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OSCILLATIONS OF CONTINUOUS SYMMETRIC
RANDOM WALK

By J. P. IMHOF
University of Geneva

Oscillations are defined for n steps of the random walk formed by
partial sums of variables with continuous cdf. When the summands are
independent, identically and symmetrically distributed, several distribu-
tion free results are obtained relative to the number of oscillations and
their lengths. Analogy with the behavior of records in a random sequence
is used to obtain limit laws.

1. Oscillations. The type of oscillations that we define arose as a natural tool
in a constructive proof [3] for a known duality result relating the behavior
of a restricted and of an absorbed random walk [4]. Consider the random walk
S,=0,8,---,8, where §, = X, + ... 4 X;, the X; all have a continuous
cdf and n is fixed for the time being. With probability one, S, = S; when i + j,
so one need only consider that situation. For 0 < i < k < n denote by S(j, k)
the portion of the walk (S,, S;,, - - -, S;). Itis called up-extremal (down-extremal)
if§; <8, <8, (5, =28, > 8, fori <j< k,and extremal if it is so either up
or down. Its amplitude is then |S, — S;|. Let @, = 0 and definine the indices

0< < a, < -+ by letting

)] a; =max{k:a;_, <k <n and S(a;_,, k) is extremal} .

Let 7 and J be the indices where the maximum and minimum of §(0, n) occur.
The indices of first and last extremum are then respectively

2) ¢ =min{l, J}, v =max{l,J}.

Write Se; = Hj. If for instance S; > 0 and J > 0, H, is the maximum attained
by the walk before it hits (— oo, 0). If I > a,, H, is the minimum attained after
a, and before the walk hits (H,, o0). Thus 0 < H, — H, < |H, — Hy|, and so
forth until one comes to the index V, defined by either one of the equivalent
equations

(3) Ay,—1= > Ay, = V.

Suppose for instance that v = J. Then H, ,,+1 18 the maximum attained by S(v, n).
If Varr < n, Hy ., is the minimum attained by S(V, + 1, n) so that |H, —

H, | >H, ., — H, . This goes on until one comes to the last « which 'has
1ndex T, defined by
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The portion S(a;_,, @;), 0 < j < T,, constitutes the jth oscillation of S(0, n).
It has length L; and amplitude A4,

Li=a; —a;,, A; =|H; — H;| .

It is easily seen by adapting the above example that, irrespective of the sign of
S, and of which is the smaller of 7, J, one has in all cases

@) 0< A< <Ay >4, 1> > A .

Let W,=T,+ 1— V,. In more descriptive terms, (4) shows that ¥, and W,
are respectively the number of oscillations of increasing and of decreasing am-
plitude, the maximal oscillation S(z, v) being counted in both cases, while T, is
the total number of oscillations. One has0 < V,,, W,, T, < n.

2. The case of i.i.d symmetric summands. Suppose from now on that the
variables X, ..., X are independent with common continuous cdf F such that
F(u) =1 — F(—u) for all u. A vector Z = (Z,, - - -, Z,) of integer valued vari-
ables Z; = Z,S,, - - -, §,) is distribution free if its law does not depend on the
particular choice of F satisfying the conditions stated. A technique for deter-
mining if Z is distribution free is due to Sparre-Andersen [7] and has been used
in particular by Hobby and Pyke [2] and Burdick [1]. Toa point x = (x,, - - -, X,))
in numerical n-space one associates the 2*n! points x(e, 6) = (&,X,, -+ -, €,X, )
obtained when ¢ = (¢, - - -, ¢,) ranges over the 2" vectors given by all choices
e, =+1,i=1,...,nand ¢ = (o, - - -, 0,) ranges over the n! permutations of
(1, - -+, n). To each such point correspond successive sums si(¢, 6) = 0, s,(¢, 0) =
&X, + -+ 4 &x,, i=1,...,n, giving a sample path. With the hypothesis
of continuous cdf one need only consider the case of admissible x, when for each
(¢, o) all sums s,(¢, 0), i = 0, - - -, n, are distinct. One may alsoassumeall x, > 0.
Let z = (z,, - - -, z;) and let f,(z) be the number of paths generated by x for
which Z,(s,(¢, 0), -+, 8,(¢,0)) = z;, j= 1, - -, k. If f,(2) = f(z) for all admis-
sible x and for all z, the vector Z is distribution free and

) P(Z = z) = f(z)](2"n!) .

