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THE RANGE OF A RANDOM WALK IN
TWO-DIMENSIONAL TIME!

BY NASROLLAH ETEMADI
University of Michigan

Let [Xi;: i > 0,j > 0] be a double sequence of i.i.d. random variables
taking values in the d-dimensional lattice Eq. Alsolet Smn = X7, X7, Xij.
Then the range of random walk [Swa:m > 0,n > 0] up to time (m, n),
denoted by Rua, is the cardinality of the set [Spq: 0 <p<m,0< g =< n],
i.e., the number of distinct points visited by the random walk up to time
(m, n). In this paper a strong law for Rmn, whend = 3, has been established.
Namely, it has been proved that lim Rua/ERma = 1 a.s. as either (m, n) or
m (n) tends to infinity.

1. Introduction. Let [X;;:7 > 0,j > 0] be a double sequence of indepen-
dently, identically distributed random variables (i.i.d.) which takes values in d-
dimensional integer lattice £,. The double sequence [S,,,: m > 0, n > 0] defined
by S,, = 3r, 2%, X,; is called the random walk in two-dimensional time
generated by X;; or a two-parameter random walk or simply a random walk
when there is no danger of confusion. In this paper we will study the asymptotic
behavior of the range of two-parameter random walk. To be more speciﬁc, let
the range of random walk up to time (m, n), denoted by R,,,, be the cardinality
of the set [S,;: 0 < i < m, 0 < j < n], i.e., the number of distinct lattice points
visited by the random walk up to time (m, n). Then one would like to know
how R,,, behaves as (m, n) tends to infinity.

Although the range of one-parameter random walk has been studied exten-
sively starting with Dvoretzky and Erdos [1]and then by Jain and Orey [2], Jain
and Pruitt [3, 4, 5, 6, 7], no papers have been published, as far as we know,
investigating the range of two-parameter random walks.

In this work after giving some notations and preliminary estimates in Section
2, we will prove in Section 3, that a strong law holds for R,,, whend > 3. This
means that R,,/ER,, is asymptotically one almost surely as either (m, n) or m
(n) tends to infinity.

2. Notations and preliminaries. From the random walk in two-dimensional
time one can induce one-parameter random walks, which will be of considerable
interest, as follows: )

Let [X;;: (i, j) e I+ x I*], (I* = the set of positive integers), be the correspond-
ing double sequence of i.i.d. random variables, defined on the probability space
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(Q, &, P), and

(2.1) X=Xy +Xo+ -+ + X, (Hnyel*xI+,
Then fixing n e I'*, the process [S,": m e I*] defined by

(2.2) Su* = Nr, X, mel*.

will give us a one-parameter random walk.

DEFINITION 2.1. The two-parameter random walk generated by X, is called
genuinely d-dimensional if the group generated by the support of X, [xeE,:
P[X,, = x] > 0], is d-dimensional. Note that in this case the support of X, is
not contained in a hyperplane through the origin. Also the associated one-
parameter random walk [S,': m e I*] is genuinely d-dimensional.

For the definitions and terminologies used for one-parameter random walk,
we refer the reader to [8].

The two-parameter random walk may take place on a proper subgroup of E,.
In this case, the subgroup is isomorphic to some E,, k < d; if k < d, then the
transformation should be made (see [8], page 66) and the problem considered
in k-dimensions. We will assume throughout this paper that this reduction has
been made, if necessary, and the random walk is genuinely d-dimensional.

For an arbitrary set 4 in I* x I*, 37, . ., X,; will be denoted by S,. For con-
venience we let P[S,* = 0] = 1, ne I'*, and we will use u,* for P[S," = 0], U"
for Yim_o P[S," = 0] and r* for P[S," + O for all me I*], ne I*.

The following theorem (see [8], page 72-73) will give us a uniform bound for
P[S, = x], xe E;, where A is a finite subset of I+ x I* with cardinality |A|.

THEOREM 2.1. For a genuinely d-dimensional random walk generated by X, there
exists a constant c, independent of x, such that for every finite set A in I* x I*,
P[S, = x] < c|A|™¥, provided that the symmetrized random walk generated by
X, — X, is also genuinely d-dimensional, where X,, and X/, are independently iden-
tically distributed.

Finally, let R," be the range of one-parameter random walk [S,": k € I*] up
to time m, i.e., the cardinality of theset [S,": 1 < k < m]. Then the following
theorem, with a beautiful proof in [8], page 38, is true.

