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ERGODIC THEOREMS FOR AN INFINITE PARTICLE
SYSTEM WITH BIRTHS AND DEATHS

By DIANE SCHWARTZ
University of Southern California

-Let p(x,y) be an irreducible symmetric transition function for a
Markov chain on a countable set S. Let 7 be the infinite particle system
on § with simple exclusion interaction modified to allow the spontaneous
creation and destruction of particles in the system. A complete character-
ization of the invariant probability measures for this system is obtained in
the case where the exponential rates of creation and destruction are inde-
pendent of the configuration of the system.

Furthermore, if .# is the set of probability measures on the state
space of 7; and S(¢) is the semigroup on _# determined by
S(t)(A) = § Pilne € Al dp()

theorems concerning the weak convergence of S(#)x to the invariant meas-
ures of 5; are proved.

1. Introduction. Let p(x, y) be an irreducible symmetric probability transi-
tion function for a Markov chain on a countable set S and let X = {0, 1}° with
the product topology. Let C(X) be the space of continuous real valued functions
on X with the sup norm and let %~ be the functions in C(X) which depend on
only finitely many coordinates. Following Spitzer (1970) an infinite particle
system on S with simple exclusion interaction is defined to be the strong Markov
process with state space X whose infinitesimal generator is given for fe & by

Lftr) = Zirw=t,rm=0 P Mra) — (D]

ra@ =@ i w#Ex, u#ky
= 7(x) if u=y.
Each y € X is interpreted as a configuration of particles on S where site x is oc-
cupied by a single particle if y(x) = 1 and is vacant if y(x) = 0 and where 7,,
represents a transition between x and y if y,, % y. With this interpretation the
simple exclusion process is a system of indistinguishable particles moving on §
in the following manner. A particle at site x waits a random time (exponentially
distributed with mean one) then chooses to jump to y with probability p(x, y).
If site y is vacant the jump is executed; otherwise the jump is suppressed. The
particles move independently except for the interaction which suppresses jumps
to occupied sites. A proof that the closure of I' is the generator of a unique
strongly continuous semigroup U(f) of contractions on C(X) and hence of a
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strong Markov process r, on X is given by Liggett (1972). We define this 7, to
be the simple exclusion process on X with one particle motion determined by
p(x, ).

Let _# be the set of probability measures on X. Then U(f) can be used to
define a semigroup on _# by

U)u(A) = §x U1 (7)) dp(y) = Sx Plr. € Aldp(y)

hence U(f)p is the distribution of the system at time ¢ when the system has in-
itial distribution p. A probability measure s is said to be invariant for the pro-
cess y, if U(f)u = p for all t. Let J be the set of invariant probability measures
for 7,. Then Spitzer (1974) and Liggett (1973, 1974) have characterized J and
have given necessary and sufficient conditions on the initial distribution, g, to
have weak convergence of U(f)u to an extreme point of J. (See Theorem (6.1).)
In this paper we modify the simple exclusion process to allow the spontaneous
creation and destruction of particles at sites in S and investigate the effects this
modification has on the invariant probability measures of the model. For ex-
ample suppose § = Z¢ and p(x, y) is the transition function for a simple random
walk on Z¢, i.e., p(x, y) = 4d if [x — y| = 1. Spitzer and Liggett have shown
that the extreme invariant measures of y, are exactly the collection of product
measures {v,}oc.<; Where v {7|7(x) = 1} = a. Let F C Z* be a finite set and
suppose whenever site x € F is empty a particle is created at site x at an expo-
nential rate f(x) > 0. Suppose also that the new particles satisfy the same laws
of motion as the original particles in the system. In the case d = 1 or d = 2
the only invariant measure for the system is pointmass on » = 1 (i.e., all sites
are occupied) and from any initial distribution the distribution of the system at
time ¢ converges to pointmass on 7 = 1. When d > 2 the mechanism of creation
of particles at finitely many sites is not sufficient to eliminate the effect of the
initial distribution. In this case there is a one parameter family {0,},.,.<, Of €x-
treme invariant probability measures where each 6, is asymptotically like the
product measure v,,.

The process described above for d < 2 is ergodic in the sense that there exists
a unique invariant probability measure v such that from any initial distribution
the distribution of the process converges to v. A main result of this paper gives
necessary and sufficient conditions for the ergodicity of the modified simple
exclusion process when the rates of creation and destruction depend only on
the site of the particle created or destroyed.

Further results include a characterization of the invariant measures when the
modified simple exclusion process is nonergodic and the rates of creation and
destruction depend only on the site of the created and destroyed particle (e.g.,
case d > 2 above). In this case necessary and sufficient conditions are given for
the convergence of the system to an extreme invariant measure. The results in
the nonergodic case are parallel to the results of Liggett (1973, 1974).

In order to specify the modified simple exclusion process let 8(x, ») = 0 and
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0(x, 7) = 0 be respectively the exponential creation and destruction rates at site
x whenever the process is in configuration 5. This means that when the process
is in configuration 7 particles will be created at vacant sites x during [0, ¢] with
probability ¢8(x, ) + o(#) and will be destroyed at filled sites  during [0, ¢]
with probability td(u, 7) 4+ o(t). For fe & the infinitesimal generator of the
process is given by

Qf(’)) = Zr](x)=l,77(y)=0 P ML) — ()]
(1' 1) + Z::;(x)=0 ‘B(X’ ”)[f(’)z) - f(”)]
+ Zq(z)=l o(x, ) f(n.) — f()],

where 7,(4) = p(u) if u % x and 7,(u) = 1 — p(u) if ¥ = x. Then 7, represents
a birth at site x if »(x) = 0 and a death at site x if »(x) = 1. The proof that
the closure of Q in C(X) is the infinitesimal generator of a unique strong Markov
process 7, on X is an application of Liggett’s existence criteria in [8] under the
following assumptions:

(i) sup, sup, (8(, n) + o(u, 1)) < oo,

(ii) sup, 2. sup, |54, 7.) — B(u, 7)| < oo, sup, 31, sup, |6(u, n,) — (u, )| < co.
We take 7, to be the desired modification of the simple exclusion process and
will refer toitas a § — 0 process. We note that the 8 — J process exists when-
ever (i) holds and f(u, ») and d(u, ») depend on at most M < oo coordinates of
7 where M can be chosen independently of u. If M = 0 we write B(x, 7) = (x)
and do(x, y) = 0(x).