We shall construct paths by juxtaposition of successive portions. Suppose one
takes y' = (), -+ > y,) and y” = (y,4, + + +» V), to which correspond portions of
paths (0, y, pi+ys <+ )it 4+1,) a0d (0, Yyias YogatYrgas - Yot oY)
Juxtaposing the two portions means forming the path (0, y,, y; + y5 - -5
Y1+ -+ + y,) which corresponds to juxtaposition of y’ and y” to form y =
(V1> +*+» y). The portion of path corresponding to —y' = (—y,, - - -, —y,) will
be called the opposite of the portion corresponding to y’. ~

Introduce now for S(0, n) the variables

N(i) = “number of oscillations of length 7,” i=1,...,n.

We shall show that (V,, W,, N(1), - .-, N(n)) is distribution free and obtain
its law. It is easier however to formulate the argument only in terms of positive
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N(i)’s. Let therefore L, = min{i: 0 < i < nand N(i) >0}, L, =min {i: L, <
i < nand N(i) > 0}, etc. until the sequence ends with L, having index Q =
max {i: i < n and N(i) > 0}. Write M, = N(L,), ---, M, = N(L,). There is
clearly one to one correspondence between (N(1), - -+, N(n))and ® = (Q, L,, - - -,
Ly, M,, -, My). The latter describes a random T ,-partition of the path-length
n, i.e. a partition into T,, = M, 4 --. 4+ M, parts of which M, have length
L, -, My have length L, so that LM, 4 --- + L,M, = n. A value of ® will
be written ¢ = [[;™ - .. [,™¢], which describes the z-partition of n corresponding
to Q=¢q, Ly=1; and M;=m; for j=1, ...,q, with m; + .- + m, =1,
Lm + .. 4 lm=nand0< | < -+ <[, < n.

THEOREM. Let r, s be integers > 0, such that r + s+ 1 =t <n and ¢ =
[™ ... 1,™] be a t-partition of n. One has

©6) PV,=r+1,W,=5+1,0=9¢)= 273 (7 E) [T %oy (my! 175

Proor. According to (5), it is enough to show that for (V,, W,, @) the fre-
quency of values (r + 1, s + 1, ¢) for the 2"n! paths generated by an admissible
x is 2"n! times the above, namely

(7) fir+ 1,5+ 1,¢9) = 2"%("+)H  where

H= ! n Li(l; — D™,
IT (mt) TT (4™ {256, ~ D]
and all products are for j =1, ---, q.

Lethy=0,h;=m + --- + m; for j=1,...,q and for k =1, ..., ¢ put
Ay =1; when h;_, < k < h;. Let &Z be the set of all distinct repartitions of
X, -+ -, X, into successive batches B,, ..., B, of sizes 2, ---, 4,. Write B, =
{Ve> +*5 Yua, ). Call each of the n!/T] (4,!) such repartitions a ¢-batching of x.
In any one of them, the kth batch produces 2%24,! points in 2,-space when effect-
ing all possible sign attachments and all possible coordinate permutations in
(k1> ***> Yi,2,)» and correspondingly 2%2,! path portions of length 2,. Juxta-
posing such path portions arising from B,, - - -, B, gives [] (2%2,!) = 2" I] (Z!)
paths of length n. Doing so for each ¢-batching yields the 2"n! paths correspond-
ing to all x(¢, o). Now consider separately the initial path portions of length 4.
The frequency form of Baxter’s generalized arc sin law shows ([2], formula 2.1
with m = k = 0) that for a given p-batching, exactly 2:1-(4;, — 1)! of the 242,!
initial portions obtained from B, are down-extremal, implying that 2%1(4, — 1)!
are extremal, and similarly for the successive portions of lengths 4,, - - -, 4,.
Hence the set & of paths which, when cut into successive portions of lengths
A +++y A, have each of those extremal, has cardinality || = [ [2*(4, —
1)!]n!/T1 (Z!). Suppose now that for each path in &, we permute the above por-
tions so as to reorder them according to increasing amplitudes. Let £ be the set
of distinct paths thus obtained. Because paths in & which differ only by permu-
tations of whole portions of same length lead to a unique path in ¢, one has
|Z| = |&|/(my! - - - m,!), equal to the factor H in (7). Divide £ into equivalence
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classes, each containing 2* paths which differ only by some of their 1Ist, .- -, rth
portions being opposite. To complete the proof of (7), one just has to notice
that each equivalence class permits the construction of 2("}*) paths of type (r + 1,
s 4 1, ¢). In fact, one must choose s among the r + s initial portions, cut them
out and reinsert them in reverse order (so as to have decreasing amplitudes) be-
hind the portion of maximal amplitude, and for each choice of the s portions
exactly 2 paths in the equivalence class will produce, after said reshuffling, a
path with alternately up and down-extremal portions (which therefore become
oscillations), the first one being of either type. Finally, each path of type (r 4 1,
s + 1, ¢) is uniquely obtained by this construction.

