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RESULTS FOR THE STEPPING STONE MODEL FOR
MIGRATION IN POPULATION GENETICS!

BY STANLEY SAWYER
Yeshiva University

The stepping stone model describes a situation in which beasts alter-
nately migrate among an infinite array of colonies, undergo random mating
within each colony, and are subject to selectively neutral mutation at the
rate u. Assume the beasts follow a random walk {X,}. If « = 0, we show
that two randomly chosen beasts in the nth generation in any bounded set
are genetically identical at a given locus with probability converging to
one iff the symmetrization of {X,)} is recurrent. In general, if either =0
or u is of order 1/n, this probability converges to its limit at the rate C/n}
for finite variance walks in one dimension and C/(log n)e in two, with other
rates for other classes of {X,}. More complicated rates ensue for u = O(1/n).

1. Introduction. One of the outstanding problems surrounding the theory of
evolution is to explain the amount of diversity in nature. If Darwin’s theory of
evolution is correct, all less-than-optimal competing species should be driven to
extinction, and one should see much less genetic variation than in fact there is.

One school of biologists holds that most such variation is due to “classical”
effects such as (1) geographical variation in the direction of selection caused by
a varying environment, with mixtures of types of creatures at different points
due to migration, (2) mixed genotypes having the advantage under selection,
leading to a stable multi-type population since mixed genotypes do not breed
true, (3) occasional harmful mutations leading to lines which eventually die
out, and to similar causes. A competing school holds that, instead, much of
this variation is due to (4) a kind of genetic random walk, in which new types
are continually being born as a result of mutations which are of no advantage
or disadvantage under selection, and continually become extinct because of a
loss of genes due to the random effects of mating in small populations.

A stable diversity of population as a result of (1) is called a cline. The distri-
bution of evergreen and deciduous trees forms a cline which is easy to observe as
one travels from place to place in the country by car. A cline for an interbreed-
ing species that has been studied is formed by the mouse Peromyscus polionotus
in Alabama, which tends to be sandy-colored near the Gulf of Mexico and brown
in the more forested north. This distribution apparently results from predators
such as owls (Moran (1962), pages 183+).

It is obviously important in understanding this controversy to be able to
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distinguish a cline or variation of type (2) from the result of a “genetic random
walk” (4). The latter situation would resemble a cline in that individuals found
close to one another would be more likely to be related and hence of similar
genetic type. Thus it is important to know the probability of identity of genetic
type as a function of distance in this case. The stepping stone model of Malécot
(1948-69), (1967) and Kimura and Weiss (1964) is a model of this type of random
variation, in which beasts alternately (1) migrate among members of a discrete
array of colonies of a fixed finite size, and (2) undergo random mating within
each colony. They are also continuously subject to mutations which have no
effect on their reproductive or migratory behavior, but can be distinguished
otherwise. The equilibrium probability of identity of type with distance in this
model was calculated by Malécot (1948-69, Chapter 3), and applied to the dis-
tribution of shell banding and color in a European snail, Cepea nemoralis. The
distribution of this character in these snails was found to be consistent with
selective neutrality (ibid., page 75; see also Ewens (1969), page 109).

The stepping stone model has also been used to study human populations; see
Kimura and Ohta (1971, Chapter 8).

The corresponding stepping stone models with populatlon distributed con-
tinuously have great theoretical difficulties, since they require individuals to be
at zero distance to mate. This could not happen by chance with continuous
migration laws. Making time continuous only helps in one dimension. Indeed,
these models tend to lead to equations which are well defined in one dimension
but have no nontrivial solutions in two or more dimensions (Fleming and Su
(1974), Fleming (1975a), (1975b), Dawson (1972), (1975), Nagylaki (1974a)).
With time discrete, they lead to probabilities which are negative or greater than
one (Sawyer (1976b), Section 3) or worse (Felsenstein (1975)). The models of
Sewell Wright (1946) avoid some of these difficulties but are harder to interpret
from the motion of an individual creature.

If the creatures being studied are rare and interbreed with a dense background
of “normals,” then the local carrying capacity of the environment is not impor-
tant and a multitype branching process approximation can be used (with geo-
graphical position as type). This approach does yield exact solutions, but leads
to some very strange conclusions unless the creatures studied are uniformly
deleterious with respect to the normals (Sawyer (1976a), (1975)). These diffi-
culties are related to the tendency of critical branching processes to a kind of
“clumping” (see also Felsenstein (1975)).

The purpose of this paper is to describe some qualitative and quantitative as-
pects of the stepping stone model. In Section 2 we outline carefully the assump-
tions behind a probability-space description of this model, and specialize the
array of colonies to the infinite lattice in one or more dimensions with the mi-
gration law depending only on the vector distance between colonies. In Section
3 we consider qualitative results. For example, assume the mutation rate is
zero, all initial types are distinct, and the migration law is strongly aperiodic
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(see Section 2.2). Then the probability that two creatures a given distance apart
are identical by type converges to one after a large number of generations iff
the symmetrized migration random walk is recurrent. This would include all
strongly aperiodic finite-variance random walks in one and two dimensions. On
the other hand (Section 3.3), the descendants of any particular gene eventually
become extinct. Since in this model there are initially a countably infinite
number of genes, this means that, assuming no mutation and all initial genes
are distinct, particular types become dominant in larger and larger spheres, with
all such “dynasties” eventually dying out. This is similar to the “clumping”
that occurs in the branching process case, although here it is in space only since
the total number of creatures per colony is constant. The same analysis also
yieldsan alternate derivation of Malécot’s equilibrium formula, based essentially
on the fundamental identity for recurrent events.

Raup et al. (1973) use a critical branching process to model the number and
taxonomic structure of prehistoric animal species, finding a good fit in most cases.
The same random model with the number of species or niches in each area held
fixed is probably also a reasonably good fit to fossil evidence.

In Section 4, we consider the rate or error of approximation by the actual
probability of identity of type after n generations to the equilibrium formula of
Malécot. If this rate is too slow—for example, of the order of 1/log n—then
the equilibrium probability distribution would be of little practical use. This is
because few natural populations have been undisturbed in their present habitat
for sufficiently many generations to make this error small, and the initial prob-
ability distribution might be as good an approximation as the limiting one.

Assuming no mutation and a finite variance migration law, the rate of ap-
proximation turns out to be C,/n* in one dimension and C,/log n in two. (Malécot
(1975) has the one-dimensional result for migration laws of finite range.) If the
mutation rate is ¥ > 0, the error is always smaller than (1 — u)*; however, u
is usually of order 1/n or less for natural populations. For u exactly of order
1/n, with an extra condition, the rate is Cy/n! in one dimensional and C,/(log n)*
in two.

These results are proven for a more general class of recurrent migration ran-
dom walks than finite variance, which contain in particular those in the domains
of attraction of the stable laws. They are also fairly insensitive to the initial
distribution of types, although the situation is more complicated for fixed u > 0.
See Section 4 for details. :

The logic of the equations of Malécot and Kimura-Weiss essentially requires
that the population be haploid; i.e., traits-are controlled by single genes, or sets
of genes, and reproduction is asexual (as with viruses). Most higher plants and
animals are diploid; i.e., traits are controlled by pairs of genes on chromosome
pairs, and mating is (usually) bisexual. In Section 5 we derive the equilibrium
probabilities for some naturally occurring diploid mating patterns, and extend
the results of Sections 3 and 4. The equilibrium probabilities are similar but
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more complicated. The asymptotic rates of Section 4 turn out to be the same
for diploid populations, provided the actual number of genes per colony is re-
placed by an “effective” number of genes which depends on the mating pattern.

The asymptotic properties of the equilibrium probability for large separations
x —yand u > 0, or for large x — y and small #, are obviously important and
involve some subtleties. See Sawyer (1976b) and many of the papers quoted
earlier for details.

Crow and Kimura (1970), Jacquard (1970), Ewens (1969), and Moran (1962)
are good general references on population genetics. Felsenstein and Taylor
(1973) have a bibliography of all published work in theoretical population ge-
netics through October 1973. See Fleming (1975c), Nagylaki (1975), Slatkin
(1973) and Hoppensteadt (1975) for recent theoretical work on clines, and
Malécot (1975) for more recent work by this author.