REMARK. A basic assumption of this paper is the symmetry of p(x, y) in x and
y. The existence of the 3 — 0 process can be proved under weaker assumptions
(i.e., p(x, y) is doubly stochastic) but the main results require the symmetry of
p(x, y) as in Spitzer (1974) and Liggett (1973, 1974).

Denote the semigroup on C(X) associated with 7, by S() and as usual let S(7)
determine a semigroup on _ by

S(OmA) = §x P, € Al dp() -
A probability measure v is invariant for 7, if S(f)y = v for all ¢. The process
n, will be called ergodic if there exists a unique invariant measure v and
lim, ., S(f)u = v for all pe . Let X, be a continuous time Markov chain on §
with transition function p(x, y) and exponential waiting times of mean one.

(1.2) THEOREM. Suppose fB(x, ) = :B(x) and d(x, ) = 0(x) are independent of
7 and satisfy sup, [8(x) 4+ d(x)] < co. Then 1, is ergodic if and only if
(iii) P{§ B(X,) + 0(X,)dt = o] =1 for all xe S.

REeMARK. Condition (iii) is satisfied whenever X, is recurrent and sup, [3(x) +
0(x)] > 0. If B(x) = 0 (no births) then point mass on 5 = 0 is invariant and
hence, under the hypothesis of Theorem (1.2), must be the unique invariant
measure.
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Similarly if d(x) = 0 (no deaths) then pointmass on » = 1 is the unique invariant
measure. The proof of Theorem (1.2) is in Section 4.

In order to state Theorems (1.3) and (1.4) we need the following notation.
Define
& ={a(+) on §|0 < a(x) <1 and 3, p(x, y)a(y) = a(x) foreach xe S}.
For each a € 27 let v, be the product measure on X whose values on cylinder
sets is given by

vdn|n(x) =1;i=1, -, n} = []r, a(x,) .
Let A = {{{° B(X,) + 0(X,) dt < co} and define an equivalence relation R on 5%~
by
a,Ra, if lim, ,[a(X,) — ay(X,)]=0 a.s.on A.

Let 7 be the set of invariant probability measures for »,. Since 7 is a convex,

compact set in the topology of weak convergence the Krein-Millman theorem
says / is the closed convex hull of /,, the extreme points of /.

(1.3) THEOREM. Assume that p(x, y) is a transient Markov chain on S and that
B(x, n) and 0(x, n) are independent of . Then

(i) For all ay and ay € 27, lim,_, S(f)v, = lim,_,, S(t)v,, if and only if a, Ra,.
(i) 7, = {lim,_, S(,}ae . , Where Z7 is any set of representatives of the e-
quivalence classes determined by R. ‘
(iii) Let 8, = lim,_,, S(t)v,. Then
lim, [0 {n|7(X) =1} — a(X,)] =0 as.on A.

There is some overlap between Theorem (1.2) and (1.3) because it is possible
that p(x, y) is transient and P*[{{ B(X,) + d(X,) dt = co] = 1. But in this situ-
ation there is only one equivalence class and hence a unique invariant proba-
bility measure. It is not possible that p(x, y) is recurrent and

P{e B(X,) + 0(X,)dt = 0] < 1, unless B(x) =d(x)=0.
NoTtATION. For convenience of notation let
lim,_,, lim,_,, f(¢, s) =0 mean
lim,_,, lim sup, ., f(¢, s) = lim,__, lim inf,__, f{z,s) = 0.

(1.4) THEOREM. Assume that p(x, y) is transient and that f(x, 1) and o(x, n)
are independent of . Then for pe _#; lim, S(t)y = lim, S(t)v, if and only if

(1.5)  lim,_ Tim, o, § { X, pu(w, )PTA] Z, pux, 1)[0(y) — a(p)]f dp(n) = 0 .
ReMARk. If P7[A] = 1 for each x ¢ S then lim,_,, S(f)x = lim,_,, S(¢)v, if and
only if ‘

(1.6) lim,_... § {2, P, Y)n(y) — a()]f dp(n) = 0
which is equivalent to Liggett’s result (1974, Theorem 1.5) for the symmetric
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simple exclusion process. In fact it follows easily from Theorem (1.4) that (1.6)
is always sufficient for convergence to lim,_,, S(f)v,. If P[A] = Oforeachxe S
then 7, is ergodic. Sections 5-8 are devoted to proving Theorems (1.3) and (1.5).

2. Finite particle systems. Spitzer (1970, page 280) observed that whenever
P(x, y) is symmetric certain probabilities concerning the simple exclusion process
with infinitely many particles could be expressed in terms of a finite particle
simple exclusion process. This is the basis of the proofs in Liggett’s (1973, 1974)
and Spitzer’s (1974) work characterizing the invariant measures of 7,. In this
section we state Spitzer’s observation in a form suitable for our purposes and
describe a new finite particle system which relates similarly to the 8 — d process
when f(x, 7) = B(x) and d(x, ») = d(x) are independent of .

For each n > 1 let X,” be a conginuous time Markov chainon 7, = {(x;, - - -,
x,) € " | x; # x; for i # j} with infinitesimal generator given by

Luf(x 05 %)
(2.1 =2 Zu¢xj torizs P(Xos W[ f(X1s + v o5 Xogs Uy Xppys + 0 s X,)
—f(xv R xn)] .
where I, is defined for bounded functions on 7',. Intuitively X,* = (X,*(1), - - -,

X,*(n)) describes the motion of n interacting particles on § with simple exclusion
interaction and one particle motion determined by p(x, y).

