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ASYMPTOTIC MOMENTS OF RANDOM WALKS WITH
APPLICATIONS TO LADDER VARIABLES
AND RENEWAL THEORY!

By Tze LeEuNG LAl
Columbia University

Let X1, Xz, - -+ be i.i.d. random variables with EX; = 0, EX32 = 1 and
let Sn = X1 + -+ + X,. In this paper, we study the ladder variable Sy
where N = inf{n = 1: S, > 0}. The well-known result of Spitzer concern-
ing ESn is extended to the higher moments ESy*. In this connection, we
develop an asymptotic expansion of the one-sided moments E[(n~4S,)"]*
related to the central limit theorem. Using a truncation argument involv-
ing this asymptotic expansion, we obtain the absolute convergence of
Spitzer’s series of order & — 2 under the condition E|X;|¥ < oo, extending
earlier results of Rosén, Baum and Katz in connection with ESy. Some
applications of these results to renewal theory are also given.

1. Introduction. Throughout this paper, we shall let X, X;, - .- be i.i.d. ran-
dom variables with EX, = 0, EX;> = 1. Setting S, = X, + -+ + X,, S, =0,
we define

(1.1) N=inf{n = 1: S > 0}.
In [10], Spitzer has proved that
(1.2) ESy =2 texp{Xyrn'(P[S, < 0] — })}.

Spitzer [10] has shown that the series in (1.2) is indeed convergent, while Rosén
[7] has proved that it is in fact absolutely convergent. Later, Baum and Katz
[1] have obtained the following stronger result:

(1.3) E|X|** < 0o forsome 0<0<1
— Sy nP[S, S 0] — | < oo

We note that if X, is normal, then ES, = 2~} and by using Wald’s upper
bound for the overshoot (cf. [12], page 172 for the case k = 1), it is easy to see
that in this case ESy* < oo for k = 1,2, .... Letting g, denote ES,* in the
case where X, is normal, we can write (1.2) for the general case as

(1.4) ES,'= pe%

so that the additional factor involving Spitzer’s series ¢, can be regarded as some
sort of nonnormal adjustment. In Section 3 below, we shall generalize (1.4) to
obtain higher moments of the ladder variable S,. For example, if E|X,* < oo,
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then
(1.5)  ESy* = { + (BQR))EX — 2 Tp ni[E(n4S,)" — (2m)H}en.
Hence the nonnormal adjustment involves EX,%, Spitzer’s series o, and the series
= 2¢ n~YE(n"tS,)~ — (2x)~*], which we shall call Spitzer’s series of order
one. Setting (¢) = x(x — 1) --- (x — n + 1)/(n!) for any real number x, p, is
given by
(1.6) tm=1— 17 Tf (17 — DGR (— 1)) .
Using the convergence rate of E(n~%S,)~ to (2x)~%, which is the mean of the
negative part of a standard normal random variable, it will be shown in Section
2 that the series o, is indeed absolutely convergent. In general, if E|X,|* < oo,

then letting a; = EX,7 for j =3, ..., k, and letting f, be the characteristic
function of n-tS,, we have the following well-known asymptotic expansion of

fu (e [3]):
e (1) = 1 + Tk n—i2P(it) 4 o(n~*-27)
where P;(z) is a sequence of polynomials in z of the form
(1.7) Py(2) = Do 29t
and the constants c,; are polynomials in the moments a,, (m = 3, -+ -, j + 2).
For example,

P(z) = (1/3Ya,z,
Py(z) = (1/4!) (e, — 3)z* + (10/6))a,22®, etc.
Letting ®(x) denote the standard normal distribution function, we now intro-
duce the functions P;(— ®)(x) whose Fourier-Stieltjes transforms are e"ij(it):

(1.8)  P(=D)(x) = (—1/31)a, ®(x)
Py(—D)(x) = (1/4!)(a, — 3)P(x) + (10/6!)a2P®(x), etc.
It will be shown in Section 2 that under certain conditions, for anyv=1,2,...,k,
(1.9)  E[(n71S,)7] = §%n [x|" dO(x) + Tzt n=9 (., [x]* dPy(—D)(x)
+ o(n—(k 2)/2) .
As will be shown in Section 2, {°, [x]* dP,(—®@)(x) = 0, and E|X,|* < oo implies
that ¢,_, converges, where we define Spitzer’s series of order v (= 2) as:
(1.10) 0, = N n A HE[(n48,) ] — [§2. 2] dD(x)
+ Zia T §Le X[ dP(—@)(x)]} -

In fact, we shall prove a stronger result analogous to the Baum-Katz theorem
referred to in (1.3).