The joint law of (V,, W,) and the law of T', are now easily deduced from (6).
For the (absolute) Stirling numbers of first kind,

D,, = coeff. of z¢ in zz41).-..(z4+n—-1), I1<t<n,
a classical expression is ([6], page 183)

'nl_"Dt,n = Z(o (lm! PPN mq! llml .. lqmq)_l ,

where the sum is over all s-partitions ¢ = [,,™ ... [,™¢] of n. Summing (6) over
the latter yields therefore:

COROLLARY 1. For integersr,s = 0 withr + s + 1 < n one has
®) P(V,=r+ 1, W, =54 1) = 27=("E)D, /(1) -
Convoluting for r + s + 1 = ¢ gives next
COROLLARY 2. Fort=1,...,n,
®) (T, = 1) = D,,/(n!) .

Let &£75(T,) designate the law (9) of 7, under the hypotheses of the present
section, and ##(U,) designate the law of the number U, of upper records in the
random sequence Y;, - .-, Y, of i.i.d variables with arbitrary continuous cdf,
where Y, is counted as a record. One sees, e.g. from [5], that

(10) LT, = ZL*U,) .

3. Limit laws. For the number U, of records in the above sequence Y, - - -,
Y,, Rényi [5] noticed that if Z, is 1 or 0 according as Y, is a record value or
not, the summands in U, = Z, + --. 4 Z, are independent with E(Z,) = k7,
Var (Z,) = k~*k — 1). Thus E(U,) ~ logn, Var (U,) ~ log nand as [Var (U,)]"# X
2.t E|Z, — k7'* —> 0, Liapounov’s theorem applies. It follows from (10) that
under the hypotheses of Section 2 (T, — log n)(log n)~* also has standard normal
limit law. One can proceed similarly for V,. Consider independent pairs (Z,/,
Z,”) of 0-1 variables Z,’ and Z,”, k = 2,3, ... with law given by P(Z,/ =
Z) =0)=kYk—-1), P(Z/=0,2"=1)=0and PZ/=1,Z)=0)=
PZ)=1,2) =1)= k)™ Let Z,* = Z,/Z,".
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LEMMA. One has for n > 1
V) =LA+ Z*5 + - + Z,%).

Proor. One has “A(Z)') = £*(Z,), where Z,, - .., Z, are the variables de-
fined above for whichU, = Z, + ... 4+ Z,,and Z, = 1always. It follows from
(10) that <&S(T,) = <£(1 4+ Z,) + --- + Z,'). One can thus write

PZ# 4 2% =)
=t P(Z 4+ -+ Z)=1-1)
XPZ'+ -+ Z)=1Z + -+ Z=1—1)
= Xtern KT, = 02797,
which according to (8) and (9) equals P(V, = r + 1).

The variables Z,*, Z,*, . . . are independent with E(Z,*) = (2k)~}, Var (Z,*) =

(2k — 1)(4k*~'. There follows E(V,) ~ %logn, Var (V,) ~ Llogn. Further-

more, Liapounov’s condition is satisfied for the Z,* as it was for the Z,. Taking
into account that Var (¥,) 4+ Var (W,) ~ Var (T,), one concludes therefore

THEOREM. (V, — }logn)(3logn)~t and (W, — }logn)(Llogn)~* have inde-
pendent asymptotic standard normal laws.

We do not know if, analogously to the result for records, V,/(4 logn) con-
verges to 1 a.s. This is clearly not the case for W, /(4 logn), as W, drops to 1
whenever S, reaches a new extremum.

We are much indebted to the referee whose detailed comments and criticisms
led to a drastic revision of the initial manuscript.
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