(2.2) LEMMA (Spitzer). Suppose p(x,y) is a symmetric function of x and y.
Then for xe T,
Plr(x)=1i=1,---,n] = Pr(X*@) =1i=1,..--,n].
For each pe _# and xe T, define f,(x; p) = p{n|np(x) =1L;i=1,---,n}.

(2.3) THEOREM. Suppose p,ve._#. Then lim,_ , U(t)u = v if and only if
lim, ., E*[ f(X,"; #)] = fu(x; v) for each xe T,, for all n = 1.

Proor. Theorem (2.3) is a consequence of Lemma (2.2) and the following
equalities:

Unefn|n(x) = Li=1, - np = §x Plrx) = ;i =1, -+, n]dp(y)
=V PIr(X (@) =Li=1, .-, n]dpuQ)
= Efu(X )] -

We turn now to describing a finite particle system which relates to the § — 0
process so as to yield a version of Theorem (2.3) when S(x, ) and d(x, ) are
independent of 7. The following notation is needed. First adjoin to S two dis-
tinguished sites A, and A, and let S’ = S U {A;, A,}. Next extend the domain of
p(x,y) to §” x S’ by setting p(x, y) = 0 whenever x or y belongs to {A;, A,} and
x#y. Setp(Ag Ay) = p(Ay, Ay) = 1 and B(u) = d(u) = 0 whenever u e {A,, Ap}.
Then for each n let Y,* be a continuous time Markov chain with state space

S, ={(x, -+, x,)| x; €8 foreach i and x; # x; whenever x,e S and i +# j}
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and with infinitesimal generator given by

Q”f(xl, cee, X,)
= Z?:l Zy#x;forj;bip(xi’ y)[f(xp R xi_p y, xi+1, R x”)
(2.4) = S0 - 2]
+ ZZ‘=1 ﬁ(xi)[f(xv ct Xilpy AB’ Yivrr <0 xn) - f(xv Tt xn)]
_I_ Z?:l 5<xi)[f<x1’ M) xi—1’s AD, xi+1s Y xn) - f(xb D) xn)]
where Q, is defined for bounded functions on S,.

The intuitive description of the Y,* = (Y,*(1), - - -, Y,"(n)) process is that of
an n-particle simple exclusion process on § using transition function p(x, y)
modified to allow a particle at x to jump to death point A, at an exponential
rate f(x) and to death point A, at an exponential rate (x). The death points A,
and A, will be absorbing, hence multiple occupancy at A, and A, is permitted.
The basic relation between Y," and 7, is given in the following theorem.

(2.5) THEOREM. Extend the domain of v € X by defining n(Az)=1 and 5(A,)=0.
Then for x e S,
Py (x) =1i=1,....n]=PpY i) =Li=1,--, n].
Proor. For u e S, define F,[] = [[7, »(x;). Then

QF [n] = Xy P(x, p)0([1 — 2(DIFul7.,] — Ful7]]
+ 21 (B — (%)) + 6(x)n(x))F.[7.] — F.l7]]
= =Lt Ly P Y — 7())] — Ziad@) if Fg]=1,
= Lsarujiters PO 4)(X) + B(uy) i (1 — ) [Liwn(uy) = 1,
=0 elsewhere.
Thus,
QF,[7] = =X 5, p(es Y1 — 9(0))F[7] — i () F,[7]
+ 2 Zx;euj,jaei P (O[T 2: 7(u;) — Fol7]]
+ 220 B 1140 7(u5) — Fo[7]]
= 21 Dyrugiini P PDF ooy pyigay a1 — Ful7]]
+ 2 0N F iy g ugagseeupl ] — Ful7]]
+ 20 BUINF iy iy guga, w71 — Ful7]]
= Q,F,[n].
Letting w(z, u, 7) = E*[Fy x[7]] it follows that Qw(t, u, 7) = Q, w(¢, u, 1) and that

lim,_, sup, w(t + h, 5, u})z — w(t,p,u) Qs 1, 77), o

Hence by the uniqueness of solutions to w'(r) = Qw(r) (e.g., Theorem 1.3 of
Dynkin (1965)) it follows that S(1)F,[7] = E*[Fy [7]] or, equivalently,

Plgu)=1;i=1, ..,n]=P{yY @) =1;i=1,---,n].
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Extend the definition of f,,(x; x) for x € §” by defining »(A;) = Oand n(A;) =1
for all e X.

(2.6) THEOREM. Suppose pe . Then lim, , S(H)n =v if and only if
lim,_,, E[f(Y,"; )] = fu(x,v) for each xe S,, n = 1.

Proor. Theorem (2.6) follows from (2.5) in the same way that (2.3) follows
from (2.2).

In the following chapters several theorems are proved by comparing the Y,*
process with the n-particle simple exclusion model X,”. First extend the defi-
nition of X,” so that it has state space S, by using our extension of p(x, y) in the
generator I', of X,". Then couple the Y,” and X," processes in such a way that
for xe S,

PY» = X* forall ¢ < T =1
where
= {first time a particle in the Y,* process jumps from S to {A, A,}}.
We also assume that
(Y @yi=1,---,n}n ScC{X(@);i=1,---,n)

for all + = 0. The coupling is such that the processes Y, and X,” have the same
exponential waiting times governing the p(x, y) motion and if possible make the
same transition. The transition intensities of the coupling are easily constructed
and so are omitted. In later sections all references to X," and Y,” will assume
these processes have been coupled.

2.7 REMARK. Suppose x ¢ S, and x; € {A;, Ay} for some i. Then P*[X," ¢
A X oo x A =Pox e A X o x Ay X Ay % -0 x A,] where ix =
(%15 + 5 X;_15 X415 -+ +5 X,.). The same statement also holds when X," is replaced
by Y,*. This means that whenever the n particle processes X," and Y," are started
with at least one particle in {A;, A,} they behave like n — 1 particle processes.

It is convenient to think of X, = X,' as a one particle process on S with tran-
sition function p(x, y). In the next section a special case of Theorem (1.2) is
proved by coupling the X, and Y," processes so that X, e{Y,*(1), ---, Y,*(n)}
until a particle in the Y,* process which coincides with X, jumps to {A;, A}, in
particular

(2.8) X, e{Yr (1), ---, Y (n)}  forall r<T.

