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THE ERGODIC MAXIMAL FUNCTION WITH
CANCELLATION!

By ROGER L. JoNES
DePaul University

A variant of the ergodic maximal function is studied. This maximal
function reduces to the usual one for f = 0, but the cancellation between
the positive and negative parts of f causes interesting behavior. In par-
ticular the maximal function can be in L! even when the function is not
in Llog* L. A relation between this maximal function and the ergodic
Hilbert transform is studied.

1. Introduction. Let (X, X, m) denote a complete nonatomic probability
space, and T an invertible, ergodic measure preserving point transformation
mapping X onto itself. In this setting, the ergodic maximal function is defined by

f4(5) = sup, - T3z /(7)) -

Ornstein (1971) proved that f* is in L}(X) if and only if fis in the class L log* L.
In the case where {X;};, are independent identically distributed random vari-
ables, Burkholder (1962) proved $* = sup, |(1/n) Y722 X,(w)| is in L' if and only
if X; is in L log* L.
In view of these two results, it becomes natural to ask if a similar result
holds for the operator

MF(X) = SUpysa |- TAATH)

It turns out that such a result is not true. Burgess Davis (1971) constructed a func-
tion on [0, 1) with 7' the irrational shift, such that Mf is in L! but f¢ Llog* L.
His example is generalized in Theorem 1, to show that for any ergodic trans-
formation on a nonatomic probability space, there is an f such that Mf e L', but
fe Llogt L.

As a consequence of this result, and indeed part of the original motivation
for studying the problem, it is possible to show that the class “ergodic H"” in-
troduced by Coifman and Weiss (1973) is strictly larger than Llog* L. The
last section of this paper contains some.additional results about the space H'.

2. Results.

THEOREM 2.1. For any invertible, ergodic measure preserving transformation of
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a nonatomic probability space onto itself, there is a function f such that Mf ¢ L1,
but f¢ Llog* L.

The proof on Theorem 2.1 involves constructing a function f such that the
action of 7' on f causes the positive and negative parts to cancel each other out.
As a consequence Mf and f are nearly the same for many points x.

Proor. Rokhlin’s theorem says that given ¢ and N, we can find a set 4.Y
such that the sets 4%, T4, ..., T¥-14." are disjoint and

m(UY TEAY) > 1 — ¢
For given k, choose ¢ = ¢(k) and N = N(k), such that
(1) Niseven;

1/ 1\
@ ¢ <5 (5e)
1 171
3) Liggn < L L)
()  log <2<24k/
2 1
@2 < L

For this N, ¢ make the Rokhlin construction. We note that the measure of 4,¥
is about 1/N.
Denote by B, some subset of A.¥ such that Nm(B,) = 1/2*.

TN—IAEN
| | |
TV-1B,
TN—2A£N
I l ‘1
TV-1B,
TAY
| | |
| I I
TB,
A¥
| | I
I I
B,

Define
flx) =(=1)  xeT'B, 0<i<N
=0 x¢ UV T'B, .
We do this for each k, and define )
24k
f(x) = Zl?=17{fk(x) .
We first show that for this f, Mf is in L'. We have that

§x M) dm(x) S T 2§ MF() ()
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Consequently it is enough to show that
§ Mf(x) dm(x) < -

Let A = A" and recall that f, is supported on the set B=B, U TB, U -.- U
T¥-'B,. If xe B then Mf(x) = 1. If xeT"-Y(4 — B,) then Mf(x) < }. If
xeTV-*A — B,) then Mf,(x) < %. In general, if x e T"-(4 — B,) then Mf(x) <
1/(j +1); 1 <j<N. We will estimate Mf(x) for x notin 4UTAU ... U
TV-'4 by 1. We now add up the values times the size of the set they occur on.
We get:

1 1 1 1 1 1 1
§ Mfy(x) dm(x) < 24k+2 N+3 N—l— +N-|-1 N—i— &
1 clog N 1 1
R T
< ¢
= ?k_
Hence Mf e L}(X). We now show that f¢ Llog* L. First we note that
- 4k - D4k
izt 2| s |z 2
244
= jz M
Thus, for x € {f; #+ 0}, we have
.2k 24 1 24
|mt |2 2 -5
>1 .29
=7
We also have
w 1
Drmenm{fe # 0} = 2iin e
<1, 1
=2 24
hence,
1 1
m(2?=k+1fk 7& 0) = ? : 247 .
Consequently,