In Section 3, under the assumption E|X|* < co, we shall make use of the
preceding result to find an analogue of (1.5) for ES,*~* involving o, - - -, ,_,,

a, - -+, a;, together with p, which has an expression analogous to (1.6). Some
applications of our results to renewal theory are given in Section 4.
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2. Asymptotic moments and the absolute convergence of Spitzer’s series of
order h. Throughout this section, we shall set 8, = E|X,|. We note that for
rz2, B, z (EX)”* = 1. In[11], von Bahr has proved the following result on
the asymptotic absolute moments of random walks: If 8, < oo for some r = 4,
then

2.1)  [EnTES, — 2 X dO(x) — T I {5, x| dPyy(— @)(x)|
S Cr{‘Br3n-(T—2)/2 + ﬂr3(v+1)/7'n—(v+l)/2 _I_ ﬁra(u'i'"')/?'n—(’#""f)/z}

for every 0 < v < r, where C, is a finite constant depending only on r. We
shall need an expression analogous to (2.1) for E[(n~%S,)~]*. However, because
of our truncation argument in the proof of the absolute convergence of Spitzer’s
series (see Theorem 1), we want the coefficient of n="-?/2 in (2.1) to be g, in-
stead of 8,°. One such estimate for E[(rn~%S,)~]" is obtained in Lemma 3 below.

LEMMA 1. Let f,(t) be the characteristic function of n=3S,. Let k be an integer
=3andletk <r < k + 1. Assume B, < oo and set

A =|fu(t) — e (1 + Thdn=rP(ir))] .
(i) For |t| < B,~¥*nt/(8k),
(2.2) A é 5(’1, k)ﬂk3(k—2)/kn—(k—z)/2(lt|k + |t|3(k—2))e—52/4

where lim,_, 6(n, k) = 0. Furthermore A = o(t*) as t — 0.

(i) If B, < oo, then for |t| < by(r)B,~*"nt,

(2'3) A é cl(r)ﬂ?‘S(k—l)/rn—('r—Z)/Z(ltl'r + |t|3(k—l))e—t2/4
where b,(r) and c\(r) are positive constants depending only on r.

(iii) If B, < oo, then for |t| < T,, = b(r)nt min {,~¥*, B, ~V/=},

(2,4) A< c(r)e‘w/‘{ﬁ,c“‘“““/"n‘“‘"’/2(|t["“ + ltlam-n)
_|_ ﬁrn—(r—2)/2(|t[r _|_ |t|'r+2(k—2))} N
where b(r) and c(r) are positive constants depending only on r.

PRrooF. (i) and (ii) are well known (cf. [3], [11]). To prove (iii), we shall
modify the proof of (i) given in [3] (pages 204-208). First letting f(f) = Ee®%1
and choosing b(r) sufficiently small, we can write for |¢t| < T,,,

(2.5)  logf(nity = —£/(2n) + Doy Ai(itn3(jY) + 0d, (7Y,
where |0 < 1, 4,, - - -, 4, are the semi-invariants of X; and d, = 1 is a constant
depending only on r (cf. [6], page 199 and [3], page 205). For |z| < 1, put
(2.6) V = log {e™(f.(12))""} = L2 21a(it)™ X (n722) )((j + 2)Y)

+ 0d, B (n )% = A+ B, say.
By choosing b(r) sufficiently small, we have for |z| < 1 and |t| < T,,,

2.7) d.B(nm izl <5 and  kBnirz] < et
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As shown in [3] (page 206), forv =1,2, ...,

(2.8) [l < 3 (B | |n bz 5o (n7tk B |12])[ (1) -
From (2.7) and (2.8), it then follows that
29 4] < 38k)7e*, Bl < i

Using (2.7), (2.8) and (2.9), we obtain that
(2.10)  [V]te < o (k) ([ + [BF)eieiriel
é cz(r){(‘ekllk|t|)3(k—1)n—(k-1)/2 + ﬁ'rn—(r—2)/2[t['r+2(k—3)}et2/4 .
We now write
(2.11) TEIVIGY = 1+ TE2P(in(ni2) + 0(2) .
By making use of (2.7), (2.8) and (2.9), we find that
lo@)| = Tz 3B > In~42l Diemrm (n7Hok B |12])/(1)
+ OIBIA 7 + GBI~ + -+ + B}
(cf. [3], page 207)

(2.12) = a(r)(n Bl X (B ()™

+ eB,n TPl Gl e

< ca(r){”—(k“l)/zﬁk3(k_l)/k(|t|k“ + It[3(k—1))

+ Brn—('r—Z)/z(ltlr _|_ lt['r+2(k—2))} .
The last inequality above follows from };7a? < p(a + a”*'). We note that
(2.13) e = TEAVII(Y + 6,V (16 < 1)k — 1))
Setting z = 1 in (2.6), we obtain that f,(r) = e~**¢” and the desired conclusion
(2.4) follows from (2.10), (2.11), (2.12) and (2.13).

LEMMA 2. Let H(x) be a function of bounded variation on (— oo, oo) such that
{2 |X|*|dH(x)| < oo for some positive even integer v. Define h(t) = =, "* dH(x)
and y; = \2,xIdH(x) forj =1, ..., v. Then

{¢ x* dH(x) — {°. x* dH(x)

= (= 1)@/ §& (LA + D55 (= 1) 7257 — DY) di
where 7 and 2 below denote the imaginary and real parts respectively.

ProoF. Integration by parts gives 4, = (—1)*/*(x/2)/(v!), where
(2.14) A, = §¢ ({sinu + T35 [(— 1w (2 — DY) du .