Finally, we would like to thank Professors Nagylaki and Fleming for many
helpful conversations in this area.

2. The stepping stone model, I. In this paper we follow one genetic locus in
a population situated in a discrete array of colonies, with N individuals in each
colony. Duringeach generation, we assume the population (1) undergoes random
mating (see below) within each colony, with the new generation of individuals
replacing the old, (2) all individuals of the new population independently mi-
grate to other colonies, and (3) all genes under consideration are subject to pos-
sible mutation, in that order. We assume there is a sufficient overproduction
of offspring during step (1) (say € 3> N per colony) so that there are at least N
creatures in each colony after step (2). We then (4) choose N at random in each
colony to replace the original population.

This last step (overproduction plus later winnowing down) is necessary to
keep the population at a fixed N per colony during random motion, and also
models the carrying capacity of a natural environment. (It does require the
implicit taking of a limit € — co. An alternate procedure—having fixed pro-
portions of each colony go to other colonies—requires that the migration prob-
abilities are all multiples of 1/N, as well as the extra condition };, g(x, y) = 1
in (2.1) below.)

2.1. The simplest kind of reproductive behavior is carried out by haploid
populations. Haploid creatures have one (or more) genes contributing to each
genetic trait, and reproduce asexually, like viruses. In this case, “random mat-
ing” means that a series of € independent choices (with replacement) is made
from each colony, each individual of which produces one offspring. Given the
eventual winnowing to N per colony, an equivalent procedure is that every
individual in the population produces a random number of offspring, where the
offspring distributions are independent Poisson with the same (large) mean. The
winnowing is equivalent to choosing independently N of these offspring from
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the colonies that allow migration into the colony under consideration, with the
appropriate weighting for those colonies. Alternately, the whole procedure is
equivalent to a weighted random choice, with replacement, of N individuals of
the parent generation from the same set of colonies.

During the migration phase of each generation, all individuals in the popu-
lation ' move independently of one another according to a transition law

2.1) PriXo,=y|X, =x]=g(x,y)

where {X,} represents the random motion that a nonreproducing immortal indi-
vidual would follow in the space of colonies. The function g(x, y) is arbitrary
subject to g(x, y) = 0, >3, 9(x, y) = 1 (all x). In applications usually g(x, x) is
close to one.

Finally, we assume that every gene in the population, independently of all
the others, mutates with some fixed probability # > 0 in each generation. All
mutated individuals, i.e., bearing mutated genes, have the same migration-mu-
tation-mating behavior as the original population. In addition we assume that
every mutant gene is different from all other genes in the population, which is
a reasonable assumption on biochemical grounds.

While an individual (or gene) may have no (or many) offspring in the next
generation, it does have a unique parent or predecessor in the previous gener-
ation. This parent has of course a unique parent itself. Thus any two genes
(or haploid individuals) define two chains of predecessors, perhaps overlapping,
back to the zeroth generation. If u = 0, we say that these two individuals are
identical by descent (i.b.d., as opposed to identical by type (i.b.t.) or chemically
identical) if they have a common predecessor in some previous generation. If
u > 0, they will here be said to be identical by descent if they have a common
predecessor, and there have been no mutations in either line of descent since
the first common ancestor (first going into the past) of the two individuals. In
particular, if every mutation produces a new type, two genes will be identical by
type iff they are either i.b.d., or else are the descendants of distinct zeroth gen-
eration genes which were of the same type, again with no intervening mutations.

In general, let I (x, y) be the probability that two individuals are either i.b.d.
or i.b.t., where one individual is chosen at random from the colony at x and
the other from y at the beginning of the nth generation. If x = y, these are
assumed to be distinct individuals. Thus /y(x, y) is essentially arbitrary for i.b.t.,
but Iy(x, y) = 0 if I,(x, y) measures i.b.d. In fact, if J(x, y) = 0 fori.b.t., then
pairs of individuals will be of the same type iff they are i.b.d., and the concepts
are identical. If I(x, y) measures a random initial distribution of types, we as-
sume the future development of the system is as described above given the initial
distribution of types. '

By considering the parents of two haploid individuals, one obtains (Malécot
(1948-69), (1967))
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I, (x, )’) = (1 - u)2 {ZZa*b In(a’ b)go(a’ X)go(b, )’)
@) + Z o+ (1= ) it 0 o 9ot }
= (1 = * {Z X 1@ )a@: a6, ))

1 — I(c,
+ X ———ﬁw go(e, X)gq(c, }’)}
for either i.b.t. or i.b.d., where (1 — u)* is the probability that neither gene has
mutated and 1/N refers to a probability that the parents are the same. Here

(2.3) go(a, x) = Pr[X, =a|X,,, = x]=g(a, x)/ 2. 9(w, X)

is the probability that an individual now at x came from a. If 3, g(w, x) = oo,
go(a, x) is not defined. If

(2.4) Z.oxy) =1, al y
for g(x, y) in (2.1), then g\(a, x) = g(a, x).

2.2. Most higher organisms in nature are diploid rather than haploid. That
is, traits are controlled by pairs of genes at corresponding places on linked chro-
mosome pairs. Also mating is usually bisexual; i.e., between two individuals.
During mating, each gene pair of an offspring is determined by two independent
choices, one from each of the corresponding gene pairs of its parents. These
choices are independent for gene pairs located on different chromosomes.

All higher animals, and some plants, are diploid dioecious. This means that
the population is divided into two sexes, and all mating is between a male and
a female. Here we set N = 2m and fix the population at m males and m females
in each colony. By random mating we mean that every possible male-female
pair is equally likely to produce one offspring at each stage in Section 2.1, or
equivalently produces a Poisson number of offspring independently of all other
male-female pairs. One assumes that males and females have the same migration
law (2.1) and mutation rate u.

Most higher plants are diploid monoecious. That is, diploid, but all individuals
are hermaphroditic, i.e., can play the role of either sex during reproduction.
Self-fertilization can occur, and in many species vegetative (i.e., “haploid”) re-
production as well. See Section 5 for details.

In diploid dioecious creatures, sex is determined by the types of the sex chro-
mosomes. In man, the chromosomes determining sex are of type either ‘X’ or ‘Y,
with males having ‘XY’ chromosome pairs and females ‘XX’ (there are 23 chro-
mosome pairs in all in man). If the genes we are following are autosomal, i.e.,
not located on either of the sex chromosomes, they promulgate independently of
sex. In particular, in generations n > 1, the males and females in all colonies are
independent (given the (n — 1)st generation) statistical replicas of one another.
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While kinship for diploid individuals is fairly complicated, for genes it is not.
Each gene in an individual has a unique predecessor in the preceding generation,
located in either the mother or the father of the individual. Thus i.b.d. and
i.b.t. can be defined for genes exactly as before. However, a moment’s reflection
shows that, even with this change, (2.2) cannot be correct for diploid populations.
For, if y = x and the two genes are drawn from the same individual at x, then
they must have remained in the same individual during the preceding migration
phase, and the factor “gy(a, x)gy(b, )’ would not appear in this event. Also, the
parental genes would be located in distinct individuals of the opposite sex for
dioecious creatures. Thus not only would no term “1/N”’ appear, but also the
probabilities of i.b.d. for randomly chosen individuals of the opposite sex may
differ from those for arbitrary pairs of individuals without regard to sex. Fortu-
nately the second difficulty does not enter for autosomal genes in generations
n = 1, as above. Overall, (2.2) should be a good approximation for large N,
assuming N is replaced by the number of genes 2N. In general (2.2) should be
replaced by the system

Lo, ) = (1 = 0 { L3 1(a, B)gula> )95 )
2.5) ey 1+ J,,(c)z—A—/ 21,(c, c)
Jun) = (1 = 0 . (e, e)gu(e, %) nzl.

go(c, X)go(c, y)}

Here I,(x, y) is the same as before, for genes drawn from distinct individuals if
x =y, and J,(x) is the probability of either i.b.d. or i.b.t. for the gene-pair of
a single randomly chosen individual at x (at the beginning of the nth generation).
For i.b.t., this is the same as the mean probability of homozygosity at x (i.e.,
that the two genes of an individual at x are of the same chemical type). Equa-
tion (2.5) also holds for diploid monoecious populations if self-fertilization and
cloning are prohibited, see Section 5.

