lattice, conditional expectations, convergence in measure.

Lemma 1. Let P, Q be two probability measures on a σ -field \mathscr{A} . Then we have for all σ -lattices $\mathscr{C} \subset \mathscr{A}$, and all \mathscr{A} -measurable functions f, g with $||f||_{\infty}$, $||g||_{\infty} \leq c$,

$$||Q^{\mathscr{C}}g - f||_{p} \le ||P^{\mathscr{C}}f - f||_{p} + 2||f - g||_{p} + 4c||P - Q||^{1/p}$$

for all versions $Q^{\mathscr{C}}g$ with $||Q^{\mathscr{C}}g||_{\infty} \leq c$.

PROOF. Using the differential calculus it is easy to see that

(1)
$$|a^x - b^x| \le |a - b|^x$$
, if $a, b \ge 0$ and $0 < x < 1$.

For every \mathcal{A} -measurable bounded function f we have

$$|P(f) - Q(f)| \le ||P - Q|| ||f||_{\infty}.$$

Using the fact that $||g||_{\infty} \le c$ and $||Q^{\mathscr{C}}g||_{\infty} \le c$, we obtain from (2) applied to $f=|Q^{\mathscr{C}}g-g|^p$ that

(3)
$$|P(|Q^{\mathscr{C}}g - g|^p) - Q(|Q^{\mathscr{C}}g - g|^p)| \le (2c)^p ||P - Q||.$$

Hence (1) applied to x = 1/p yields

$$(4) \qquad ||Q^{\mathscr{C}}g - g||_{p} = P(|Q^{\mathscr{C}}g - g|^{p})^{1/p} \leq Q(|Q^{\mathscr{C}}g - g|^{p})^{1/p} + 2c||P - Q||^{1/p}.$$

Let $\mathscr{M}_c \equiv \{h : h \mathscr{C}$ -measurable, $||h||_{\infty} \leq c\}$ be the system of all \mathscr{C} -measurable functions bounded by c. If $h \in \mathscr{M}_c$, we obtain from (1) and (2) (analogously as in (4)):

$$Q(|h-g|^p)^{1/p} \leq ||h-g||_p + 2c||P-Q||^{1/p}$$
.

Hence using the definition of $Q^{C}g$ and (i) we have

$$Q(|Q^{\mathscr{C}}g - g|^{p})^{1/p} = \inf \{Q(|h - g|^{p})^{1/p} \colon h \in \mathscr{M}_{c}\}$$

$$\leq \inf \{||h - g||_{p} \colon h \in \mathscr{M}_{c}\} + 2c||P - Q||^{1/p}$$

$$\leq \inf \{||h - f||_{p} \colon h \in \mathscr{M}_{c}\} + ||f - g||_{p} + 2c||P - Q||^{1/p}$$

$$= ||P^{\mathscr{C}}f - f||_{p} + ||f - g||_{p} + 2c||P - Q||^{1/p} .$$

Using (4) and (5) we obtain:

$$\begin{split} ||Q^{\mathscr{E}}g - f||_{p} &\leq ||Q^{\mathscr{E}}g - g||_{p} + ||f - g||_{p} \\ &\leq ||P^{\mathscr{E}}f - f||_{p} + 2||f - g||_{p} + 4c||P - Q||^{1/p} \,. \end{split}$$

The following theorem yields a generalization of Theorem 1 of [6] to the case of σ -lattices instead of σ -fields.

We remark that the method applied in [6] does not carry over to σ -lattices since the basic equation (see equation (1) in the proof of Theorem 1 of [6]) is not true any more for σ -lattices instead of σ -fields. It seems to the authors that the new method used in this paper is more natural and transparent even in the case of σ -fields.

Theorem 1. Let $P_n | \mathcal{N}$, $n \in \mathbb{N}$, be a sequence of probability measures converging in total variation to the probability measure $P | \mathcal{N}$ and $\mathcal{C}_n \subset \mathcal{N}$, $n \in \mathbb{N}$, be a sequence of σ -lattices converging increasing or decreasing to the σ -lattices \mathcal{C} . Then

for every uniformly bounded sequence f_n , $n \in \mathbb{N}$, converging to f in P-measure we have that for every p with 1 the conditional <math>p-mean $P_n^{\mathscr{C}_k}f_j$ converges to $P^{\mathscr{C}_k}f$ in P-measure if n, k, j tends to infinity.