This coupling is accomplished in the following manner. If X, = Y,*(i) then
with regard to the p(x, y) motion each particle has the same waiting time and
attempts to make the same jump. It is possible that X, jumps to another site
occupied by the Y,* process while Y,"(i) remains where it is, in which case X,
is still coupled to Y,*. If X, = Y,"(i) and Y,*(i) jumps to {A,, A,} then the X,
and Y,* processes have uncoupled since X, does not jump to {A;, A,}. Note that
the infinitesimal rate at which X, and Y,* will uncouple given X, = Y,*(i) = x
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is B(x) + d(x). As before the transition intensities for this coupling are easily
constructed, hence are omitted.

3. Preliminary lemma for Theorem (1.2). This lemma is a result of a general
nature. Suppose <, is a continuous time nonexplosive jump process on a counta-
ble set N. Let the infinitesimal parameters of &, be given by ¢,,. For 4 c N
define

QA(X) = ZyeA,y¢Z qzy ‘

3.1 LEMMA. Suppose there exist constants 0 < a; < @, < oo such that for
each x € N either Q(x) = 0 or a; < Qy(x) < a,. Then almost surely

{o|§5 Qu(Z,)dt = o} C{w|&, e A for some t}.
Furthermore if a;, < Q(x) < @, and P*[&, € A for some t] = 1 for all xe N then
P[5 Q(#,)dt = c0o] =1 forall xe N.

Proor. Let &, be the embedded Markov chain in &, and let z, be the time
of the kth jump of &,. If &, is absorbed create fictitious jumps to itself at rate
a,. Then )

(3.2) (0] §5 Qi) dt = oo} = {w]| Do Qu(&)) = oo} aus.
To see this note that
830 QA(E’S}z) dt = ZZO:O QA(gk)[TIH—l - Tk] .

By assumption a, < E[7,,, — 7] < 7' and o, < Var [z, — 7,] < ;7%
Hence it follows that [7,,, — 7, | &, &, - - -] are independent random variables
with bounded means and variances. Therefore (3.2) is a consequence of
Kolmogorov’s three series theorem.

The above remarks have reduced the problem to proving

(3.3) (0] 250 Q%) = 00} S {w| &, e 4 i0) as.

with equality holding if &, < Q,(x) < a, for all x. By the extended Borel-
Cantelli lemma [e.g., Breiman (1968); Corollary 5.29] we have

{0| &, e A i.0)={0]| L PHE,,, € A] = oo}
= {w‘ ZI?:O QA(gk) = OO} a.s.
with equality holding if @, £ Q,(x) < a, for all x, hence (3.3) is proved.

4. Proof of Theorem (1.2). In Lemma (4.1) it is assumed that X, and Y," are
coupled as in Section 2.

4.1) LEMMA. Assume that 0 < sup, (B(x) + 6(x)) < oco. Then

4.2) P& B(X) + 0(X,)dt = 0] =1 forall xeS
if and only if
(4.3) PyY,"e{Ap, A} eventually] =1

forallyesS,, for any n.
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PrOOF. (4.2) = (4.3). The proof is by inductionon n. Letn = 1. If Y,'¢
{A;, Ay} eventually it follows from (2.8) that X, = Y,* for all . Therefore almost
surely

§ A(YY) + o(Y[) dr = §§ B(X)) + 6(X,) dit = oo

and hence by Lemma (3.1) Y,'e{A,, A,} eventually which is a contradiction.
Suppose n > 1. If Y,*(i) e {A;, A,} eventually for some i/ then Remark (2.7)
and the induction hypothesis yield Y,” € {A;, A,}" eventually. If Y,(i) ¢ {A;, A,}
eventually for any i then it follows from (2.8) that X, e {Y,*(1), - - -, Y,*(n)} for
all z. Therefore almost surely

o0 L B(Y () + oY () dr = §5 B(X,) + (X)) dt = oo

and hence by Lemma (3.1) Y,"(i) € {A, A,} eventually for at least one i which
is a contradiction implying the desired result.

(4.3) = (4.2). Let &, = (X,, {,) be a Markov jump process on N = Sx{0, 1,
2, - -} with jump rates given by g, .,,,0, = P(X; ¥) a0d § (1 0, (2, n41) = B(X) + 0().
Let 4 = Sx{1, 2, 3, - ..} then using the notation of Lemma (3.1) Q,((x, n)) =
B(x) 4 d(x) and Q,((x, n)) = 1 for all (x, n) € N. Hypothesis (4.3) implies that
P&, € A for some t] = 1 for all (x, n) e N and therefore, by Lemma (3.1),
PEM[(& Q (&) dt = o] =1 for all (x,n)eN. Consequently P?[{5 B(x,) +
0(x,)dt = o] =1 for all xe S.

4.4) THEOREM. Assume that B(x, n) = B(x) and 6(x, y) = 0(x) are independ-
ent of 7 and satisfy sup, {B(x) 4+ 0(x)} < co. Then the following conditions are
equivalent:

(a) P B(X,) + 0(X,)dt = 0] =1 forall xeS.
(b) There exists a unique invariant probability measure v for process v, such that
S(#)p converges weakly to v for any initial distribution p.

Furthermore, if (a) or (b) holds the finite distributions of v are given by
4.5) vipn(y) = Lii=1,---,n} = P[Y" = (B, -+, A) eventually]
whenever y = (y,, -+, y,) and the y, are distinct.
Proor. (a) = (b). From Theorem (2.6) it is sufficient to prove that
lim,_, EY[ f(Y."; p)] = P[Y,* = (Ap, - -+, Ap) eventually]

forall ye S,, n, p. Since f,(x; «) = 0 whenever x has at least one coordinate
equal to A, it is sufficient to prove P*[Y,” e {A,, A,}"] = 1. But this is a con-
sequence of Lemma (4.1).