In many animals, only a small proportion of the males take part in reproduc-
tion. This would be modelled by stabilizing the population at m, males and m,
females per colony, where m; < m,and N = m, + m,. A similar analysis shows
that (2.5) holds with N replaced by an “effective population size” N, = 4m,m,/
(my + my) < N (Malécot (1948-69), Crow and Kimura (1970)).

If the genetic locus under consideration is located on the X chromosome (ex-
amples in man would be the genes contfolling hemophilia and color blindness),
then the system (2.5) must be replaced by a system of four equations which does
not simplify. A gene located on the Y chromosome would affect only males,
and pass from father to son exactly as in a haploid population. Genes of this
type, however, are apparently quite rare. See Crow and Kimura (1970) and
Jacquard (1970) for more detail.

Another possibility is illustrated by the domesticated grape, Vitis vinifera.
Here sex is determined by three types of chromosomes, ‘F°, ‘H’, and ‘M’. Indi-
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viduals of type ‘FF’ are female, the types ‘HF’ and ‘HH’ are hermaphroditic,
and all others are male (Zohary and Spiegel-Roy (1975)). We leave to the reader
a discussion of random mating in this case.

3. The stepping stone model, II. From here on, we assume the array of colo-
nies is the set of integer lattice points J* in d dimensions, and the migration
transition function g(x, y) of (2.1) satisfies

(3.1 PriX,,, =y|X,=x]=9(x,)) =90,y —x) = g(y — x),

where g(x) = ¢(0, x). The case d = 2 is the most important in nature, since
few species have a significant range in either altitude or ocean depth. The case

= 1 would describe a habitat which is constrained to be one-dimensional, for
example, an ocean beach, the bed of a river, or the side of a mountain at a given
altitude. See Maruyama (1972), Nagylaki (1974a), (1974b) and Malécot (1975)
for results for a habitat of finite size.

3.1. Let {X,} be the migration random walk ot an immortal individual, as
in (2.1). Then

PriX,..,=y|X,=x]=g.(y — x) = gu(x, ),

where g,(x) = 23 9(x — »)9x-1(»)> 9:(x) = g(x). While the descendants of a given
individual may not follow the random motion {X,} for all time (there may be no
descendants), the positions of the predecessors of a given gene is a well-defined
random motion. Since ), g.(x, y) = >, g.(y — x) = 1forall yand k, we have
asin (2.3)—((2.4) that Pr[X,,_, = x| X, =y]=g.(y —x) for 1 Sk <m < n.

In particular the random walk Y, = Y, _, (0 < k < n) has the step distribution .
g(—x), and
3.2) Pr{Ypw =) |Ym=x]=gulx — ) Os<m<m+4+k<n.

Now, choose two genes from the population at the beginning of the nth gener-
ation, one from the colony at x and one from y. Let 4, and B, (0 < k < n)
respectively denote the positions of their predecessors k generations into the past;
i.e., in generation n — k. Each of the processes 4, and B, defines a random walk
in J¢ with distribution (3.2), and, by the properties of random mating, they are
independent as long as the two genes stay in separate individuals.

In general, let M be the random variable giving the number of generations
into the past until the first common predecessor, assuming the two genes have
a common predecessor. If there are no common ancestors during the preceeding
n generations, set M = co. Then,

THEOREM 3.1. Let I (x, y) be the probability of identity by descent or identity of
type for two distinct randomly chosen genes at the beginning of the nth generation,
one from the colony at x and one from y. Then, for u = 0,

(3.3)  L(x)) = E[( = 0)"yusm| 4 = x, By = )]
+ (1 — w)™ B[I(4,, B,)Xuu>n1| Ao = X, By = y].
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For u = 0 this simplifies to
(3.4) I(x,y) =Pr[M < n|A4, = x, By = y]
+ E[I(A4,, B)Xiyus>a1| Ao = X, By = y].

RemARrk. This holds for haploid or diploid populations; all that changes is
the joint distribution of the 4, and B, (see Section 3.2 or Section 5.2).

Proor. First, assume M = k < n. Then the two genes are i.b.d. ori.b.t. iff
there have been no mutations in either line of descent, an event of probability
(I — »)*®. Summing over k gives the first terms of (3.3) and (3.4). If M = oo,
the genes are not i.b.d., but /i(x, y) = 0 in that case; they are of the same type
iff their zeroth generation ancestors, located at 4, and B,, are of the same type
and there are no intervening mutations. For A4, =+ B,, this probability is given
by the second term in (3.3)—(3.4) using only the fact that the offspring distri-
butions of different individuals mating in one colony are exchangeable random
variables. For 4, = B,, it follows from the definition of ‘“random mating.”

Note that in Theorem 3.1, the events “M = m” or “M < k” are independent
of which generation is the present, as long as n > k or m. If we formally take
a limit in (3.3) for u > 0, we obtain

(35) Iw(x, y) = lil’l‘l,n_.oo In(x, _y) = Zr’(l — u)2" PI'[M = kle =X, B, = y] .

Malécot (1948-69) found the equilibrium probability (3.10) below by assuming
a time independent solution of (2.2) and using iteration. In particular, this equi-
librium solution is given by (3.5), and turns out to be the moment generating
function of the random variable M (Malécot (1975)). Before using this formula,
we would like a model of {4,}, {B,} in which this limit can be taken for random
variables defined on a single probability space. This we construct in the next
section.

3.2. Assume the population is haploid, with N individuals per colony. Then
the processes A, and B, of Section 3.1 are independent for k < M, and identical
for k = M. Obviously a necessary condition for M = k is A, = B,; i.e., the
predecessors of the two genes were in the same colony. In particular the values
of M are restricted to the zeroes of C, = 4, — B,.

However C, is also a random walk for k < M, with step distribution

(3.6) PriCopy=x|C,=0]= 2, Pri4,,,=x+y, B, =y|A, =B, =0]
= L, 9(x +7)9() = Q(x) = Q(—x) .
Now, let {Z,} be an arbitrary random walk in J¢ with step distribution Q(x),
and set
(3.7) W, = (Zw i)

where

. Pr,=1]=1-21,

Pr[l,‘=0]=% 5
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where {/,} is a sequence of independent random variables, independent also of
{Z,}. Similarly, set
M, =min{k: 1 £k <n and W, =(0,0); ie., Z, =1, =0}

with M, = oo if W, # (0,0), | < k < n. If Z, = 0, the event “/, = 0” should
signify that the predecessor genes were the same; if Z, - 0, /, has no significance.

THEOREM 3.2. Choose two genes at random from the colonies at x and y at the
beginning of the nth generation, and define M as before. Then, if Z, = x — y in
(3.7), the random variables M and M, are identically distributed.

REMARK. Thus M has the distribution of the first hitting time of the state

(0, 0) by the Markov chain {W,}. The process {Z,} (or {C,}) is called the parental-
distance random walk.

Proor. If k — 1 < M and A4, = B,, then M = k with probability 1/N by the
properties of random mating. ‘Similarly M > k with probability 1 — (1/N).
Thus the value of M represents the first success in a sequence of independent
Bernoulli trials conducted on the zeroes of C, = A4, — B,, with probability of
success 1/N at each trial. Similarly M, is the first success of the same Bernoulli
scheme conducted on the zeroes of Z,. Since {C,} and {Z,} have the same joint
distributions before M, it follows that M and M, have the same distribution.

In particular, by (3.5), for u > 0 and n — oo,

(3.8) I.(x,y) = D7 st Pr[M, = k| Zy = x — ]
= E[(1 — u)™|Z,= x —y].
From this point on, we write M and M,, and Z, and C,, interchangeably.

