ON WEAK CONVERGENCE OF EXTREMAL PROCESSES ## BY ISHAY WEISSMAN Tel Aviv University Lamperti in 1964 showed that the convergence of the marginals of an extremal process generated by independent and identically distributed random variables implies the full weak convergence in the Skorohod J₁-topology. This result is generalized to the kth extremal process and to random variables which need not be identically distributed. The proof here is based on the weak convergence of a certain point-process (which counts the number of up-crossings of the variables) to a two-dimensional nonhomogeneous Poisson process. 1. Introduction. Let $\{X_i\}$ be a sequence of independent random variables defined on some probability space (Ω, \mathcal{F}, P) and let $X_{ni} = (X_i - a_n)/b_n$, where a_n and $b_n > 0$ are norming constants. For each pair of positive integers k, n define the kth extremal process $m_n^k = \{m_n^k(t) : t \ge 0\}$ by $$m_n^k(t) = k$$ th largest among $\{X_{n1}, \dots, X_{n[nt]}\}$ if $1 \le k \le [nt]$ and $m_n^k(t) = X_{n1}$ if k > [nt]. Let $I_n(t, x) = \#\{X_{ni} > x : i = 1, 2, \dots, [nt]\}$. Suppose that there exists a family of distribution functions $\{G_t: t>0\}$ such that as $n\to\infty$ $$\mathcal{L}(m_n^{-1}(t)) \to G_t \qquad t > 0.$$ In [8] we have shown that there exists a two-dimensional nonhomogeneous Poisson process I such that $$I_n \longrightarrow I$$ and $$m_n^k \to m^k$$ in the sense of convergence of all the finite-dimensional laws (fdl), where $m^k(t) = \min\{x: I(t, x) \le k - 1\}$. In case G_1 is continuous the parameter set of I is $T = \{(t, x): t \ge 0, x > {}_{*}x_{t}\}$, where ${}_{*}x_{t} = \sup\{x: G_{t}(x) = 0\}$, ${}_{*}x_{0} = \lim_{t \downarrow 0} {}_{*}x_{t}$ exists (possibly $-\infty$) and $G_{0}(x) \equiv 1$ ($x > {}_{*}x_{0}$). We should mention here that (without loss of generality) $G_{t}(x)$ is either of the form $G_{1}(t^{\theta}x)$ ($\theta \ne 0$) or of the form $G_{1}(x - c \log t)$ ($c \ge 0$). Let \Rightarrow denote weak convergence with respect to the Skorohod J_1 -topology. Our main result is the following. THEOREM 1.1. Suppose (1.1) holds with a continuous G_1 and with G_t which are 470 www.jstor.org Received August 30, 1974; revised October 21, 1975. AMS 1970 subject classifications. 60B10, 60G99. Key words and phrases. Extremal processes, multivariate k-dimensional extremal processes, nonhomogeneous two-dimensional Poisson process, D[a, b] space, Skorohod space of functions with several parameters, weak convergence. not identical. Then for all 0 < a < b $$(1.2) m_n^k \Rightarrow m^k in D[a, b].$$ In case $\theta < 0$, (1.2) holds for all $0 \le a < b$. The case k=1 with identically distributed $\{X_i\}$ was treated by Lamperti [3]. His main idea was to show tightness by proving that $\limsup_{n\to\infty} P\{\Delta_n(c)>\varepsilon\}=0$ for all $\varepsilon>0$ (here Δ_n is a certain modulus of continuity of m_n^{-1}). Our proof is based on the fact that $I_n\to I$ in the Skorohod J_1 -topology (extended to the plane). Other uses of the two-dimensional Poisson process in connection with extremal process have been made in Pickands [4], Weissman [7] and Resnick [5]. The proof of the theorem appears in Section 2. We end this section with some definitions. For given b, M, $\delta > 0$ let $U = U(b, M, \delta) = \{(t, x) : 0 \le t \le b, K_t \le x \le M\}$, where $K_t = \max\{-M, {}_*x_t + \delta\}$. We define D(U) to be the space of all integer-valued functions $z: U \mapsto R^1$ which are finite, right-continuous in each argument with left-hand limits, nondecreasing in t and nonincreasing in t. Let Λ^2 be the group of all transformations t from t onto t of the form onto t of the form t onto t onto t onto t onto t of the form t onto ont $$(1.3) d^2(z, y) = \inf \left\{ \max \left(||z - y\gamma||, ||\gamma|| \right) : \gamma \in \Lambda^2 \right\},$$ where (1.4) $$||z - y\gamma|| = \sup\{|z(u) - y(\gamma(u))|_1 : u \in U\},$$ $$||\gamma|| = \sup\{|\gamma(u) - u|_2 : u \in U\}$$ and $|\cdot|_i$ is the standard norm on R^i (i = 1, 2). The space of finite right-continuous functions with left-hand limits, defined on [a, b], is D[a, b]. Let Λ^1 be the group of transformations γ_1 from [0, b] onto [0, b] which are continuous and strictly increasing. Then the "Skorohod" distance d^1 on D[0, b] (which determines the J_1 -topology) is obtained by replacing in (1.3) and (1.4), 2 by 1 and U by [0, b]. For expositions of weak convergence of processes with several parameters we refer the reader to Straf [6] and Bickel and Wichura [1]. For the general theory of weak convergence see Billingsley [2]. 