Letting ¥(x) = x* if x > 0 and ¥(x) = —x* if x < 0, we obtain by using a
change of variable # = xt in (2.14) that A
2.15)  A(x) = §5 ([sin xt + D32 [(— e — DUYe+de.

Since (=, ¥(x) dH(x) = {¢ x* dH(x) — {°., x* dH(x), the desired conclusion fol-
lows easily from (2.15).
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LEMMA 3. Let k be an integer = 3 andletk <r <k + 1,ve{l,2, ..., k}.

(i) There exists a positive constant C, depending only on r such that if f, < oo,
then

[E[(n748,)7] — §2u X" dQ(x) — Z52inmi (Lo, [x]" dPy(— @)(x)|
(2.16) S Cr{ﬁks(k—l)/kn—(k—l)/z + ‘Brn—(r—Z)/Z _|_ ‘873(v+1)/rn—(v+l)/2
+ ﬁr3(v+r)/rn—(v+r)/2} .

(ii) Suppose B, < co. Then (1.9) holds forv = k — 2, k — 1, k. If furthermore,
lim sup,, _., E|e**1| < 1, then (1.9) also holds forv =1, ..., k — 3.

Proor. We use Lemma 1 (iii) to,prove (i). Define
F(x) = P[n3S, < x],  F(x) = P[X, < x,
2.17)  Gy(x) = O(x) + Tt I P=Q)(x),  gu(t) = [Zu € dGy(x) ,
H(x) = Fy(x) = Gu(x), k(1) = fu(t) = 9a() -
First consider the case where v is odd. Then as shown in [11] (page 812),
(2.18) V2w X" dH,(x) = (!/m)(— 1) (20 (SR 11T dt .
Let T = b(r)B8,~%" n, where b(r) and T,, are as defined in Lemma 1 (iii). Since
B8, = 1 and 3/r > 1/(r — 2), we have T,, = T and by (2.4),
(2:19) Sz (IBROI11 ) dt < ey(){B* 7 n= 070" 4 fLn= =27,
noting that r — (v + 1) > —1. As shown in [11] (page 815),
(2.20) Slt|>T (l%hn(t)l/ltlv*'l) dt é cz(r){‘grl*)(v+l)/'rn-(v+1)/2 + ﬁr3(u+r)/rn~(u+r)/2} R
From (2.18), (2.19) and (2.20), it follows that
|Eln=4S,)" — §2a x| d(x) — X523 0737 {2, x| dPy(— D)(x)|
(221) é Cr{‘Bkii(k-l)/kn—(k—l)/ﬁ + ﬁrn—(r—ﬁ)ﬂ _|_ ﬁrS(v+1)/rn—(v+1)/2
_I_ ‘873(u+r)/rn—(v+r)/2} .
It is well known (cf. [11], Theorem 1) that
(2.22) E(n1S,)" = {*, x* dO(x) + YNkin=i2 (=, x* dP;(—D)(x) .
Since (a”)" = i(|a|* — a*), (2.16) follows from (2.21) and (2.22).

Now consider the case where v is even. From Lemma 1, A,(f) = o(t*) as
t—0andsoforj=0,1, ...,k

(2.23) . V2. xidH,(x) =0
(cf. Lemma 1 (b) of [11]). Hence using Lemma 2 and a similar argument as
before, we obtain that
|§5° X dH,(x) — §2o x* dH,(x)]
(2:24) = v!Q2/)|§§ (S h(O)[r*) di|
é Cr{ﬁk3(k—l)/kn_(k_l)/2 + ‘Brn—('r_2)/2
+ ‘8r3(1‘+1)/'rn—(v+1)/2 + ‘873(u+'r)/rn—(v+r)/2} .

From (2.23) and (2.24), the desired conclusion (2.16) follows easily.
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To prove (ii), let T* = §,~%*n}/(8k), 6 > 0 and write
(2.25) {2 ([Zh D10 dt = §ugo + Socuer + Swere =L+ L+ 1.

By Lemma 1 (i), we have I, = o(n=*~»/%). Using a similar argument as in [11]
(pages 812-814), it can be shown that I, < o(f)n=*~2/* where p(6) — 0 as 6 | 0.
It is also shown in [11] (page 815) that I, = O(n~**V"%) and so I, = o(n—*-7) if
v=k—2,k—1, k. In the case where Cramér’s condition lim SUPy; - E|e¥1) < 1
is assumed, it can be shown by a standard argument that I, = o(n=%*-2/) for
v=1,...,k. Hence we obtain (ii) using (2.25) when v is odd. When v is
even, a similar analysis of {§ (7 h,(r)/r+') dt again gives (ii).

Lemma 4. If i, j are positive integers such that i < j and j — i is even, then
(2.26) 0 x*dP?(x) = 0.
Conseéluently if B, < oo for some integer k = 3, thenforv =1, ..., k — 2,
(2.27) ' x*dP,(—D)(x) =0.