We can use Theorem 3.2 for an alternate derivation of Malécot’s equilibrium
formula. For, set

K(x —y,8) = Ny s PrW, = (0,0)| W, = (x — y, 1]
:71\7):;’°s"Pr[Z,,=O|ZO=x—y],

where H(x, s) = }7s*Pr[Z, = 0| Z, = x}. Now

K(x,s) = E[ 25 st[w,,=<0,0)], W, = (x, 1)].
By summing over the events “M = m” and using (3.8), we obtain the standard
formula

(3.9) K(x, ) = L(x, 0)(1 + K(0, s))
for s = (1 — u)% i.e., u =1 — st. Hence by (3.9)

K(x —y,5) _ Hx —,9)
1 4+ K(©O,s) N+ HQO,s)’

which is Malécot’s formula. Here
(3.11) H(x,s) = 27 s"Q,.(x), for
0.(x) = 20, 0(x — »Q,.(»), Q) =X, 9(x + »9(y) .

(3.10) I(x,y) =
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Alternately, we can derive (3.10) using only the process {Z,}. Set
T, =min{k: k = 1, Z, = 0} and, by induction, T,,,, = min{k — T,,: k > T,,
Z, = 0}. The {T,: k = 1} are the successive times between visits of Z, to 0,
and the {T,, T, ---, T,, -- -} are independent. Then, by arguing as in the proof
of Theorem 3.2,

(3.12)  Pr[M=k|Z, = x]
1 1\"
= 51— ) Pl Tt o 4 Tu = k| Z, = x].
If we multiply (3.12) by s* and add, we obtain by independence
L(x,p) = 4 2 (1= ) for = 3, 9710, 9

fe =y
N — (N — D)0, s)
where f(x, s) = E[s"0|Z, = x]. The identity (3.10) follows from this and
H(x, 5) = f(x, s)(1 4+ H(0, 5)), which is the formula for {Z,} analogous to (3.9).

For diploid populations, the situation is more complicated. Suppose the pre-
decessors of the two genes form the gene pair of a single individual at some time
k < M. Then A,,, = B,,, as well as 4, = B,, since one creature carried the
two genes during the preceding generation, and 4; = B, for some indeterminate
time after k depending on the mating scheme (perhaps ending at M). The best
way-to modify Theorem 3.2 seems to be to define {Z,} as before, but let it get
out of phase with C, = A4, — B, whenever the predecessors of the two genes are
carried as the gene pair of a single creature. In (3.12), this amounts to replacing
the ‘T’ by ‘T, + A,’, where the A, have a predetermined distribution inde-
pendent of 7,. A formula analogous to (3.10) for diploid populations can then
be derived; see Section 5.2 for details.

An awkwardness for I,(x, y) or Z, is that, for some initial colonies x and ¥,
it may be impossible for predecessor genes ever to have been in the same colo-
ny. One way this could happen would be if the additive group G spanned by
{n: g(n) > 0} in J* is a proper sublattice of J2. Then A, (resp. B,) remains for-
ever in the coset of G in which it began, and 4, and B, may never meet. A
random walk {X,} for which G = J? is called aperiodic. A second possibility is
that {n: g(n) > 0} be contained in some coset of a proper sublattice G of Je.
Then A4, — B, always remains in the same coset of G, and 4, and B, may never
meet even though individually both may visit every colony. A random walk
{X,} for which {n: g(n) > 0} is not contained in any proper coset on J¢ is called
strongly aperiodic.

These conditions can also be stated in terms of

(3.13) f(6) = E[e751] X, = 0] = 3,00 ¢ g(n)

and

D:{(ﬁl’ez’ ""0¢): —-ﬂ'éaién‘,l

IA
IA

j=d}.
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THEOREM 3.3 (see Spitzer (1964, Chapter 2)). Let (X,} be an arbitrary random
walk in J¢, and define f(0) and D as above. Then {X,} is aperiodic iff f(6) =1 for
0 € D implies § = 0, and strongly aperiodic iff | f(6)| = 1 in D only for § = 0.

By (3.6) and (3.13),
(3.14) #(0) = E[e"*1] Z, = 0] = | AO)[" ,

and {Z,} is aperiodic iff {X,} is strongly aperiodic. If g(0) > 0 and {X.} is ape-
riodic, it is automatically strongly aperiodic. If d =1, {X,} is aperiodic iff
g.c.d. {n: g(n) >0} = 1.

3.3. Assume the mutation rate ¥ = 0 in this section. In general, a random
walk {X,} in J? is recurrent if Pr [X, = O for infinitely many n| X, = 0] = 1, or
equivalently (Spitzer (1964), Chapter 2) if 3], Pr[X, = 0| X, = 0] = co. Thus
{Z,} is recurrent iff H(0, 1) = oo, and an analytic proof of the result below could
also be constructed from (3.10), (5.2) and the finiteness of (4.12)as s — 1.

THEOREM 3.4. Assume the migration random walk {X,} is strongly aperiodic in
J%, and let 1,(x, y) be the probability of i.b.d. as in Section 2. Then

(3.15) IL(x,y)—1 as n—oo, all x,y

(ie., Pr[M < co|Z, = x — y] = 1) iff the parental-distance random walk {z,} is
recurrent.

REmARrks. In particular (3.15) holds for any strongly aperiodic finitevariance
migration random walk {X,} in one or two dimensions, since then E(Z,|Z, =
0) = 0and E[Z| Z, = 0] = 20*(X)) < oo (ibid., page 83). Conversely, no ape-
riodic random walk {Z,} can be recurrent in three or more dimensions.

Proor. First, assume {Z,} is recurrent and the population is haploid. Then,
for any x and aperiodic {Z,}, Pr[Z, = 0 for infinitely many n|Z, = x] = 1
(ibid., Chapters 2, 7) and consequently Pr[M = oo | Z, = x] is the probability
of nothing but failures in an infinite sequence of Bernoulli trials with probability
of success I/N. Hence Pr[M < oo | Z,= x] = 1 and (3.15) follows from Theorem
3.1. Conversely, if {Z,} is not recurrent, ¢, = Pr[Z, # 0 for all n > k | Zy, =
0] >0 for some k and lim (1 — I,(0,0)) = Pr[M = o0 |Z, = 0] = ¢,(1 —
(1/N))* >0, 1,(0, 0) — 10, 0) < 1. The proof for diploid populations is simi-
lar; see Section 5.2.

The observation that migration in‘one or two dimensions leads to “complete
genetic uniformly” under various conditions has been made by several authors
and goes back to Sewall Wright (see also Weiss and Kimura (1965) and Malécot
(1967)). As the next result indicates, the situation is not simple with an infinite
array of colonies.

THEOREM 3.5. Assume {X,} is an arbitrary migration random walk in J* with
Q(0) < 1. Then, with probability one, the descendants of any given gene eventually
become extinct.
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ReMARK. This depends on there being an infinite number of colonies; other-
wise it is false.

ProoF. Assume the given gene is in the zeroth generation. Let N(n) be the
number of descendants in the nth generation, and let B(n) be the s-algebra of
all events in the first n generations. Assume N(n) = k for some n and let R be
the event that k(x) of these genes are located at x for each value of x. Then,
summing over all genes in the (n 4- 1)st generation, we obtain by (2.3) and the
definition of random mating

E[N(n + 1)|R] = 35, N 23, 9/(a, x)k(a)/N = X, k(a) = k

and E[N(n 4 1)| B(n)] = N(n). Hence {N(n), B(n)} is an integer-valued nonnega-
tive martingale, and consequently lim N(n) = N(co) < oo exists with probability
one (Doob (1953)). A moment’s reflection shows that the only possibility is
N(o0) = 0, and N(n) = 0 for all large n with probability one.

Since there are initially only a countably infinite number of genes, then, with
probability one, the descendants of every initial gene eventually die out (al-
though not of course at the same time). What apparently happens is that every
bounded set is taken over by single dynasties (i.e., descendants of a single initial
gene) for longer and longer periods of time, with the periods of transition be-
tween dynasties becoming so rare that they do not show in (3.15). This is rem-
iniscent of the situation with a critical queue in which the expected length of
time before being served for the nth arriving customer grows like nt but, with
probability one, infinitely many customers do arrive to be served immediately.