PROOF. Let $||f_n||_{\infty} \leq c$ for all $n \in \mathbb{N}$. We prove that there exists a version of the conditional p-mean $P_n \mathscr{E}_f f_j$ (namely every version of $P_n \mathscr{E}_f f_j$ with $||P_n \mathscr{E}_f f_j||_{\infty} \leq c$) which converges to $P \mathscr{E}_f$ in the pth mean with respect to P. This implies that these versions converge in P-measure too. Using the fact that two versions of $P_n \mathscr{E}_f f_j$ differ only on a P_n -null set, and that P_n converges to P in total variation, it is easy to see that each version of $P_n \mathscr{E}_f f_j$ converges to $P \mathscr{E}_f f$ in P-measure. Let, therefore,

$$||f_j||_{\infty}, ||P_n ^{\mathscr{C}} k f_j||_{\infty} \leq c \quad \text{for} \quad n, k, j \in \mathbb{N}.$$

We prove $||P_n \mathscr{E}_k f_j - P \mathscr{E}_f||_p \to 0$ if n, k, j tends to infinity. Apply now Lemma 1 to $Q \mathscr{E}_g \equiv P_n \mathscr{E}_k f_j$. We obtain

(6)
$$||P_n^{\mathscr{C}} k f_j - f||_p \le ||P^{\mathscr{C}} k f - f||_p + 2||f - f_i||_p + 4c||P_n - P||^{1/p}$$

If f = 0 *P*-a.e. the inequality (6) yields the assertion. Let, therefore, $||f||_p > 0$ and choose $\varepsilon > 0$. Define

$$C \equiv \{f : f \ \mathscr{C}_k \text{-measurable}, \ ||f||_{\infty} \leq c \}.$$

From (iii) we obtain that there exists $\delta = \delta(\varepsilon, f) > 0$ such that

(7)
$$g, h \in C; ||f-g||_p, ||f-h||_p \le \min \{||f-c||_p \colon c \in C\} + \delta$$
 imply

$$||g-h||_p \leq \varepsilon$$
.

According to assumption there exists $n(\varepsilon)$ such that

(8)
$$2||f-f_j||_p + 4c||P_n - P|| \le \delta \quad \text{for all} \quad n, j \ge n(\varepsilon).$$

(6), (7) and (8) applied to $g = P_n^{\mathscr{C}_k} f_i$, $h = P^{\mathscr{C}_k} f$ yield

$$||P_n^{\mathscr{C}} kf_j - P^{\mathscr{C}} kf||_p \le \varepsilon$$
 for all $n, j \ge n(\varepsilon)$.

Whence (ii) implies the assertion. That Theorem 1 cannot be improved may be seen from the examples given in [6].

REFERENCES

- [1] Ando, T. and Amemiya, I. (1965). Almost everywhere convergence of prediction sequence in $L_p(1 . Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 113-120.$
- [2] BARLOW, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and BRUNK, H. D. (1972). Statistical Inference Under Order Restrictions. Wiley, New York.
- [3] BRUNK, H. D. (1965). Conditional expectations given a σ-lattice and applications. Ann. Math. Statist. 36 1339-1350.
- [4] BRUNK, H. D. (1975). Uniform inequalities for conditional p-means given σ-lattices. Ann. Probability 3 1025-1030.
- [5] GÄNßLER, P. and PFANZAGL, J. (1971). Convergence of conditional expectations. Ann. Math. Statist. 42 315-324.

[6] LANDERS, D. and ROGGE, L. (1972). Joint convergence of conditional expectations. *Manuscripta Math.* 6 141-145.

Mathematisches Institut Universität Köln 5 Köln 41 Weyertal 86–90 West Germany FACHBEREICH STATISTIK UNIVERSITÄT KONSTANZ 775 KONSTANZ POSTFACH 7733 WEST GERMANY