(b) = (a). Assume that (b) is true and that P*[{& B(x,) 4 d(x,) dt = 0] < 1.
Let { and 7 be those elements of X satisfying { = 0 and 5 = 1. Then from
Theorem (2.5)

P (x) = 1] = PTLY,) = 1] = PY, = A,]
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and ‘
Pyp(x) = 1] = P*[p(Y,) = 1]
= PY,e S] + PIY, = A;].

Lemma (4.1) implies that P*[Y, € S for all /] > 0. Consequently lim,_, P7[7,(x) =
1] # lim,_, P7[n,(x) = 1] which contradicts assumption (b).

(4.6) COROLLARY. The unique invariant measure in Theorem (4.4) is pointmass
onn = 1if 6(x) = 0 and is pointmass on n = 0 if B(x) = 0.

5. Preliminaries for Theorem (1.3). Suppose S(x, 7) and d(x, ) are inde-
pendent of ». In Section 4 we proved there is a unique invariant probability
measure for the process 5, whenever P*[{y B(X,) + 6(X,)dt = co] = 1. The
characterization of I is more complicated in the case P*[{F B(X,) + o(X,) dt =
o] dt = oo] < 1 since the associated finite processes Y,” no longer necessarily
die out (Lemma (4.1)). However, in this latter case, p(x, y) is transient and we
are able to characterize I by comparing for large ¢ the coupled processes X, and
Y," with the motion of n noninteracting particles. This section is devoted to
the proofs of several lemmas concerning these n-particle processes which are
needed in the proof -of Theorem (1.3). Under the assumption that p(x, y) is
transient Lemma (5.1) makes precise the notion that the particles in the X,*
process eventually behave like n independent copies of X,. Lemma (5.3) says
that the Y,” process eventually behaves like a finite particle simple exclusion
process with possibly some particles started in {A,, A,}.

Let W," = (W,(1), - - -, W,(n)) where W (i) are independent continuous time
Markov chains with transition function p(x, y) and waiting time of mean one.
Define the event

&7 = (W, (i) = W,(j) for some t=0 and i+ j}.
Assume that X,* and W,* are coupled in such a way that X,» = W,* until a par-
ticle in the W," process _]umps to an occupied site, hence
={W,” #+ X,» for some ¢t = 0}.

5.1 LEMMA. Suppose p(x, y) is transient. Let X, be the embedded Markov
chain in X;*. Thenlim,_,, P*"[.%]=0a.s. and, consequently, lim,_, P*"[ ./ ]=0
a.s.

Proor. Liggett (1974, page 204) has shown that lim,_, E[P¥"[.%]] = 0.
Since P*#"[.%'] is a bounded supermartingale this implies that lim, _,, P*"[ %]
exists a.s. and hence must be 0.

In order to state Lemma (5.2) let

= {{&" B(X)) + 9(X,) di < oo}
and
Au(i) = {I5 BX (D) + 6(X,"() df < o0} .

(5.2) LEMMA. Suppose that p(x, y) is transient and that g: S — [0, 1]. Then
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(i) Iflim,_, g(X,) = O a.s. on A then lim,_,, g(X,*(i)) = 0 a.s. on A,(i).

(if) Iflim,_, g(X,) = 0 a.s. on A° then lim,_,, g(X,"(i)) = 0 a.s. on A,°(i).

Proor. Let E, = {lim,_, g(X,*({)) = 0} and E, = A,(i). Suppose ¢ > 0. By
applying Egoroff’s theorem to Lemma (5.1) there exists a set 4 and a number
T such that P/[4] < ¢ and P¥"[ %] < e for all t > T on A°. Therefore

PA[E, 0 E,] = E9[PXt"[E, 0 E, 0 7°]; A°]

Ef[PXT"[E, 0 S7°]; A7
E[(PYTU[E,] — ¢); A]
PE,] — 2¢.
Since ¢ > 0 is arbitrary P*[E, n E,] = P*[E,] and part (i) is proved. Part (ii)
follows in the same way if E, = A,°(i).

Next assume that X,” and Y, are coupled as in Section 2 and define the event

& ={X» + Y, for some = 0}.

[\ I\ \Y,

(5.3) LEMMA. lim, PY:"[<F] = 0 a.s.
Proor. Since P":"[£#] is a bounded supermartingale it is sufficient to prove

that lim,_,, E[PY+"[<£']] = 0 where x has no coordinates in {A;, A,}. The proof
will be by induction on n. Let

& ={Y,"(i)e{A;, A,} for some i, some ¢ = 0}.
Suppose n = 1. Then &£ C & implies that
lim, E¥[P*{{<Z]] < lim, ES[P*{]; &°] + lim, EF[P*{F]; &] .

The first term after the inequality is O since & is a tail event whereas the second
term is 0 because P*5[<#] = P*o[<Z] = 0. Suppose n > 1 and for convenience
drop the superscript n on Y,”. For ¢ > 0 choose t* such that

PY,(i) e{As, Ap} for some i; &= PE] —¢.
Then
lim, E[P"Z]] < lim, E*[EY¢[PY{Z]]; &] + E*[PY0[&]; &°].

Since & is a tail event the second term after the inequality can be made arbi-
trarily small by choosing * large enough. Using the induction hypothesis and
Remark (2.7) the first term is bounded by ¢. Since ¢ > 0 is arbitrary Lemma
(5.3) is proved. '

6. Sketch of the proof of Theorem (1.3). The proof of Theorem (1.3) re-
quires the following results proved by Liggett (1973, 1974) and Spitzer (1974).
Let J be the set of invariant probability measures for the simple exclusion pro-

cess , and let J, be the set of extreme points of J. Recall the definitions of 57
and v, from Section 1.

(6.1) THEOREM (Liggett, Spitzer). Assume that p(x, y) is the transition function
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for a symmetric irreducible Markov chain on S. Then for each a € 5# there exists
a unique p, € J, such that

tadn | 9(x) = 1} = a(x)
for xe S. Furthermore, J, = {p,|a € £}, po = lim,_,, U(t)v, and p, = v, if and
only if a is a constant.