Proor. Integration by parts shows that the left-hand side of (2.26) is equal
to (—1)4! ®@¥=9(0). It is easy to see by induction that ®*(0) = 0if v isa posi-
tive even integer. Hence we obtain (2.26), and (2.27) is an immediate corollary
of (1.7) and (2.26).

THEOREM 1. Let k be an integer = 3 andlet0 < § < 1. If E|X,|**% < oo, then
(2.28) Tyt (fl, (642 dO(x) + Fhdnmi2 (0, x|kt dPy(— @)(x)

— E[(n7%S,)7 ] < oo .
Consequently if E|X\|* < oo, then the series g,_, defined by (1.10) is absolutely
convergent.

ProOF. Define Y;(n) = X;Ijjx, <a1y, v.* = Var Yy(n) and let X,(n) = v,~%(Y,(n) —
EY(n)), S.(n) = Xy(n) + --- 4+ X,(n). Then X(n), ..., X,(n) are i.i.d. with
mean 0 and variance 1. Let a;(n) = EX,i(n) for j = 3, - .-, k and let 8,(n) =
E|X\(n)|” for any p > 0. Let P;*(z) be defined as in (1.7) with the moments
a,(n) replacing the moments a,, = EX\"(m =2, -+.,j + 2). Setr =k + 6 + 6
where 6 > 0 satisfies
(2.29) 30k —2 4 r)jr < (1 — 9)/2.

By Lemma 3 (i),
|EL(n38,(m)"1* — {20 [x]*=2 dD(x) — F5dn=9 50, |x]E2dP5(— D) ()
(2.30) é Cr{(ﬁk(n))s(k—l)/kn—(k—l)/2 + ‘Br(n)n—('r—m/?
+ (‘Br(n))a(k—l)/rn—(k—l)/ﬂ + (‘Br(n))3(k—2+7‘)/‘rn—(k—2+'r)/2} .

Since 8.(n) < 20, "E|Y,(n)|" = O(n’?), it follows from (2.29) that
@31) 1= () S (B < (B4 = O(ni=o)
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We note that
Z;o ‘Br(n)n—(wz)—l <c Zloo n—w/z)—lElYI(n)lr
(2.32) = € $ixya [ XA (D xysap 0707 dP
S CEX Y < oo

Since (%, |x[*~*dP{_(—D)(x) = 0 by Lemma 4 and f,(n) = O(1), we obtain
from (2.30), (2.31) and (2.32) that
(2.33) Dy atTmon(§, x4 dO(x) + 2z 10, x| AP (— D)(x))

— E[(n72S,(m) 7] < o0

Let ¢,(n) = ay(n) — a; for i =3, ..., k — 1. We note that

(2.34) lm)| < |EY(n) — | + O(EY () + O(1 — v,%)
= Sixgoat [ X" dP 4 O(n=tk=240)
Hence forj=1, ...,k —3andi =3, ...,j + 2, we have
(235)  Zpnatemonnmifg(n)] < S XD xgsm 1770 dP 4 ¢
< QEX[F00
By (1.7), we can write forj =1, ..., k — 3,

§le [X[F72 AP (= D)(x) — §20 [x]*7* dPi(—D@)(x) = h;(gs(n), - - +» G54a(m))
where A; (x;, -+ -, x;) is a polynomial of degree j. Since ¢,(n) = o(1) for i =
3, ...,k — 1, it follows from (2.35) that for j =1, ..., k — 3,

(2.36) Xy ntmmonmmif(l x[FT AP (— @) (x) — §2, [x]*7 dPy(—D)(x)|
< oo .

Let Z(n) = X; — Yy(n), S,/ =Y, (n) + -+ + Y,(n), S, =S, —S,/. Using
the inequality a~ — |b| < (¢ — b)~ < a~ + |b| and noting that n*EY (n) = o(1)
and therefore E|n=tS,’|Y = O(1) for j < k, we obtain that
(2.37) Xy T E[(nmS(n) 7] — E[(n7S,)) ]

< ¢ By n* MO Yt BY (n)| + (1 — v,2)} £ CE|X,|*+0.
We also observe that
(2.38)  |E[(n74S,)7] 7" — E[(n74S,))7]*7 = Cn==22 TEVE(S,|F4]S, ")) -
Forj=1,...,k — 2, expanding |S,”|" = |Z(n) + - - . + Z,(n)|’ and noting that
forv=1,...,jandi; > 1, .--,i, = 1 such thati, + ... + i, =,

E(IS,/[* 2y - - - | Z(m)]) = EIS,_,|**9E| Zy(n)|r - - - E|Zy(n)]*

— O(n(k—z—j)/z)o(n—(Ic+5—il)/2) . O(n—(lc+s—i,,)/2)
= O(n—\k+ov+a-bz) ’
we obtain that
(2.39) E(]S,,’|"“2‘j|S”"|j) = nE|S;_1|"—2-iE]ZI(n)|i + i, O(nv—i((k+6>v+2—k))
e O(n(k—j)/z)Elzl(n)lj + 0(n2—§(2(k+3)+2—k)) .
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It then follows from (2.38) and (2.39) that
S n O B(nm4S,) ] — E[(n1S,) 1+
(2.40) S G Laa nt Rt ntkman Sixysnt [ X7 dP + ¢,
< GE|X|F Lo, .
From (2.33), (2.36), (2.37) and (2.40), the desired conclusion (2.28) follows.