§ 117G 108" 1 (9] dm(x) Z K351 Vs s 1ym0 ot k5 |/ ()] 108" 1 ()] i)
o [l 2 1 26\]1 1
2 zm((z 5 )ee(z )l

i
= ?=1—];1°g —27;
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Although Theorem 2.1 shows that the class Llog* L is smaller than the class
of functions with MF e L, there is a very strong relationship between the two
classes. We will say F is a rearrangement of f if F and f have the same distri-
bution function. We then show, in a large number of cases, that given
f¢ Llogt L, there is a rearrangement F of f such that § MF(x) dx = co.

It is not hard to show that given f¢ Llog* L, and given N, there exists a
rearrangement of f, denoted by F,, such that {, MF,(x)dx = N. However, it
is not clear how to take a limit and find F such that {, MF(x) dx = co. We
can, however, by a different approach, and using powerful tools, solve the
problem when T has positive entropy.

THEOREM 2.2. If the entropy of T is greater than zero, then given e L', such
that f ¢ Llog* L, there exists a rearrangement F of f such that MF ¢ L*.

The idea of the proof is to use Sinai’s weak isomorphism theorem to find a
rearrangement F of f, such that F, TF, T*F, ... are nearly independent. In
this situation we apply Burkholder’s result to complete the proof.

Proor. Assume that Mfe L', since if not we are already done. We can
approximate f by a step function as follows. Let A4, = {2¢-! < f(x) < 2},
B, = {—2* < f(x) < 2*-1}. Then

J(x) = s(x) = X 2k(1Ak(x) — 15,(x)) .
Since fe L', 5, € L', and consequently
D1 2"[m(Ak) 4 m(B,)] < oo .
From this it follows that
0 < — X5, m(A,) log m(A4,) + m(B,) log m(B,) < oo .

If we denote the entropy of T by H(T), then since H(T) > 0, there exists N,
such that

$H(T) > [— iy, m(Ay) log m(4,) + m(By) log m(B,)] -

Since #(x) = —x log x is a continuous function, and 4(1) = 0, we can find ¢ < 1
such that 2H(T) > k(d) for all d € [¢, 1]. We now choose N, so large that

e< Tntim(4,) +mB) < 1.
Let N = max (N, N,), and let C = |J¥! 4, U B,. We then have
H(T) =z —m(C) log m(C) — (Li-y m(Ay) log m(A,) + m(B,) log m(B,)) > 0.
Now define
5(X) = 2w 2"(1Ak(x) — 1p,(x)) .

It is clear that both s, and s are not in L log* L.
Sinai’s weak isomorphism theorem says that we can nowfin d sets A, B, C,
k=N,N+1, ..., such that
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(1) m(4y) = m(d,), m(B,) = m(B,), and m(C) = m(C).
(2) If P denotes the partition of X determined by {A',,, B, C, k=N,
N + 1, . ..} the sequence partitions P, TP, T*P, . .. are all independent.

Now define
85(x) = Xy 24(15,(x) — 15,(x)) -
Since § is measurable with respect to the partition P, and the partitions P, TP,
T*P, ... are independent, the sequence 5(+), §(T(+)), §T*(+)) - - - can be thought
of asindependent identically distributed random variables. Invoking Burkholder’s
result, we see Mse L' ifand only if §e Llog* L. Asaconsequence Ms¢ L. We
now obtain F from 5. Define F on 4, so that the distribution of F on 4, is the
same as the distribution of f on 4,. We do the same thing on C and {B,};_,.
It is clear that this F satisfies the conclusion of the theorem.

3. Applications to H'. The results in Section 2 can be used to give additional
information about the space H' introduced by Coifman and Weiss (1973).