SKETCH OF THE PROOF OF THEOREM (1.3). Define

5" = {ae 7 |lim,_, «(X,) = 1 a.s.on {{& (X)) + 6(X,) dt = co}}
J = {peJ|lim,_, psp|9(X)) =1} =1 a.s. on {{A(X,) + 6(X,) dt = col}.

Then 7 : J' — I defined by 7(x) = lim,_,, S(f) is a 1-1 onto affine map between
J' and I. The proof that z is 1-1 and onto is first proved in the case where
d(x) = 0 by comparing the finite processes Y,” and X,*. In the general case
(B(x) = 0, d(x) = 0) let 75, be a new 8 — & process with birth rates g(x) + d(x)
and death rates identically 0. Let S(¢) and I be the corresponding semigroup
and set of invariant measures. Define #: J' — I by #(¢) = lim,_,, S(f)» and o:
I—1 by o(y) = lim,_, S(f)¢. From the first step 7 is a 1-1 onto map. We prove
that ¢ is also a 1-1 onto map again by comparing the finite processes and then
complete the proof that r is 1-1 onto by proving that r = o o 7.

Since the extreme points of J’ are mapped by r onto the extreme points of /,

I, = {lim,_, S(t)p| p is an extreme point of J'}
= {lim,_., S()¢to |t €J and a e Z"}
= {lim,_,, S(t)v, | @ € 2"}
where the third equality follows from a proof that lim,_., S(f)g, = lim,_., S(f)v,.

The proof of Theorem (1.3) is concluded by proving that 57 is a set of class
representatives for R and then proving parts (i) and (iii) of Theorem (1.3).

7. Proof of Theorem (1.3). It is assumed that p(x, y) is transient throughout
this section. In addition to the definition of 52, J’, J, and p, given in Section
6 we need to define

A" ={pe #|lim, . pfy| (X)) =1} = 1 a.s.on {{@ B(X,) + 6(X,)dt = co}}.

(7.1) LEMMA. Assume that d(x) = 0. Suppose pel or p = lim,_, U(ty for
some vel. Then pe ". .

Proor. Suppose p€/. From Theorem (2.6) and Lemma (3.1)
p{n(x) = 1} = lim,_,, Ep{7(Y}’) = 1}]
= P Y = A, eventually]
= P{¢ B(X,) dt = oo].

Hence ¢ € _#" since the last term goes to 1 a.s. on {{5° B(X,) df = co}. Suppose
p = lim,_, U(f)y for v e I. From Theorem (2.3) and above argument it follows
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that
#n(x) = 1} = lim, Eu{5(X,) = 1}]
= lim, Ef[P*[Y,;' = A, eventually]]
= lim, E-[P*{{5 B(X,) ds = oo]]
= PI{¢ B(X,) ds = oo],
and, consequently, p e _#Z".
(7.2) LEMMA. Assume that d(x) = 0. If pe "' then lim,_, p{n(X,*(i)) =
1} = 1 a.s. on {{3 B(X"(i)) dt = oo}
Proor. Apply Lemma (5.2).
Recall from Section 2 the definition
L p) =pylnx) =1Li=1,-.-,n}
where it is always assumed that (A,;) = 1 and »(4,) = 0 for all e X. Define
forxesS,

G,(x) = min {P*[X,* + X,» for some ¢],
2 L e PSS BXM(0) dE < 00, Y"(i) = Ay eventually]} .
(7.3) LEMMA. Assume that 6(x) = 0. If pe " then
lim sup, ... E-{|f(Y,% 1) — fulX/5 )] S Ga(®) -
If veland lim, U(tyy = por if peJ' and v = lim,_, S(t)p then
|fn(x; /’l) _fn(x; ”)I = G”(X) .

ProOOF. Assume that X," and Y,” are coupled as in Section 2, then the first
statement of Lemma (7.3) is a direct consequence of Lemmas (7.1), (7.2) and
the definition of _#Z". To prove the second statement note that p2 = lim, ., U(f)v
for v e I implies

|falxs 1) — fu(xs v)] = limy_o, [E*[f,(X["5 ) — fu(Y5 0)]] = Ga(x)
Similarly for the remaining case.
(7.4) THEOREM. Assume that 0(x) = 0. Then

(i) lim, .. EG,(X,)] = 0,
(i) lim,_, E[G,(Y,")] = 0.

Proor. (i) It is sufficient to prove that
lim,_, E[P*¥"[ {5 B(X,"(i)) ds < oo, Y,"(i) = A, eventually]] =0,
hence it is sufficient to prove that ) |
(7.5) lim,_, E*[P*"[Y (i) = A, eventually]; {5 f(X,*(i)) ds < o0] = 0.

For n = 1 we construct a proof similar to the proof of (4.3) — (4.2) in Lemma
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(4.1). Using the notation of Lemma (4.1)

lim,_, E*[P*|Y,c A, eventually]; {5 8(x,) dr < oo]
= lim,_,, P&, jumpsto A after time ¢ {5 f(X,)dr < oo]
= P&, e A io., (PBX,)dr< ]=0

where the last equality follows from (3.3). For n > 1 use Lemma (5.1) and
Egoroff’s theorem to show that (7.5) follows from

lim,_,, ES[P*"P[Y (i) = A, eventually]; (¢ B(X,"({)) ds < 0] =0,

then apply Lemma (5.2). The proof of (ii) follows immediately from Lemma
(5.3).

(7.6) THEOREM. Assume that p(x, y) is transient and that 6(x) = 0. Let J' be
as defined in Section 6. Then t(p) = lim,_, S(t)u defines a 1-1 onto affine map
between J' and I. Furthermore, t='(v) = lim,_,, U(f)v.