The above could not happen if for example

(3.16) el —Lx,y) < oo, all xp.

For then, by the Borel-Cantelli lemma, every bounded set eventually becomes
completely homogeneous and stays homogeneous forever. Fortunately, the rates
of convergence we derive in Section 4 for # = 0 all imply divergence in (3.16).

One interesting question is the analogous situation for an arbitrary initial dis-
tribution of types of genes, where here I,(x, y) is the probability that the two
genes are of the same fype. Is (3.16) necessary and sufficient for the steady
takeover of J¢ by one type of gene?

An interesting question in the context of Theorem 3.5 is the asymptotic be-
havior of Pr[N(n) > 0]. If there is only one colony, it decays like (1 — (1/N))"
for all but one gene. With N = oo, with migration or without, N(n) becomes
a branching process with mean-one Poisson offspring distribution and

(3.17) Pr [N(n) > 0] ~ 2/n.

The asymptotic behavior of Pr [N(n) > 0] is not known for any infinite stepping
stone problem. It could well be something of the order of (3.17).

Added in proof. R. Rusinek (Yeshiva University) has shown that (3.17) is at
least an asymptotic lower bound for finite N. See Sawyer (1977) for the asymp-
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totics of E[N,(n)], where N(n) is the size of the dynasty containing a randomly
chosen individual at the origin at time n. Holley and Liggett (1975) have a sto-
chastic model for magnetization (called the voter model) which is very similar
to a continuous-time version of the stepping stone.

4. Rates of convergence. Assume the population is haploid with N individuals
(genes) per colony, and that the parental-distance random walk {Z,} is recurrent
(see Section 3). Then

R(n) = 21 0(0) = Xt Pr[Z,=0[Z,=0] - oo ..

The main result of this section is that if the mutation rate u = 0, or in general
if u = O(1/n), where n is the number of generations, then 1 — I (x, y) converges
to zero at roughly the rate 1/R(n). This holds not only if Iy(x, y) =0 (i.e., if
I,(x, y) is the probability of i.b.d.), but generally if /(x, y) is small for large
x —y. If u(n)=u >0, then I (x,y) — I,(x,y) = O(1 — u)™) by Section 3.
Assuming a monotonicity condition (which is also required for the results quoted
above with ¥ = O(1/n)) and Iy(x, y) = 0, we derive an exact rate in this case
also which is uniform for nu(n) — co.

Malécot (1975) considered a one-dimensional migration with bounded steps
and obtained both these results for constant # and I, = 0. For u = 0, this was
extended to finite-variance random walks in one dimension by Nagylaki (1976b);
see also the remarks after Theorem 4.2 in Section 4.1.

The results below carry over exactly for diploid populations, provided N is
replaced by an “effective” number of genes per colony that depends on the mat-
ing scheme. See Section 5 for details.

4.1. The main assumption we make about the migration process {X,} is that
R(n) above is of regular variation; i.e.,

4.1 R(n) = X7 0,(0) ~ n*i(n) as n— oo,

where a = 0 and A(n) is a function of slow variation. This will allow us to use
the Karamata Tauberian theorem (Feller (1966), pages 418-423) in the proofs
below. A function A(n) is said to be of slow variation if lim,__, A([xn])/4(n) = 1
uniformly for x in closed subintervals of (0, c0). Examples are A(n) = const.,
A(n) = log n, A(n) = (log log n)*(log n)* and A(n) = exp(2(log n)?).

In general Q,(0) = Pr[Z, = 0| Z, = 0] = O(1/n?) for any random walk in J¢
with Q(0) < 1, and Q,(0) = O(1/n) for aperiodic {Z,} in J* (Spitzer (1964, page
72)). Thus a < % in (4.1) unless Q,(0) = 1, and a = 0 in general in J2. If {X,}
is strongly aperiodic in J* with ¢* = ¢%(X,) < oo, then R(n) ~ (1/o)(n/x)* (Section
4.2.1). If E(||X)||*| X, = 0) < oo in two dimensions, we consider the covariance
matrix ¢* with entries }; = Cov [ X, X;?| X, = 0]4,j = 1,2. If {Z,} is ape-
riodic, then ¢* has two positive eigenvalues ¢?, 0,2, and

R(n) ~ (1/4r0,0,) logn

(Section 4.2.2). Parameters a in the range 0 < a < } also occur; they are
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associated with one-dimensional migrations which have X, or Z, in the domain
of attraction of one of the stable laws (see Section 4.2.3). In general,

THEOREM 4.1. Assume the mutation rate u = 0, and the migration random walk
{X,} is strongly aperiodic. Assume also {Z,} is recurrent and satisfies (4.1), and let
I.(x, y) be the probability of either i.b.d. or identity of type as in Sections 2 and 3.
In the latter case (i.e., if I, # 0) we also assume ‘

lim,_, sup,_s =, fo(a, b) = 0.

Then’
(4.2) L= Iy(x, )~ S0OT N+ B =) gy
an R(n)
as n— oo. Here b(x) is the “‘recurrent potential” (Spitzer (1964, Chapter 7))
(4.3) b(x) = (27)¢ §, %w) b < oo, all x

for ¢(0) and D defined by (3.13)—(3.14).

We defer the proofs of Theorems 4.1—4.3 to Sections 4.3 and 4.4; Section
4.2 is devoted to examples. If E(]X,]’) < oo for a strongly aperiodic walk in
one dimension, the recurrent potential satisfies

bx) = |x|/20* + C, 4 O(1/x])
for a particular constant C, (Section 4.2.1), and (4.2) takes the form

20N + |x|fo + 20C, + O(1/|x))
(nm)?

1 —I,(x,0) ~

for each fixed x as n — co. In two dimensions, if E(||X]||*) < oo,

1 — I(x,0) ~ 4rg,0,N + 2 log ||¢r‘1xl|c|)g-1—n47z,'ala2C2 + O(1/||x[|*)

for alla < 1. Here o~ is the minus one-halfth power of the matrix ¢*; i.e., with
the same principal axes and eigenvalues o,7, g,7* (Section 4.2.2). See Section
4.2.4 for an example in which 1 — 7,(x, 0) ~ C(x)/log log n in (4.2).

For mutation rates # > 0, we unfortunately need the monotonicity condition

4.4 nPr[M=n|Z,=x]|for nZ=ny(x), all x.

This condition seems very difficult to wverify, but is probably correct for all
random walks satisfying (4.1). Without (4.4), the results below are correct in
an averaged sense. In particular, one could not have an essentially different
asymptotic rate.

If « = 0and 4 > 0, we need another condition

4.5 » kQ,(0) ~ () P k(0,(0) — 0u(x)) = o ("
@3 Tk ~ 8L Tk — ) = o (75)

as n — oo for each x, where p(n) is a second function of slow variation. For
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finite-variance strongly aperiodic walks in J2, (4.5) is satisfied with g(n) = logn,
and in fact 37 k(Q,(0) — Q.(x)) ~ A(x) log n in this case.

In Theorems 4.2 and 4.3 below, we define /,(x, y) with the mutation rate ¥ =
u(n) held constant for the n generations implicit in /,(x, y), and then let u = u(n)
vary as n (and 1,(x, y)) varies. This allows us to estimate 1 — I,(x, y) for small
u and large n, with e.g., u of order 1/n. What we do nor have in mind is a bio-
logical system in which the mutation rate varies with chronological time.

THEOREM 4.2. Assume I(x, y) = 0 and (4.4), and let {X,} be as Theorem 4.1.
Let the mutation rate u = u(n) vary as described above. Then, if « > 0 in (4.1),

. - .(1,,_,"”)?:2‘ sinar N + b(x — y) _
(4.6) I.(x,y) — I(x,) Y R R(n) uny=u >0
- sinar N + b(x — )
q[2u(n)n] R(n)

u—0,u’'n—-0

asn — oo, where g(x) = {r e *¥y~"«dy. For a = 0, assume (4.4) and (4.5), and
in addition nu(n) = ¢ > 0. Then

(I —wr? 1 N+ b(x —y)
L= (1 —w nu(n)  R(n)

~ Ei[2u(n)n] = N +(b)(;( ) )) u—0, u’n -0,
z(n)A(n

where Ei(x) = o e"vy~'dy is the exponential integral function.