THEOREM 2.2, Letne I* be fixed. Then lim,,_, R,"/m = r* a.s.

GENERAL REMARKS. l
(i) Throughout this paper c is a “universal constant” in the sense that it may

depend only on the distribution of X;, and we will allow it to change in each
step in computations.

(ii) [a] will denote the integer part of the real number g, i.e., the greatest
integer smaller than or equal to a. :

(iii) Let [a,,: (m, n)eI* x I*] be a double sequence. Then we say a,, ap-
proches a, as (m, n) — oo, if given ¢ > 0, there exists M(e) a positive integer
depending on ¢, such that; if m, n > M(¢), then | — a| < &
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3. The strong law for R,,, when d > 3. Throughout this section, first, we will
assume that the genuine dimensions of the random walk and its associated sym-
metrized random walk are the same in order to be able to use Theorem 2.1.
Then at the end we will remove this assumption.

The strong law for R,,, is obtained by approximating R,,, by another double
sequence of random variables, which we call Q,,,, defined by

(3.1) Qo = S Ry7
Clearly R,,, < Q,., < mn and in fact we will eventually show that,
3.2) R,,~mn~Q,. a.s.,
as (m, n) — oo.

THEOREM 3.1. Letd = 3, then EQ,,,/mn converges to one as (m, n) — co.

Proor. Fix ¢ and let F,? be the event that the random walk [S,7: i € I*] visits
a new point relative to previous times on the time line y = ¢, i.e.,

(3.3) Fo=[S*+S8:i=1,2,.--.,p—1], Fr=Q.
Then we have

(3.4) Rt = Dp, A(F,,

where I(F,?) is the indicator function of F,?. Now let

3.5) rt=P[S*+0:i=1,2,..-,p].

Then following the work of Dvoretzky and Erdds ([1], page 353-356) one can
easily show that r,? approaches r¢ = 1/U? as p tends to infinity and in fact, using
the estimate for u,", we have

(3.6) r, —rt < P[S?=0:forsome i>=p+ 1]
S Dl S N, 7T = O(piiigt)

But
(3.7) rf=1U0=1/14 X u,) = 1/(1 +cq7¥) =1 — cqg~¥.
Thus,
(3.8) ER,* = mr' + O(q~im?), EQ,,= 2" ,ER, "= m(n —¢).
For EI(FP") = r‘;_l, (ro" = 1)

Dividing EQ,,,, in (3.8), by mn and letting (m, n) — co one has

3.9) lim,, pyeo EQpunfmn = 1.
But
(3.10) EQ,,./mn < 1.

Therefore we have the desired result.

THEOREM 3.2. Letd = 3, then Q,,,/mn converges to one a.s. as (m, n) — oo.
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Proor. The main part of the proof is to get an estimate for the variance of
Q... of the form Var Q,,, = O(mint), once we have such an estimate, then we
can use Chebyshev’s inequality to get

(.11)  P[|Quy — EQp| > cEQ,,] < Var Q,,,/¢(EQ,,,)! = O(m~in~Y) .

Now (3.11) together with the standard Borel-Cantelli lemma give us

(3.12) M iy, ¢ s Qmyng/ EQmyw, = 1 a5,

where m, = [p*], n, = [¢*] with » > 2. But for m,_, < m < m, and n,_, <

énq’

(3.13) QmP—l”q—l . mP—lnq—l < an < Q""p"‘q . mpnq
m,_.n

m,n, mn myn, m,_,n,_,

q-1
Therefore (3.12) and the previous theorem give us the result.
To get an estimate for the variance of Q,,,, first use (3.4) to obtain

VarR,* = 37, im  [EI(F;* n F,9) — EI(F,%)EI(F,%)]
=2 X Yhisi<ksa [EI(F;* 0 F7) — EI(F;9)E(F,7)]
+ D EIF0[1 — E(F0)].
Now follow the argument given in [8], pages 35-38, to get
(3.14) Var R,* < 2ER,“(ER% _,..; — ER,* + ER}, ,)) + 2r (1 — r,9) .
Since 1 — r,* < 32, P[S,* = 0] = O(gq7?), (3.8) and (3.14) will easily give us,

(3.15) Var R,* = O(q~¥m?) .
But,
Var Q,,, = Var (37, R,9) A
=", ,VarR, '+ > 3,.,Cov (R, R,
(3.16) < 2»,VarR," 4+ 3 3 ,., (Var R, ?)}(Var R, %)}
= (Zi= (Var R, = (37, O(¢~imb))*
= (O(mint))* = O(mint) . 0

COROLLARY 3.1. Letd = 3, then Q,,/EQ,,, converges to one almost surely as
(m, n) — oo.
Proor. The proof is an immediate consequence of the preceding two theorems.