3. Moments of the ladder variable. In this section, we shall find the kth
moment of the ladder variable S, defined in Section 1. We shall need an as-
ymptotic expansion of the function Y7, n**i* as +1 1 which is given in the
following lemma.

LEMMA S, LetO < a < 1. Fori=0,1,2, ..., the following asymptotic ex-
pansion holds as n — oo:

@3.1) L(a + i + n)/(n!)

=n L 4 COn7 - GO o GO O(n~i-1)}
where C,'*), ..., C;* are constants depending only on i and a. Consequently, given
h=—1,0,1,2, ..., ifweset &, (h+ 1) =T(a + h + 1) and define &, (i) for
i=hh—1,...,0 inductively by
(3-2) &b+ DOEYT(a + b+ 1) + &, (ACRT(a + k) + - -

+ &)/ T(ax + i) =0,

then the series in the expression
(3'3) Ch,a = _21,}:01 Eh,zx(i)

+ TP it — (D & (O (@ + i + n)/(n! T(e + 1))}
converges absolutely, and as t 1 1,
(3-4) Dot = i 6 ()1 — 077 + G o + o(1) .

Proor. The relation (3.1) can be seen from the well-known asymptotic
expansion
T(y) = (2a)tey=4 exp (yB,/(1.2) + yB,/(3.4) + -+ + O(y=+1)}

as y — oo, where By, B,, - .- are the Bernoulli numbers (cf. [4], page 530).
From (3.1) and (3.2), it follows that

mre = g, ()T + i+ mf(nl T(@ + ) = O(n=*+°) .
Hence the series in (3.3) is absolutely convergent. From the relation
(I == Do, W=t = Tpot"T(a + i + n)/(n! T(a + i),
i=0,1,..-,h 4 1, we obtain that as 7 1 1,
Zian ot — T 6 ()1 — 7 = G,

In our subsequent applications of Lemma 5, we shall set « = . Let v be a
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positive odd integer, say v = 2k + 1. In this case, weset{, = {,_, ,; a,(2i+ 1) =
§io1y(i) for i =0, .., k and a,(j) = 0 for even j, where {, , and §, (i) are as
defined in Lemma 5. Thus by Lemma 5, we have the following asymptotic
expansion as ¢ 1 1:

(3.5) D ntvin = yaatevte = k&, G)(1 — )7 4 G+ o))
= Tima (D = 977+ & + o(l).

In particular, for v = 1,

mantrr =il — 7t —at + FE (= 2EH(=D") + o(D)

In the case where v is a positive even integer, it is obvious that we can still write

(3.6) Zaanmier = Fiaa (N =07 + 4,

where a,(j) are constants such that a,(j) = 0 for odd j. For example, 37 " =

I =H1—=1, 2 pnr=0—=0"— (1 -, etc.

LEMMA 6. Suppose E|X,|**' < oo for some integer k > 2. Forv=1,..-,k
and j=1, -,k — 1, let b,0) = {2, |x]" dD(x), b,(j) = (% |x]" dP;(=P)(x)
and define a (j) and {, as in (3.5) and (3.6) and o, as in (1.10). Set

9. = (=1{o, + 6,08, + Z5218.())8,-5} > v=1,.- k=1,
B.7)  Ae) = (=1)b,0)a) v=1, ek,
() = (=1){b,(0)a.()) + b,(Da,_i(j) + -+ + b.lr — Na; ()}
j=1,--,v—1.
Then as t | 1, we have the following asymptotic expansions:
(3-8) X ("/ES s, <oy = AR)(1 — )7 4 Lk — (1 — )7F B4 -
+ 2D =07t + o((1 = 7
3.9) ZE (" MES, I, <o = A(1D)(1 = 07 + g, + o(1)
and in general, forv =2, .., k — 1,
(3100  Zr ("mES s g = AN — D7+ 40— D — )74
+ 41 =7t +9, + o(1).
Proor. Forv =1, ...,k — 1, define r,(v) by
nem=E] (n74S,) ]
(3.11) = n¥A=1 0 1x]* dD(x)
+ Tyt nem G |x] dPy(—®)(x) + nPr() -
By (3.5), (3.6) and (3.11), we have
ZE (" WES, Iis, <o = (= 1) T n*@E[(n72S,) 7]
=401 =7+ e+ (DA = 07 4 5,(0),
+ DR 0.()C-; + ZT P ()et 4 o(1) .
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Since E|X||**? < oo for v=1, .-,k — 1, it follows from Theorem 1 that
2Lyne@7r, ()" —o,ast 1 1. Thus we have proved (3.9) and (3.10). By Lemma
3 (ii), E|X,|*** < oo implies that

(12)  E[(n718,)7]" = (2 [x* dO(x) + T2 nmin (0, |x]k dP,(— D)(x)
_|_ o(n—((k+1)—2)/2) .
Noting that 3¢ r, 1" = o((1 — H)~H)ast1 1 if r, = o(n~*), we obtain (3.8) by
using (3.5), (3.6) and (3.12).
LEMMA 7. Let Z be a random variable such that E|Z|* < oo for some positive

integer k. Then there exists a random variable Y whose distribution has support
consisting of at most ([k/2] 4 1) points and EY* = EZ' fori = 1, ..., k.