4.7  L(x,y) —I(x,y) ~ u(ny=u >0

The first rates in (4.6) and (4.7) are uniform in n as n — oo for un — co. See
(4.30) in Section 4.3 for a more complicated asymptotic expression which is
uniform for 0 < u < 1. If u(n) ~ ¢/n for 0 < ¢ < oo, then

(4.8) L= L(xy) ~ NFOx =) @9° N bx—y)
= H[0, (1 —u)*] T(1 + a) R(n)

(see (4.23)). Thus 1 — I(x,y) and I(x, y) — I,(x, y) are of the same order of
magnitude in 1 — 7,(x, y) for « > 0, but 1 — I(x, y) is asymptotically larger if
a = 0. In particular I(x,y) — I,(x, y) ~ C(x, y)/(log n)* for a finite-variance
migration in J%, while 1 — I_(x, y) ~ D(x, y)/log n by (4.8).

If the initial probabilities of i.b.t. I(x, y) # 0, the situation is much more
complicated. For example, let L(x, v) = I(x, 0) be the equilibrium probability
of i.b.d. for the mutation rate v > 0. Then, by Theorems 3.1 and 3.2,

4.9) L(x,v) = E{xinsm(l — v)™[Z, = x]
+ (1 — )" E[xusm L(Za v) | £, = x] .

Hence if 1,(x, y) is the probability of i.b.t. in the nth generation with u(n) = u
and Iy(x, y) = L(x — y, v) for v # u, then by (3.3) and (4.6) and (4.7) applied
twice

(4.10) I(x,y) — 1(x,y) ~ A[l(x, y) — Lx, )],
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where 4 3 1 and 1,°(x, y) is the probability of i.b.d. (i.e., with I = 0). Simi-
larly, if I(x, y) = CetL(x — y, ¢) for all x, y and ¢ > 0 and some C > 0, then

lim, o [1a(x, y) — Lu(x DITa(x5 y) — 1A%, )] = —o0

for all x, y. For a finite-variance strongly aperiodic migration with I(x, y) =
F(x — y), Nagylaki (1976c) has shown that if u(n) = u = const. > Oand F(x) =
O(1/||x|[**) for some ¢ > 0, then (4.10) must hold with 4 = A(F). Of course
A(F) =1 if ¥ = 0. His techniques are different from ours; we have not been
able to extend them to variable u(n).

Our results for /(x, y) + 0 and u = u(n) — 0 are not as complete as with
I,=00rI,+ 0, u = 0. In general, by (3.3)

La(x,y) = L(x,y) = [1a(x, )) — LY, DI — 4u(x, 7))
where 4,(x,y) = 0 is a function of I(x,y). Of course I,(x,y) — I(x,y) ~
I(x,y) — I(x, y) iff 4,(x, y) — 0. The results below give sufficient conditions so
that I(x, y) — I,(x, y) does not “feel” the initial distribution /,(x, y) for small u.

THEOREM 4.3. Let I,(x, y) be the probability of identity by type as in Section 2,
and 1,(x, y) the probability of i.b.d. Assume both are computed with a mutation
rate u = u(n) = O with u(n) — 0 as described above. Assume {X,} is strongly aperi-
odic and (4.1) holds, with nu(n) = ¢ > 0 if « = 0. Then

(i) If I(x,y) < CL(x — y, ¢) for some ¢ > 0 and C for all x and y, then
A, (x, y) = O(max {u(n), 1/n}) as n — oo, all x, y.
(ii) If u(n) = O(1/n) and a > 0, then A,(x,y) — O whenever lim
for F(x) = sup,_,_, I(a, b).
(iii) If {X,} is a finite variance migration in J* and F(x) = o(1/log ||x||) for F(x)
defined above, then A,(x,y) — 0.

F(X) =0

T —00

If {X,} is a strongly-aperiodic finite-variance random walk in three dimensions,
it is natural to ask about the behavior of I(x, y) — I,(x, y); for example, ifu = 0
and /, = 0. In this case I (x, y) < 1 for all x, y even though ¥ = 0, and the
methods of this section do not apply since {Z,} is not recurrent. The rate,
however, can be computed and turns out to be (N + C(x — y))/n?, exactly as
in one dimension (Spitzer (1964), page 342).

4.2. Set () = 3, *Q(x) = |f(0)|*as in (3.14). Then0 < ¢(0) < 1, ¢(0) =
#(—0),and ¢(x) < 1for @ e D, 8 + 0 whenever {X,} is strongly aperiodic. Since
{Z,} is arandom walk, E(exp(i0Z,)| Z, = 0) = ¢(0)" = 3., €"Q,(x) (Spitzer
(1964), Chapter 2)) and
(4.11) Q.(x) =Pr[Z, = x|Z,=0] = (2r)~* {, cos (Ox)p(0)" db .

4.2.1. Let {X,} be a strongly aperiodic random walk in one dimension with
o* = ¢*(X,) < oo. Then

0.(0) = (2n)7" §2. $(0)" d0 = (1/x) §; $(6)" 40 + O(e™"")
by the continuity of ¢(f), where ¢ > 0 is arbitrary and 6 = d(¢) > 0. By
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construction E(Z,| Z, = 0) = 0, and ¢*(Z,) = ¢*(4, — B;) = 2¢°. Hence ¢(0) =
1 — ¢%*(1 + o(1)) for small #; choose ¢ > 0 such that |g(1)] < § for |#] < e.
Then
Q,(00) = (1/x) §5[1 — a®0*(1 + o(1))]" db + O(e~*™)
= (1/zn?) S;”* [1 — (¢?¢*/n)(1 + a(1))]"dO + O(e~*").
Since (1 — (A4/n))* < e~* for all integers n and 4 > 0, the integrand is bounded
by exp(—40%0*) uniformly in n, and
Q.(0) ~ (1/znt) {F e~ df = 1/20(zn)* .

Thus R(n) = 357 Q(0) ~ (1/o)(n/r)}.

In general we define b(x) = lim,_, b(x, s) for b(x, s) = H(0, s) — H(x, s), where

(4.12) ‘ b(x, ) = 2.7 s"[Q.(0) — Q.(x)]
— (2m)-4 1 — cos (xf)
= () gy o s90) 40

by (4.11). Now for any strongly aperiodic random walk {X,} with Q(0) < 1in
any number of dimensions, 1 — ¢(¢) = ¢|¢|* for all § ¢ D and some ¢ > 0 (ibid.,
page 70). Thus the integrand in (4.12) is uniformly bounded in s for each x,
and the recurrent potential b(x) of (4.3) is always finite.

In the present case, the estimate b(x) ~ |x|/2¢% is in Spitzer (loc. cit., page
345). To obtain more information about b(x) for large x, we write

(4.13) S S S () Rl e S AR Y 77

1 —¢@) d%6* a1 — ¢(9)) a’6*
where @) — 1 + 6°0* = 0*E[n(0Z,)Z*] for h(u) = (e — 1 — iu + tu* +
(i/6)u®)[u*. Since h(u) and h'(u) are bounded in u, R(f) is bounded if E[Z!] < o
and continuously differentiable if E[|Z,] < 32 E[|X]’)] < co. Hence if x > 0

bx) = 1§ L=S080% gy L L iz RO)[1 — cos 6x] db
o a’0? T
= X gl =08l gy X e 1080 4
ro? 0* ro? 9?