To reach our goal, it, suffices to show that (Q,,, — R,.,)/mn converges to zero
almost surely as (m, n) — co. To prove this we will need two lemmas. Let us

also use {m, n) todenote [(i,j): 1 i< m,1<j<n)
LEMMA 3.1. Letd = 3 and
Th = B Dt lUSoia Uiy 11S,, = Si) -
Then T%,,/mn converges to zero almost surely as (m, n) — oo.

PrOOF. As usual first we will get an upper estimate for ET},, and this estimate
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will be good enough to get us through. We will proceed as follows:

El(U7-i41 Ug=j41[Spe = Si]) = P(UF=iss Ud=inlSp = Si5])
S 2ZF=in =i+ P[Sp = 8]
(3.17) = 2p=in Li=i+1 P[S4 = 0]
D=t Le=jrrc(pg — i)~
<cfp§ye—i)tdudy
S (i) ir2y(y — Drdy = (i),

IA

where 4 = {p, q) — (i, j). Therefore,
(3.18) ETh, < ¢ By Do ()7 < c(mn)t
Now by Chebyshev’s inequality,
(3.19) P[T:,/mn = ¢] = P[T,, = emn] < ET%,,Jemn < c(mn)~t.

This together with the Borel-Cantelli lemma shows that for m, = [p®], n, = [¢°]
such that « > 2,

(3.20) lim g Thppn,/Mpng = 0 as.
Butform, , <m<m,n,_, <nZ=<n,
1 1 1
(3.21) 0< Ton < Tomgna o1y Tnpny
mn m,n, m,_,n,_, m,n,

Now (3.20) will conclude the proof.

REMARK 3.1. Notice that the preceding lemma is still valid if we fix n (m) and
let m — oo (n — o).

LeEMMA 3.2. Letd = 3 and

(3.22) T = 20 2720 U= UG- S, = Si)) -
Then T?,/mn converges to zero almost surely as (m, n) — co.

Proor. The idea of the proof will be similar to the one we gave for Lemma
3.1, except that we do not have the type of independence we had before. There-
fore the proof will be a little lengthier than the previous one. For 1 < p <

Lhj<g=nletdAd={p,q) —<pjyand B =, j>— {p,j>. Then we have
P[S,, = S;1=P[S, = Sz] = 2. P[S, = x, S = x]
(3.23) = 2. P[S, = x]. P[Sz; = x] < ¢(|4]| V |B|)~*"*
< 24%(|4] + |B)~*",
where the first inequality follows from Theorem 2.1. Thus,
(3.24) P[S,, = S,;] = cplg — j) +jG@ — p)]t.

Now we consider two cases:
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Case I: n— j < jorj> n/2. For this case we have
EI(U52 U= [Spe = Si))
< ¢ i Disinlpq — ) + jG — pl?
(3.25) = ¢ Xy Xithiea (F — pg)7
ScLALin@ —pp s i,
where the last inequality follows very much as in the proof of Lemma 3.1.
Case II: n — j = j. For this case, similarly to (3.25), we get
EI(U52 U= [S,, = Sis))

(3.26) <cXiA X lpg + G —p)1?

=c LA NS —p) + e X X (G + pe) Y
Now consider only the last sum,

25 2055 (i + pg)?
=20A) ™+ TR DV (@ + p)t

(3.27) < @)+ G Ge2 (i + wv)Hdu dv

S ()7 @) S8 G (L + ) ddy

< ()7 ()7 P G+ x) dy) dx

< (i)t + 2(i))- uog( f) < L+ log(nfj)

J (i)t
Therefore (3.25), (3.26) and (3.27) imply that
(3.28) EIU52 UG5 (S, = Si]) = (@)1 + log (n)))) .
Consequently,
ET,, < ¢ Iy 25- ()71 + log (n])))

emt 337, j7H(1 + log (n/))) < em? ¢ x}(1 + log (n/x)) dx
c(mn)t (2 ul(l + log u) du < c(mn)t .

(3.29) <
<

Now again an argument similar to the one given at the end of Lemma 3.1 gives
us the result.

REMARK 3.2. Notice that the preceding lemma is still valid if we fix n (m) and
let m — oo (n — o).