Let {U}, —o0 <t < oo, be a one-parameter group of measure preserving
transformations on X (i.e., an ergodic flow). The ergodic Hilbert transform
fu(x); of a function fe L?(X), 1 < p < oo is defined as the a.e. limit of

(3.1) H. f(x) = ‘i‘ §eciticre f(Uex) ‘it ’

as ¢ > 0 tends to 0. The almost everywhere existence of this limit was first
shown by Cotlar (1955). In the discrete case, Coifman and Weiss define the
analogous operator, also called the Hilbert transform, by the formula

(3.2) fT(x) = limn—»eo ":z_“ Zk#o:—n<k<nf(Tkx) ’%“ *

In the classical situation H' can be characterized by the conditions f¢ L' and
fe L', where fis the classical Hilbert transform. With this in mind, Coifman
and Weiss characterize ergodic H* as the class of f ¢ L' such that £, e L.

They also prove that ||f|[, + || fz|l, < ¢||R*f]|,, where in the discrete setting,

Lot (- £

3.3) R*f(x) = 6 sup,.,

It is not hard to prove that (essentially) ||R*f||, < ¢||Mf]||,. The argument is a
special case of a general principle involving approximate identities, but uses a
two-sided maximal function. The modifications are clear. As a consequence
of this observation, and Theorem 2.1, we see that there is an f which is not in
Llog* L but is in H. ' _

We now apply Theorem 2.2, along with some facts about independent iden-
tically distributed random variables, to show H* is not invariant under isomor-
phism. In particular we prove the following result.

THEOREM 3.4. Let T be an invertible measure preserving ergodic transformation
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on X. If T has positive entropy then there exists a transformation T isomorphic to
T, and a function f € LX) such that f, € LX) but f7 ¢ L'(X).

As a consequence of this result in the discrete case, we can also state a result
for measure preserving flows.

THEOREM 3.5. There exist two isomorphic flows, U, and U, and a function
fe LX), such that f, e L\(X), but f; ¢ LY(X).

To see this we consider the space X = [0, 1)xm, where m is a probability
space. Let 7"and T be isomorphic transformations. We then define U, by

(3.6) Ufa, x) = (@ + t — [a + 1], Tl x) .

The fact that T is ergodic and measure preserving implies the same for U. The
flow U, is defined by (3.6) with T replaced by 7. The isomorphism between 7'
and T can be extended to an isomorphism between U and U. As pointed out
by Coifman and Weiss, the operators defined by these flows, when operating on
functions which depend only on their second variable, differ from their discrete
versions by operators which are easily analyzed. These operators are easily
shown to be bounded on all L?, 1 < p < oo. Hence, the f from Theorem 3.4,
extended in the obvious way also works for Theorem 3.5.

Proor oF THEOREM 3.4. We begin by recalling some known facts about in-
dependent identically distributed random variables. Klass (1974) proves that if
{Y;}i, are i.i.d. random variables, with mean 0, then

(3.7) limn—»oo E <’ Zz:l '1]:_"' )
and

1
(3.8) E(supyas |- K Vi)

are either both finite or both infinite. However 3.8 is finite if and only if
X, e Llog* L.

Clearly if {X;};2 _.. is a sequence of i.i.d. random variables, and Y, = X, — X_,,
then {Y;}2, is a sequence of i.i.d. mean 0 random variables. Further, Y, e
Llog* L if and only if X, e Llog* L. Suppose f(T*x) = X,(x), —oo < k < oo.
Then

. . 1 ' o1
(3.9) fr(x) =lim,_, - 2 kros—n<h<n J(TEX) *

= lim, o L W (AT — (T4 o

We now combine these ideas. First we have fe L' if and only if (3.9) is in L'
However the L' norm of (3.9) is (3.7) in this case. Hence fe L' if and only if
(3.8) is finite, but (3.8) is finite if and only if fe Llog* L.

We now return to the proof of Theorem 2.2. There we started with an f in
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L' but not in L log* L. We then constructed a step function s(x), with the same
integrability properties as f. The partition upon which this step function was
defined had entropy less than or equal to that of 7. By Ornstein’s theorem, as
modified by Smorodinsky (1972), we can find a new transformation T, isomor-
phic to 7, such that {s(T*(.))}s._.. is a sequence of i.i.d. random variables.
Consequently 57 is not in L!, since s was not in L log* L. Clearly this also im-
plies that f7 ¢ L!, and we are done.
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