+ 1 S5 RO) 0+ O(1])

as x — oco. Now {2, (1 —cos0)/6*df.= (1/xx) — 2§, (sin /0% db = (1/xx) +
O(1/x%), and b(x) = b(—x) = x/2¢* + C, + O(1/x) for

1 #(0) 1 }
4.14 C,= ——\r| -2/~ _1d0 — (1/n%?).
(*19) ' ﬂso[l—gb(ﬂ) 76" (/7
4.2.2. Let {X,} be a strongly aperiodic random walk on the two-dimensional
lattice with E[||X}||’] < oo, and let ¢}; = Cov [X,”, X, | X, = O] fori,j =1, 2.
If the matrix o® is singular, then Var (aX,V + bX,) = 0 for some vector
(a, b) +# 0, and the random walk {Z,} is restricted to the line through the origin
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perpendicular to (a, b) (given Z, = 0). Hence the eigenvalues o,%, 0,* > 0 if {X,}
is strongly aperiodic.

If ¢(6) = $(6, 6,) = E[exp(if - Z,)| Z, = 0] as in (3.14), then ¢(6) = 1 —
a(@)(1 + a(1)) where a(0) = 3.3 07;0,0;. Since ¢(0) < 1 for 6e D, § + 0 as
before,

Q.(0) = 2m)~* {1, ¢(0,, 0,)" db, db,
— (20)7*§§, [1 — a()(1 + o(1))]" db, db, + O(e=*")
L qe[1 — P + o(1)]*r dr dB + O(e=)

2
4r’c,0,

~ (2zno,a,)' (¢ e~rdr = 1/4no,0,n

where V' is an ellipse about the origin, and R(n) ~ (1/4r0,0,) logn.
Extending (4.13) in the obvious way to two dimensions, we also compute

b(x) = (1/4n?) §§, LS80 X4 up, _ 1

I — (0)
1 1 — cos (X,0, + X,0,) 1
(4.15) = 8 1) do, do, + C[V] + °(m>

+ 145, R©) a8, db, — L5, R(6) cos (6x) b, a8,
4r? 4r?

for x = (x;, x;) # 0. If E(||Z,]|***) < 2**¢ E(||X)|[***) < oo for some ¢ > 0, then
|R(0)] < C/||0]** and R(8,, 6,) is integrable in the square. Then the last integral
in (4.15) converges to zero as ||x|| — co by the Riemann-Lebesgue lemma, and

bx) = g5 3 L VIO Bl 1 g g5 1 o) + o)
no,0, r ‘
@e =g L0 gy o 1o
To,0, r

= (1/2ra,0,) log |le~x|| + C, + o(1)
for large x. Here Jy(x) = (" cos [x cos 8] dB/2x is the Bessel function of order
zero, and ¢! is the matrix with the same principal axes as ¢* and eigenvalues
g7 o,

Now, assume E(||X;||*) < oco. The error term in (4.16) is O(1/||x||) except for
the last integral in (4.15), which is bounded by /(k) = {{, |R(6 + k) — R(0)| d6,d0,
for h = nx/||x||*. Writing R(6) = E[g(0 - Z,)(0 - Z,)*]/a(0)(1 — ¢(0)) for g(u) =
(e™ — 1 — iu + Lu*)/u® allows the estimate |R(6 + k) — R(6)| < C||h||/||0]]* for
2l < 11611 = 116 + A||. Hence ,

I(h) = O(|[A[[*) + O(|[A| §in, dr/r) = O(|[A| log (z/|[#][)) = O(||A]|)
foralla < 1. ]

4.2.3. Let {X,} be a one-dimensional random walk with

A

PriX,=n]~2, Prix,< —n]~7"h
na na
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for some a with 0 < a < 2 and A4, + 4, > 0. In particular E[X,’] = co, and
E[|X,|]] = oo for 0 < a < 1. Moreover

(4.17) Pr[Zlgn]:Pr[Al—Blgn]~£ as n-— oo
ntx

for A = A, + A, (Feller (1966), page 271), and the distribution of Z, is in the
domain of normal attraction of the symmetric stable law of index « (ibid., pages
540-549). This means
(4.18) E[e!Zn/* | Z, = 0] — e~ 210" for all ¢
and some B > 0, 8 = 1/a, and n(1 — ¢(0/n?)) ~ —nlog ¢(6/n?) — B|6| for all 6.
If A(x) = x[1 — ¢(1/x?)], then lim,_, h(nd) = B for all 6 > 0, and A(x) is con-
tinuous for 0 < x < co. Hence lim,_,, #(x) = B exists as a continuous limit
(Kingman (1963)) and
(4.19) é(0) =1 — B|g|*(1 + a(1)) as 0 —-0.
Arguing as before,
1
0.(0) = — 1§ $(9)" d0 ~ Cn?

and {Z,} is recurrent iff 0 < 8 < 1;i.e., | £ a < 2. For these a,
R(n) = 37 Q(0) ~ C'nt-We if l<a<x?2,
~ Clogn if a=1.
Similarly, by (4.19) and arguing as in (4.13), b(x) ~ C,|x[*"if | < @ < 2, and

1
b(x) = P log |x| 4+ O(1)

if §(0) =1 — A)0|(1 + O(6*)) as § — 0 for some ¢ > 0.

Conversely, let {X,} be an arbitrary strongly aperiodic random walk in one
dimension and suppose ¢(f) | for 0 < 6 < ¢ for some ¢ > 0. If
(4.20) R(n) = X7 Q(0) ~ Cnr 0<r<s, C>0,
then a standard Tauberian argument yields (4.19) for y = 1 — (1/a). One then
concludes (4.18) and a posteriori {Z,} was of the form (4.17) (Feller (1966),
540-549). The same argument also goes through if R(n) in (4.20) in replaced
by n7A(n) for some function of slow variation A(n), with 6 in (4.19), n’ is (4.18),
and n* in (4.17) all multiplied by functions of slow variation.

4.2.4. Assume {X,} is a two dimensional random walk with

PrX, = (m, n)] ~ Af(m* + n')
as m*+ n'—oo for some A4 >0. Then ¢(0) = |f0) for (4,0, =
E[exp(if - X;)| X, = 0], and
(1 — é(hcos B, hsin B))/A*
~ 2(1 — Re f(h cos B, hsin B))/H

_ 1 1 — cos[A(m cos 8 + nsin §)] .
=24 " W 4 )y’ (I + e(m, n))
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where lim,,, , . &(m, 1) = 0. The sum for h(m* 4+ n*)t = ¢ > 0 is the two-di-
mensional Riemann sum of an integrable function and is hence bounded as
h—0. Writing 1 — cosu = 4u* + O(u*) for the terms with A(m® 4 n')t < ¢
yields similarly

1 — ¢(hcos B, hsin ) = Anh*log (1/h*) + O(h?)
uniformly in 3. Hence ¢(6) = 1 — 2z.4||0||*1og (1/]|0]]) 4 O(||0]|*) for small 6,
and

0.(0) = 41§55 $(01, 0. db, b,

~ _21, {s[1 — 2zAri(log 1/r + O(1))]*r dr
T

~ 1/Bnlogn as n— oo
for B = 84x*. In particular, {Z,} is recurrent, and R(n) ~ (1/B)loglogn as

n — oo. Hence by Theorem 4.1

1 —I”(x,y)~BL4;_lf(i‘.__})2 u=0.
log log n

The conditions (4.5) are satisfied here with p(n) = (log n)(log log n), and if (4.4)
also holds with un — ¢, 0 < ¢ < oo, then

N+ b(x —y)
1—1 > ~B ’
%) log log n

N+ b(x — )
I.(x, y) — I(x, y) ~ BE,2 .
=) () (2¢) (log n)(log log n)*

4.3. Proof of Theorem 4.1. First, assume I(x, y) = 0. Then 1 — I,(x,y) =
Pr[M > n|Z, = x — y] by Theorem 3.1, whkere M has the moment generating
function