THEOREM 3.3. Letd = 3, then R,,,/ER,,, converges to one almost as (m, n) — co.

Proor. Let the difference between Q,,, and R, be T,,,,. As we already men-
tioned, by Corollary 3.1: if T, ,/mn converges to zero almost surely, then R,,,/mn
converges to one a.s. too. But R,,/mn < 1, hence the dominated convergence
theorem can be used in order to show that ER,,,/mn converges to one too and
thus the result follows.

To prove that T,,/mn converges to zero a.s., we will proceed as follows:
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Let F,7 be the event which we defined in (3.3); then it is easy to see that

Tpn = 201 23 lU = Ut [Fi55 Sp = Si5))
= 28 Z5a U2 Uiz [FF5 Sy = S5
+ (U= [F5 Sig = Si5))
(3.30) + H(U7=i01 U= [F:738,, = Si;])]
Ton + Thw + 201 25 HUG541 [Si = Si3])
Ton + T + 201 25w (U — KN G2ji1 [Sig # Si5)
= Thu + Thn + mn — Q7

IA

where Q% is the “dual” of Q,, in the sense that we should interchange the role
of m and n. Hence by symmetry Q% /mn also converges to one almost surely
as (m, n) — co. Now in the following inequality

(3.31) 0 < T,,/mn < T,,/mn + T, [/mn + 1 — QF, [mn,

which is a consequence of (3.30), let (m, n) — oo and use the last two lemmas
to get the result.

REMARK 3.3. By Chebyshev’s inequality and using the estimate we had for
the variance of R,* in (3.15), one can easily see that R, converges to m almost
surely as n — co. Now this and Theorem 2.2 imply that,

(3.32) lim,_, Q,./mn =1 a.s.;
lim, ., Q. /mn= (" +r+ - +r)/n.
Hence by Remarks 3.1 and 3.2 we have

(3.33) lim,, . R, ,/mn = lim,,_, Q,,/mn =@ +r*+ .- +r*)/n.

This together with the dominated convergence theorem imply that the strong
law still holds for R,, when n is fixed and m — oo, and by symmetry it also
holds when m is fixed and n — co.

Finally, to remove the assumption that we made at the beginning of this sec-
tion, note that the d corresponding to the upper estimates for the P[S, = x] is
in fact the genuine dimension of the symmetrized random walk regardless of
the genuine dimension of random walk itself (see the proof.). Also in the case
that X, is genuinely d-dimensional but not X;, — X, it is clear that the support
of X;, must be the translate x, + H of a hyperplane H through the origin (a
proper subgroup). Thus S, is contained in (mn)x, + H. Now since x,¢ H,
S,q # S, as long as pg == mn. Therefore we can conclude the following results:

(i) The difference between the genuine dimension of a random walk and its
associated symmetrized random walk is at most one. This tells us that Theorem
3.3 holds true for d > 4 without any assumption on the dimension of X;,. Also
for any finite set 4 in I+ x I+ we have.

(3.34) P[S,, = x] < ¢(mn)~*, d=3.
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(i) Now suppose the genuine dimension of X, is 3 and it is strictly bigger
than the dimension of its symmetrized random walk. Then it is clear, from the
above argument, that Q,,, = mna.s. and T}, = Oa.s. Therefore it only remains
to take care of T?,. But in this case, using (3.34), we have,

o1 23=1 P[qu=ii;1$p$i—1 [SM = Su‘]]
2 2t ZlSpgi—l;pq=ij c(j(i — P))_l
cXr, Yr,jt log (i) = O(mlog (m) log (n)) .

Hence for m < n and every d € (}, 1) we have,

(3.36) ET:, = O((mn)®)

which is sufficient to get us through. For it follows that T7,/mn converges to
zero a.s. as (m,n) — oo in the upper half part of I* x I*. Therefore R,,,/mn tends
to one a.s. as (m, n) — oo in that region. Now by using Q% and its associated
T*, we can conclude that R,,,/mn also approaches to one a.s. as (m, n) — o in
the remaining region (m > n).

The case when m (n) is fixed and n — co (m — oo) can be handled similarly.
The limit behavior of R,,,/mn, in both cases, is one.

Finally we invite the reader to consult the author’s thesis for the correspond-
ing results on the range of random walk when the dimension of the random walk
is either one or two. Since the results are not complete to our satisfaction, we
have not made any attempt to make them available for general publication.

(3.35) ET?,

IA
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