Proor. We shall assume that the distribution of Z has more than ([k/2] - 1)
points for otherwise we can simply set ¥ = Z. Letting my = 1, m; = EZ* for
i=1,...,k, it follows that the Hankel determinants A, >0forv=1,...,
[k/2], where

(3.13) A = |mi+j|i=o,---,»::i=0,~-~,v

(cf. [8], page 5). If k is odd, we take m,,, as the unique number satisfying

Ap/ss = 0, where A, is defined as in (3.8). If k is even, we take m,,,and m,_,
such that A, = 0. Then the reduced moment problem

m; = (=, y' dF(y), i=0,1, .., 2([k/2] + 1)

has a solution F whose support has ([k/2] + 1) points (cf. [8], pages 5 and 28-32).

LemmA 8. Let Q, =y (n)x" + -+ + 7, ()x 4+ y, forn =1,2, .... Suppose

u(9), k = 1, is of class C*[0, 6,] for some 6, > O such that lim, , 6-*u,(0) = 0,
and

Po= Do exp ) + Tho, (/)0 |
(0*/36*|5_, above denotes the right-hand derivative evaluated at 6 = 0). Then
(3.14) P, = 3. pk; d, @)xiy1 ... oy ok
where 3, , denotes summation over integers d = 0, 1, - .., k and ordered k-tuples
® = (o, - -+, ©,) of nonnegative integers such that d + Y*_ iw, < k. For fixed

d, @, the coefficient p(k; d, ) is given by
(3-15)  pk; d, @) = k!([TE, (1)i(w;!))
X L Tl e (re()/E)) 2 (1))}

where 3 denotes summation over all ordered tuples (#:()))iz1,... k;5=1....,; Of non-
negative integers satisfying the following two conditions:

(3.16a) i Zi=jtl)) = d,
(3.16b) fo Dim () + Thaiop = k.
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For any tuple v = (v;, ---, v,) of nonnegative integers, we set G(v) = X I iv,.

Suppose @ = (w,, - - -, ®,) and @* = (w,*, - - -, w¥_,) are two tuples of nonnegative

integers with k = G(w) = 1 and G(w*) = G(w) — 1. Then for any integer d = 0

such that d + G(w) < k,

(17 pk; d, @) = KI5 (@) (0 YHTTEL @) (e} ptk — 1 d, @%) .
Proor. We first note that

exp {uy(0) + %= (0"/n)Q,}
(3.18) = 14 Th, (070,
+ X5 (00, + -+ + (0"/KHQWY/(JY) + o(6%)
ST VI PRI C-TLL) K L. AP

(ay) -+ a,)

where 3, ;... 4q,-, denotes summation over all ordered k-tuples (ay, - - -, a,) of
nonnegative integers such that a;, 4 --- + ka, = 5. Since

Qi = 2l w4 ttyirbo = {le! (5! TT3=1 BDDI TG =1 Gra()X?) 2Ty} s
it then follows from (3.18) that
Py = k! S nages (@17 -+ (QufkD /(@) -+ - )
= Ya.pk; d, @)Xy O ey
where the coefficients p(k; d, w) are given by (3.15).

To prove (3.17), we note that since G(w) = Y%, iow; = 1, (3.16b) implies that
we can set #,(j) = 0 for j =1, ..., k in (3.15), which can then be written as
(3.19)  p(k; d, @) = kI(ITin (@) (@)™ ZTLES 1= (ra(D)/ ()2 (1))}
where Y’ denotes summation over all ordered tuples (£,(j))icy,....kc1:j=1,...s
satisfying
(3.20a) 0 Ni-jt()) = d
(3.20b) kot i it(j) = k — G(w) = (k — 1) — G(w*) .

Hence (3.17) follows easily from (3.19).

LEMMA 9. With the same assumptions and notations as in Lemma 6, let x =
(1 —ttandforv=1,...,k,let

(3.21) Yo = D (" [MES s <q

— A0 =72+ e+ AN =07
Let QO - Z:=1 (tn/n)P[S'n é O]' Thenfor v = 1, M) k’
(3'22) Z:::O tnESnvI[N>n] = er Z§=0 Zmenk Pk(y; d, w)xdy1w1 M yk“”‘

where Q, denotes the set of all ordered k-tuples @ = (w,, - - -, ®,) of nonnegative



62 TZE LEUNG LAI

integers such that Y%, iw; < k, and
(3:23)  puls d, @) = W(ITE, (@) i)
X L te T = (AU)/ @)Y [(1()1)} -

The summation sign 3,%*»% in (3.23) denotes summation over the set of all ordered
tuples (t,(j))i=1,..,k;i=1,...,; Of nonnegative integers satisfying:

(3.24a) i Dijt() = d
(3.24b) i D it()) + Xt io; = v,

and summation over the empty set is taken to be 0. Hence p,(v;d, ®) =0 if
d+ Xiio; > v.