PROOF. Assume that X,» and Y,” are coupled as in Section 2, then f,(X,"; p) <
Sa(Y("s 1) aws. for pe . For peJ this implies that

[o(xs 1) = E[fu(X )] = Ef(Y5 )]

and hence E*[f,(Y,"; 1)] £ E*[f(Y?; p)]- Therefore lim,_., E*[ f,(Y,"; p)] exists
for each x € S, and by Theorem (2.6) lim, S(f)x exists. A similar argument shows
that lim, U(f)v exists whenever v e I and by Lemma (7.1) lim,_,, U(f)pe J'. To
prove that ¢ is 1-1 suppose 7(x#) = v. Then by Lemma (7.3)

Ifn(X; lJ) - fn(X; /’t)l = Gn(x)

and by Theorem (7.4) lim, E?[ f,(X,*; v)] = f.(x; ). Hence lim, S(f)y = ¢ which
proves ¢ is 1-1. A similar argument proves that ¢ is onto.

In order to prove that r(x) = lim,_,, S(f)u defines a 1-1 onto map between J’
and / for the general case (8(x) = 0, 6(x) = 0), we compare the 8 — & process
7, which has birth rates, §(x), and death rates (x), with the § — & process 7,
which has birth rates f(x) = f(x) + 8(x) and death rates identically 0. Hence
7, fits into the case covered by Theorem (7.6). Let the associated finite processes
of 7, and 7, be Y," and ¥," respectively. Couple these processes so that Y,” and
¥,» make the same transitions except whenever Y,"(i) jumps to A,, ¥,*(i) jumps
to A,.

(7.7)  LEMMA. Let h(x) = P*[Y,* + Y,* for some t]. Then

lim, ., ESA(Y,")] = lim, . E-h(¥,")] = 0.

t—o00
ProoF. Since i(x) < P9Y,” + X,* for some t] = P?[Y,* # X,* for some 1],
Lemma (7.7) follows from Lemma (5.3).

(7.8)  LeMMA. Ifo:I—1isgiven by a(v) = lim,_,, S(t)v then o is a 1-1 onto
affine map between I and I. Also ¢=*(g) = lim,_,, S(f)z.
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Proor. The proof of Lemma (7.8) proceeds exactly as the proof of Lemma
(7.6) where we now use Lemma (7.7) instead of Lemma (7.4).

(7.9) THEOREM. The map t(p) = lim,_, S(f) is a 1-1 onto affine map between
J and I.

Proor. Using the notation Theorem (7.6) and Lemma (7.8) consider the
diagram

rs1
|
1

where #(p) = lim, $(#)p, o(5) = lim, S(¢)5 and ¢ o # is a 1-1 onto affine map. To

prove Theorem (7.9) we need only show that lim, S(f) = 0 o . Let peJ’, v =
lim, S(r)p and v = lim, S(z)5. Then
lim, |[EX[f. (Y. 1) — fulY5 9)]|
= lim, [EXfu(Y" ) — (X2 )] + limy [EZ[£,(F)%5 ) — fu(x; 9)]|
+ Lm B £ (P, 9) — fo(Y.75 9)]|
< 2P [Y,» + Y,» for some ].
Therefore
lim, [EX[fu(Y." ) — fu(Y25 9)]| < Limy ES[JEYS[fo(Y)5 ) — fu(Y/59)]]]
< 2E[PYs"[Y,» # Y,» for some t]] — 0
as s — oo by Lemma 7.7. Hence lim, S(t)p = lim, S(t)5 = 7 o #(p).
(7.10) LEMMA. The extreme points of J' are {p, e J,|a € 57}
PrOOF. Let z be an extreme point of J'. If p = Ap, + (1 — A)p, for p,, e J

then s, 1, € J'and hence p = p, = p,. Therefore by Theorem (6.1) peJ, n J' =
{#oa: @« € Z27’}. On the other hand any p, € J/ must be an extreme point of J'.

(7.11)  LEMMA. Suppose p,ve #Z If lim, ., Uty = p then lim, ., S(t)y =
lim,_,, S(#)v. In particular, lim,_, S(f)y, = lim,_, S(1)v,.
Proor.
lim,_o [ETfu(Y" v) — Y55 p)l
(7.12) < lim,_ |ELf,(Y%59) — fu(X/5 )]
+ lm, o, [E7[ (X5 1) — fo(Y" )]
=< 2P[X,* #+ Y,» for some f].
Hence conditioning (7.12) on Y," and using Lemma (5.3) yields desired result.

(7.13) LEMMA. 277 is a set of class representatives for the equivalence rela-
tion R.

Proor. Recall that A = {{5 B(X,) + 6(X,) dt < o0}. For each ac 97 let
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Z, = lim, a(X,) and define
roX) = PA°] + E9[Z; A].
Then aRr, and r, e 2. To prove aRr, note that on A, lim, [r(X,) — a(X,)] =
lim, [EX[Z] — a(X,)] = 0. To prove r, e 57 let X, be the embedded Markov
chain in X, then
ro(%) = P B(X) + 0(X,) = oo]
+ Eflim, ., a(X,); 215, B(X,) + 0(X,) < oo]
= Zup(x’ Nry) -
It now follows immediately that r, ¢ 5.

Proor oF THEOREM (1.3)(i). First consider that
lim, S(t)vo{7|9(x) = 1} = lim, E¥[v,{y|7(Y,") = 1}
= P[Y,! = A, eventually] + E*[Z,; X, = Y forall ¢]
where Z, = lim, a(X,). Therefore lim, S(t)vq, = lim,_,, S(t)v,, implies that
Ef[Z,; X, =Y} forall 1]= E*[Z,; X, =Y} forall 1].
Since P*[X, = Y, for all ] - 1 on {{7 B(X,) + 6(X,) ds < oo} (see (7.5)) and
since E%s[Z, | = a,(X,) it follows that a, Ra,. Conversely suppose a; Ra,. Then
lim, E*[[]7-, ay(Y, (i) — TIios ao(Y,(0)]
= 25 [limy EJT2, (Y, (0) — [T a(X0)]|
(7.14) + lim, [E*[J]7, ay(X,(7)) — TIiq @a(X())])]
< 2P7Y," =+ X," for some (]
+ P2 § BX()) + 0(X,"(d)) dt = oo]
< 3PY,” #+ X,* for some 1],
where the last inequality follows from Lemma 3.1. Therefore conditioning (7.14)

on Y,", taking limits as s — co and applying Lemma (5.3) yields (7.14) = 0. Since
x € S, and n were arbitrary, Theorem (2.6) yields lim, S(1)v,, = lim, S(1)v,,.
Proor oF THEOREM (1.3) (ii). By Theorem (7.9) and Lemmas (7.10) and (7.11)
I, = {limy_o, S(O) takae 5 = {lim, S(t)velae s -
Theorem (1.3)(i) and Lemma (7.13) imply
1, = (imS(t)ve)ae oy, »
where 577, is any set of class representatives determined by R.
PrOOF OF THEOREM (1.3) (iii). This follows from the proof of Theorem (1.3) (i).