2. Weak convergence of I_n and m_n^k . Before proving the main result we prove THEOREM 2.1. Suppose (1.1) holds with continuous G_1 and with G_t which are not identical. Then for all fixed b, M, $\delta > 0$ $$(2.1) I_n \Rightarrow I in D(U).$$ PROOF. For each (t, x), I(t, x) is Poisson with parameter $-\log G_t(x)$ which is continuous by our assumption. Thus, with probability 1, I has neither multiplicities in U nor points on the boundary of U (cf. Theorem 2 of [8]). Since all the fdl of I_n converge to those of I_n a result due to Straf [6] (page 212) implies the full weak convergence, i.e. (2.1) holds. \square Let $z \in D(U)$ and let $s_z(t) \subset U$ be the set of its jump-points with abscissa $\leq t((t_0, x_0))$ is a jump-point if $z(t_0, x_0) - z(t_0, x_0) - z(t_0, x_0) + z(t_0, x_0) \neq 0$. The k-max-path of z is defined to be (2.2) $$h_k(t \mid z) = k$$ th largest member of $s_z(t)$ if $\sharp s_z(t) \ge k$ = K_t if $\sharp s_z(t) < k$. Clearly $h_k(\cdot | z) \in D[0, b]$ for each $z \in D(U)$. LEMMA. The mapping $h_k: D(U) \mapsto D[0, b]$ is continuous. PROOF. Let z_n , $z \in D(U)$ and suppose $d^2(z_n, z) \to 0$. This means that for each $\varepsilon > 0$ there exists an n_{ε} such that $n > n_{\varepsilon}$ implies $d^2(z_n, z) < \varepsilon$. In particular, for $0 < \varepsilon < 1$, since z_n and z are integer-valued, there exists a $\gamma_n = (\gamma_{n1}, \gamma_{n2}) \in \Lambda^2$ such that if $n > n_{\varepsilon}$ then for all $u \in U$ $$z_n(\gamma_n(u)) = z(u)$$, $||\gamma_n|| < \varepsilon$. Thus $h_k(t | z_n \gamma_n) = h_k(t | z)$ $(0 \le t \le b)$ and $$|h_k(\gamma_{n1}(t)|z_n) - h_k(t|z)| \le ||\gamma_{n2}|| < \varepsilon.$$ Since $||\gamma_{n1}|| < \varepsilon$, (2.3) implies $d^1(h_k(\cdot | z_n), h_k(\cdot | z)) < \varepsilon$. \square PROOF OF THEOREM 1.1. Applying the lemma and the continuous mapping theorem (5.1 in [2]) we get from (2.1) $$(2.4) h_k(\cdot | I_n) \Rightarrow h_k(\cdot | I) \text{in } D[0, b].$$ Notice that (2.2) depends on M and δ . For a given a (0 < a < b) we consider the following events $$(2.5) A_n(M, \delta) \equiv \{h_k(t | I_n) \neq m_n^k(t) \text{ for some } t \in [a, b]\}$$ $$\subseteq \{I_n(b, M) > 0 \text{ or } I_n(a, K_a) < k\} \equiv B_n(M, \delta).$$ A similar relation holds with the *n* suppressed. The convergence of the fdl of I_n to those of I implies $P\{B_n(M,\delta)\} \to P\{B(M,\delta)\}$. For $x \to \infty$, $I(t,x) \to 0$ a.s. and for $x \downarrow *x_t$, $I(t,x) \to \infty$ a.s. Thus by choosing a large M and a small $\delta > 0$, we can make $P\{B(M,\delta)\}$ arbitrarily small. Hence (2.4) and (2.5) imply (1.2) for all 0 < a < b. When $\theta \ge 0$, $m^k(t) \to -\infty$ a.s. as $t \downarrow 0$ and thus $m^k(t)$ is unbounded in the neighborhood of 0. But for $\theta < 0$, $m^k(t) \to \text{constant a.s.}$ and thus (1.2) holds for a = 0. \square From (1.2) follows in particular that for each k, the sequence $\{m_n^k\}$ is tight in D[a, b]. In [8] we have shown that all the fdl of (m_n^1, \dots, m_n^k) converge. Thus we have (cf. problem 6, page 41 of [2]) COROLLARY. Under the assumptions of Theorem 1.1 $$(m_n^1, \dots, m_n^k) \Longrightarrow (m^1, \dots, m^k)$$ in $D^k[a, b]$ for each fixed k and 0 < a < b. ## REFERENCES - [1] BICKEL, P. J. and WICHURA, M. J. (1971). Convergence criteria for multiparameter stochastic processes and some applications. *Ann. Math. Statist.* 42 1656-1670. - [2] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. - [3] LAMPERTI, J. (1964). On extreme order statistics. Ann. Math. Statist. 35 1726-1737. - [4] Pickands III, J. (1971). The two-dimensional Poisson process and extremal processes. Adv. in Appl. Probability 5 287-307. - [5] RESNICK, I. S. (1975). Weak convergence to extremal processes. Ann. Probability 3 951-960. - [6] Straf, M. L. (1972). Weak convergence of stochastic processes with several parameters. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2 187-222. Univ. of California Press. - [7] Weissman, I. (1971). Extremal processes. Ph. D. dissertation, Univ. of Chicago. - [8] WEISSMAN, I. (1975). Multivariate extremal processes generated by independent nonidentically distributed random variables. J. Appl. Probability 12 477-487. DEPARTMENT OF STATISTICS TEL AVIV UNIVERSITY RAMAT-AVIV, TEL AVIV ISRAEL