Proor. It is well known (cf. [10]) that for § > 0and 0 < t < 1,
(3.25) e "Ee iy = exp {17 (1" [n)Ee’Snlis, <} -
Forj=1,2,...,k, let
Q; = L ("MES, s <o = A;(J)x? + - + (1x + y;.
Hence forv =1, ..., k, we can write
L7 (r[mEenlis <oy = F5-0 (0°j1)Q; + u,(0)
where u,(0) belongs to class C*[0, 6,] and lim,, 6-*u,(f) = 0. Since by (3.25),

n v ay oo "
Z:::Ot ESn I[N>n] = 6_07 (Zn:ot EeasnI[N>n])

— e% %; exp {235, (07/j1)Q; + ”»(0)}| >
0=0

6=0

the desired conclusion follows from Lemma 8, noting that (3.24b) implies that
o, =t(j)=0forallj=1,...,i wheni > v.

THEOREM 2. Suppose E|X,|**' < oo for some integer k = 2. Let o, be Spitzer’s
series of order 0 as introduced in Section 1 and let «; = EX{', i < k + 1 (a, = 1).
Define 2,(j) and g, as in (3.7) (see Lemma 6) and define Q, and p,(v; d, w) as in
(3.22) and (3.23) (see Lemma 9).

(i) The ladder variable S has finite kth moment, which is given by:
(3.26)  ES,* = — Yo (2 1, @)gmiens = —(3,(1) + 2g,4(1))e%
= {B@)H) e — 2o, + 1 — 774 Tp (n7F — m(3R)(— 1))
and in general, for k = 3,
(327)  ESy = — e, {plk 1, @)
+ 255 (aspuk — 5 1, @)}gy™r - - - gpigres.
(ii) Ler 0 denote the k-tuple (0, - - -, 0) and define p,(0;0, 0)=1 and p,(0; d, @)=0
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ifd+ 0orw= 0. Then for any k = 2, the following identity holds:

(3:28)  pulki @) = Dha,B)(pulk — jid — 2, @) — pk — ji d, @)

forall weQ, and d =2, ...,k.
In particular,

(3.29) pulks k, 0) = (5)puk — 2,k — 2,0).
ProorF. We first note that
ES* =lim,_, %0 ES% Iy = lim,_ A4, , say.

Since S;,, > 0 on [N = j + 1], 4, is nondecreasing and so the Tauberian theo-
rem implies that

(3.30) ES,* = lim,_, A, = lim,;, (1 — 1) X2, 4,
Using the fact that EX; = 0, we have
A, = 250 {E(S; + X)) Tivs ) — ESGalins i)
(3'31) = _ESnkI[N>'n] + (g) Z?;é Esjk_zl[Nw] + -
+ (D 232 PIN > 1.
Let x = (1 — f)~tand define y, (v =1, -.-, k) and Q, asin Lemma 9. Then by
Lemma 9,
(3.32) Dim=o "ES iy sy = €% 7k, 2iwen, Pilks d, @)x?yer .oy ok
Also using Lemma 9, we have forv =1, ..., k — 2,
2= 1" D550 ESPhiws iy
= (t/(1 — 1)) 2T VES Ty, 5
(3.33) = (¥ — 1) D52 PESys
=e% Yl Zwenk Pu(v; d — 2, @)xty, o1 .oy 0k
— €% Ntk Naca, Plvs ds @)xiy 1 ..y
noting that p,(v; 9, @) = 0if § > k — 2 = v. Likewise we also have
2= " 232 PIN > ]
(3.34) = (x* — 1) 05, #°P[N > j] = (x* — 1)e% (by (3.25))
=e% 3k, Yiwca, P05 d — 2, @)xiper .oy — e,
It is well known (cf. [10]) that as ¢ | 1,
(3.35) e ~ e’o(1 — 1)~
By Lemma 6, y, = g, + o(l) for v=1, ...,k — 1 and y, = o((1 — 1)) as
t11. Since forv < k, py(v; 1, ®) = 0 if w, = 1, we obtain that
(3.36) lim,, eo(l — HH{—1+4 Xi, Zmenk xtyr ooyl —piks d, @)
— Zia@apk —jid @)} =7,
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where J denotes the expression on the right-hand side of (3.27). From the rela-
tions (3.30) through (3.36), it then follows that

(3.37) ESy* = J 4 e lim,; { Xy Xacq, X 01 - - i —pulk; d, @)
+ D5 Oas(pk — 3 d — 2, @) — pu(k — ji d, @))]} .
We now prove (3.28) by induction on k. First, when k = 2, (3.29) reduces
to the identity 2,(2) + 4,*(1) = 1, and this obviously holds since 2,(2) = £ and

2,(1) = —1/2%. Hence (3.28) holds in the case k = 2 = d, noting that p,(2; 2, ) =
P(0;0,w) =0ifw+0. Let2<h<k— 1. Suppose