8. Ergodic theorems. In this section necessary and sufficient conditions are
given for the convergence of S(#) to an extreme point of 7 in the case §(x, 7) =
B(x) and 6(x, ) = 6(x). Forafixed pe _# and a € 57 define Q,,(x) = f,(x; p) —
Sa(x; v,). Recall the definition of W," from Section 5.
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8.1) LEMMA. Assume that p(x, y) is transient. Then the following statements
are equivalent.

(8.2) lim,_.. S(f)¢ = lim,__, S(¢)v,

t—ooo

(8.3) lim,_, E*[Q,(Y)] =0  forall yesS,, forall n
(8.4)  lim,_,lim, , E¥"[Q,(X")] =0 as. P foral yeS,, foral n.

lim,_,, lim,_, EX"[Q,(X,)] =0 a.s. P*
(8.5) on (51 §7 BXA() + (X (@) di < o0} forall xeS,,
forall n ‘
lim,_, lim, ., E¥s"[Q, (W] =0 as. Pv
(8.6) on (X1 55 BW.(0) + (W) di < oo} forall wesS,,
forall n.

PrROOF. (8.2) = (8.3): Use Theorem (2.6).

(8.3) = (8.4): Letr,(y) = P[Y,"” # X,* for some ¢] and apply Lemma (5.3)
to the inequality |EY[Q(X,")] — EY[Q(Y,M)]| < r.(p).

(8.4) = (8.5): Uselim, P%"[X,» = Y,*foralll] = la.s.on{> 7, {& B(X,"(i)) +
0(X,"(i)) dt < oo}.

(8.5) = (8.4): Uselim,_, P¥s"[X,* = Y,* V] = 1 and the fact that {X," = Y,*

V1) C {Z §e B(XM() + 6(X7(i)) dt < oo}
(8.5) = (8.6): Use Lemma (5.1) and lim,_,, P¥s"[.%] = O a.s. (see Liggett
(1974, Lemma (2.1)).

8.7) THEOREM. Assume that p(x,y) is transient. Then lim,_, S(t)y =
lim, ., S(¢)v, if and only if

(8.8)  lim,_ lim, . §; {3, pu(w, PTA] Z pi(x, N0(y) — @MY du(n) = 0
a.s. Pv foreach weS

where A = {{& B(X,) + 0(X,) dr < oo}.

Proor. Using an argument similar to Liggett’s proof of Theorem 4.10 in [9]
we can show that (8.6) is equivalent to

(8.9)  lim, lim, §, TT2=y X, p(Wi(D)s Mn(y) — a(y)]dp(n) =0 a.s.
on {37, {7 B(W.(D) + o(W,(i)) ds < oo}

or, equivalently if A(i) = {{& B(W,(i) + d(W,(i)) ds < oo}
(8.10) lim, @t Vo T1i=1 Lacoy 200 PCWS(D)s Y)0(y) — a(p)]dp(n) = 0 a.s.

Let n = 2 and take expectations with respect to P* to obtain (8.8). To show that
(8.8) implies (8.10) substitute X, for w in (8.8) and use the fact that

lim,_, [p(X,, X)P[A] — p(X,, x)] =0 as. A.
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The result will be

lim, o, Tim,_, {5 {Ls T, pu(Xes Y[7(y) — (P dpe(n) = 0 as.
which implies (8.10).
(8.11) CoroLLARY. If P*[A] =1 for all x € Sthenlim,_, S(¢)x = lim,_,, S(1)v,
if and only if
(8.12) lim,_., §o {20, p(6 M(y) — a()]F dp(y) = 0.

If P{[A] = O for each x € § then 7, is ergodic. If P{[A] < 1 then (8.12) is suffi-
cient for lim,_,, S(t)x = lim,_,, S(?)v,.

REMARK. Corollary (8.11) can be proved without using Theorem (8.7). The
case P[A] = 0 is done in Section 4. For the remaining cases use Lemma (7.11)
and Liggett’s criteria (1.6) for the convergence of U(f)x to lim,_,, U()v,.

9. Further results. Further results are obtainable when B(x, ) and d(x, 1)
depend on 7 if the dependence is such that there is a nice related finite process.
For example if 8(x, 7) = 0 and 6(x, ) = 3 ., 9(x, )[1 — 7(y)] where g(x, y) = 0
and 0 < sup, 33, q9(x, y) < oo then there is a continuous time Markov chain, 4,,
on the set of finite subsets of S satisfying

P, D A] = P[4, C 7]

where 7 O A means 5(x) = 1 for each x e 4. The process 4, is a finite particle
simple exclusion process modified so that when the process is in state A4 particles
are created at y at rates }},., q(x, y). Hence an analysis of the behavior of 4,
will lead to results concerning 7,. But because the number of particles in A4,
may increase, unlike X,” and Y,”, the situation is more difficult than the cases
treated in this paper. Partial results, which will appear in a forthcoming paper,
include lim,_, S(f)y, = v, for 0 < @ < 1 and 1, = {v,, v;} whenever p(x, y) is
recurrent.

ReMARK. The concept of reducing the study of infinite particle systems to re-
lated finite particle systems has been further developed beyond Spitzer’s original
observation by Holley and Liggett (1975) and Harris (1975).
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