(3:38)  phd, @) = Fia,(;)pu(h — 5 d — 2, @) — p(h — J; d, @¥))
holds for all 2 = d > 2 and w* € Q,. Given any w € Q,,, such that w = 0, i.e.,
G(w) = Y ilio, = 1, we take o* = (G(w) — 1,0, ---,0) € Q,. Then G(w*) =
G(w) — 1. It therefore follows from (3.17) that for6 =0, 1, ..., A,
Prnlh + 150, @) = (h + (@, @*)p,(k; 5, @*)
Prnlh+ 1 =0, @) = (h+ 1 — j)e(@, @*)p(h — j; 5, @*)
= (b + D(*)7'G)e(@, @*)pi(h — j; 0, @%),
j= 2, .., h,
where c(@, @*) = {]]k, ()" (0, *HH{IT4 (@)“(@;!)}~. Hence (3.38) implies
that for h = d = 2,
(3.39) Pt + 15, @) = TGPk + 1 — jid — 2, 0)
= P+ 1= d, @),
noting that p,,,(0; 0, @) = 0 since @ = 0. When d = & + 1, (3.39) still holds
since G(w) = 1 implies that p, (2 + 1;d, @) =0 = p,,(v; d, @) = p, ,,(v;d—2, @)
forv < (A + 1) — 2.
To complete the induction proof, we now show that w(d; 0) = 0 for d =
2, ..., h+ 1, where we set

W(d; 0) = —pyai(h + 1: 4, 0)

+ 215 et + 1 — jsd — 2,0) — pu(h + 1 -5 d,0)).
From (3.23), it is clear that all the coefficients p,,,(v; d, ®) are polynomials
involving only the moments ay, - .., a,,, of X, and are otherwise independent
of the distribution of X;. By Lemma 7, we can choose i.i.d. bounded random
variables Y,, Y,, --. such that EY! = EX/ for i =1, ..., A+ 2. Let S/ =
Y,+ -+ Y, T=inf{ln=1:5>0}and U= S,’. Since (3.39) holds for
® + 0, it follows from (3.37) that
(3.40) EUM! = ¢, + ¢, lim,_, {34+ w(d; 0)x?-1},
where co > ¢, = exp {37 n~}(P[S,’ < 0] — $)} > 0 and ¢, is a finite constant.
Since Y, is bounded, it is obvious that EU**' < co and so (3.40) implies that
w(d;0) =0 ford =2, ..., h 4+ 1. Hence we have proved (3.28) by induction.
The relation (3.27) then follows immediately from (3.28) and (3.37).
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4. Applications to renewal theory. For a > 0, define
4.1) T@@ =inf{n=1:S8,>a}.

It is well known that ET7(a) = oo if y = 1 and ET7(a) < oo if y < 4. As an
analogue of the classical renewal theorem for the case of positive mean, we show
in [5] that in the present case of zero mean and unit variance, we have for
0< 7<%

(4.2) ETr(a) ~ ya* \o ur~'2Ou-%) — 1) du as a— oo .

By using the results of the preceding section, we shall obtain below the limiting
distribution and the limiting moments of the overshoot S,,, — a. In [9],
Siegmund has shown how the limiting expected overshoot can be used to obtain
asymptotic expansions in sequential analysis.

THEOREM 3. Suppose X, is nonlattice and EX, = 0, EX? = 1. Let R(a) =
Srw — a, where T(a) is defined by (4.1), and define the ladder epoch N as in (1.1).
Then

(4.3) lim, ., P[R(a) < €] = (1/ES,) {§ P[Sy > 1] dt

forall & > 0, where ES, is given by (1.2). If E|X,|*** < oo for some positive integer
k = 2, then ER*(a) < oo and

(4.4) lim, .. ER*Y(a) = (ES,*)/(kESy)

a—00

where ES,* is given by Theorem 2.

Proor. Let N, = 0 and let N, N,, ... be the successive ladder indices (cf.
[2], page 190) of the random walk {S,},_,,.... Let Z, = Sy — Sy _ and define
M(a) =inf{n=1:Z + ... + Z, > a}. Then R(a) = 319 Z, — a, and Z,,
Z,, .-+ are i.i.d. and have the same distribution as S,. Hence Z, > 0 a.e.,
EZ, < oo and by Theorem 2, E|X,|**! < oo implies that EZ* < oo, so that in
this case E(Y{¥ Z,)* < co. The relation (4.3) is therefore a well-known corol-
lary of the renewal theorem (cf. [2], pages 354-355). Let F be the distribution
function of Z, and set U(x) = >, P[Z, + -+ + Z, < x]. We note that

ER*Na) = {3 {§c_, (x + 1 — a)*7"dF(1} dU(x) = {§ 9(a — x) dU(x)

where g(y) = {3 (t — y)*"*dF(r). The function g(y) is nonincreasing, and if
EZ}* < oo, it is easy to see that g is directly Riemann integrable and so (4.4)
follows immediately from the renewal theorem (cf. [2], pages 348-350).
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