= gn H(x — y, 5)
4.21 PrM=n|Z,=x —y]= 22"
(4.21) i s Pr[M =nlZy=x =yl = G
for H(x, s) defined in (3.11). Thus
S __ N+ H(0,s5) — H(x, s)
4.22 s"Pr(M >n|Z,=x]= ,
(422 EEsPrIM > n|Z =0 = TRt

since if ¢(s) = Y5 ¢,s" is any power series with ¢, = 0 and ¢(1) < oo, then

g(s) = (1 =) L5 5" Xt g and (g(1) — g/l — 8) = X5 s" 2741 9e-  Here
H(0, 5s) = 3.7 5"Q,(0) = (1 — s5) X}y s"R(n), where R(n) ~ n*i(n) by (4.1) for
some A(n) of slow variation. Hence

(4.23) HO, 5) ~ LU+ D a1 — )
(1 — s~
as s — 1 (Feller (1966), pages 418-423), and

- o N + ()
Lot PrIM >l % =X~ i — @ = 9
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Here b(x) = lim,_, H(0, s) — H(x, 5s) as in (4.12). Thus by the Karamata theo-
rem and one of its corollaries (Feller loc. cit.)

g —_ _ N + b(_x) ni-«
ZO Pr [M > k | Zo = X] F(l + a)F(z — a) x(n)
(4.24) _sinar N 4 b(x) n'=

ar 1 —a i(n)’
sinar N + b(x)

Pr[M>n|Z,=x]~ T

as n— oo

since Pr[M > n|Z, = x] | in n for each x. Malécot (1975) also uses this tech-
nique.
Alternately, one could proceed as in (3.12):

(4.25)  Pr[M > n|Z, = x]

1 1\*
—_—NZ(‘;"(l “N) Pr(T,+ Ty + - + T, >n|Z, = x]
where S, =T, + T, + ... + T, are the consecutive times at which Z, = 0.
The random variables {T,} are identically distributed for k = 1. Moreover
(4.26) Pr[T, > n|Z, = x] ~ $00% 1
ar  R(n)

sinar 1 4 b(x)

Pr[T,>n|Z,=x]~ - ()

(Spitzer (1964), pages 378-381, Feller (1949)). It then follows from independ-
ence that for each fixed value of k,
sinar k 4+ 1 + b(x)
ar R(n)
as n — oo (Feller (1966), page 271). On the other hand,
Rn)Pr[Ty 4 --- + T, > n|Z, = x] £ C(x)k***A(n)[A(n]k)

< Cy(0)k*

Pr[Ty+T,+ -+ T, >n|Z,=x]~

uniformly in n for each x by properties of functions of slow variation (ibid., page
274). Hence we have enough uniformity to sum the asymptotic relations in
(4.25), and (4.24) is the result.

If I)(x, y) # 0 in Theorem 4.1, the same conclusion (4.24) follows by arguing
as in Section 4.4.

ProoF oF THEOREM 4.2. Writing (4.21)as/ = 1 — (1 — I)and differentiating
yields
4.27) IrsmmPr(M=n|Z,= x]

_ (d/ds)H(0, ) N + b(x,s) _ (d]ds)b(x, 5)

N + H(0,s) N+ H(0,s) N+ H(0,ys)
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for b(x, s) = H(0, s) — H(x,s). Ifa > 0,

L H©,5) = L (1 —5) 5 "R(n) = — X7 s°R(n) + (1 — 5) 5 5" nR(r)
ds ds

~ T2+ a) — T + &)1 — )7 (1 — 5)~1-= ,.,afl(i),:)_

Similarly
(428 Lb(x, s = —Tr s T1(Q0) — Ou)

+ (1 = 9) L s"7'n Z1 (Qu(0) — Qu(x)) -
Now, as in (4.12)

T1HUO) — 0u() = o) §, 220D (1 — oy ap — 1
— 9(9)

converges to b(x) for each x, and both expressions on the right-hand side of
(4.28) are asymptotic to b(x)/(1 — 5). In particular (d/ds)b(x, s) = a(1/(1 — s)),
and the last term in (4.27) is asymptotically negligible with respect to the second.
Hence

N + b(x)
(1 — s)H(0, s)’
o sinar N 4 b(x) n'~¢

ar 1 —a A(n)

20" mPrM=n|Z,=x]~«a

TrkPr[M=k|Z = x] ~

as in (4.22)—(4.24). If « = 0, then directly
% H(O, 5) = X7 s"7nQ,(0) = (1 — 5) Ty 5"~ T kQu(0)

~_ Al =297
(1= 9T — 97
by (4.5), and H(0,s) ~ A2(1/(1 — s)) by (4.23). Similarly (d/ds)b(x, s) =
o(1[(1 — )(1/(1 — s))]) by (4.5) and by Karamata’s theorem again

. L N 4 b(x)
PkPr[M =k|Z, = x] ~n Y 1T 2()
LtkPrl 2o =X~ i)

Hence, if the monotonicity condition (4.4) is satisfied,

(429)  Pr[M=n|Z, = x]~MOTE (roqp T YN F )
ar  n nu(n)/  n*A(n)
where “resp.” means for a = 0;i.e., Pr[M = n|Z, = x] ~ (N + b(x))/np(n)A(n).
Write the right-hand side of (4.29) as g(n)/n'**. Then ¢(n) is also a function
of slow variation, and '
I3, )) = L6, y) = B0 (1L —wy* Pr[M = k| Z, = x — y]
~ 23 (1 — u)q(k) [k
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since [(x,y) = 0. Let v =log(l/(l1 — u)?), so (I —u)™ =e". Then, as

n— oo,

v w© v dx

Io(x, ) — La(x, ) ~ i——(l——_u)z n € q([x]);a?
v S dx
= (1 — (1 = uP)ne 1€ 9([xn]) xl+a

since {7t 57 dx = ((1 — s)/log 1/s5)s™ for any s > 0. Now it is a consequence of
the definition of slow variation (ibid., page 274) that g([nx])/q(n) < c¢(d)x’ for
all nand x > 1 and any 0 > 0, and either « > 0 or vn = un = ¢ > 0 (or both)
in Theorem 4.2. Hence

(4.30) Ioo(X, y) —_ n—l(x’ y) ~ lOg 1/(1 —_ II)2 q(n) S;e e—vne dx

1 — (1 —u)} n® xite
_ (1 - u)™ q(n) n |3 e~ dx
1 — (1 _ u)Z nite (1 + x)l+a

uniformly for 0 < # <1 (0 £ v < ) as n— co. If vn — oo, the second inte-
gral in (4.30) is asymptotic to 1/nv, and the first asymptotic relations in (4.6)—
(4.7) are the result. If 4 — 0, then v = log 1(1 — #)* ~ 2u and nv = nlog 1/
(1 — u)* = 2nu + O(nu®). Consequently if u’n — O the first integral in (4.30) is
asymptotic to {° exp(—2unx) dx/x'**. This completes the proof of Theorem 4.2.

4.4. Proof of Theorem 4.3. Let I'(x,y) = E[yiy<m(l — 0)|Z, = x — y].
Then by (3.3),

Ia(x,y) = L(x, y) = L(x, §) — LY, y)
(4.31) = (I = )" E[xu>uilo(Ans By) | Ay = %, By = )]
= Ha(xy) = LYx 9N — Au(x, 7)) s
where 4,(x, y) = 0. If I(x, y) < CF(x — y), then
(4.32) A(x, ) < C (A = 8" Elpu>mF(Z,)| Z, = x — )] .
Ia(x,y) = L%, y)
If F(x) = L(x, ¢) for L(x, ¢) as in (4.9), then by (4.9) and (4.30) applied twice,

A,y < L=w" Lx =y, ) = L(x =y, ¢)
(o Ty =T
< Cy/n{Fe (1 + x)~-e dx

where L,(x, ¢) is the probability of i.b.d. in the nth generation with mutation
rate e. Recall that either @ > Oorvn > un = 6 > 0. Ifu(n) < 1/n, the integral
is bounded from below and A,(x, y) < Cy/n. If u(n) = 1/n, the integral is bound-
ed from below by a positive constant divided by vn and A4,(x, y) < C,v(n). In
either case A4,(x, y) = O(max {u(n), 1/n}), which is part (i).



MIGRATION MODEL IN POPULATION GENETICS 723

Next, by (4.32),
(4.33) A(x,y) S CE[F(Z)|Zy=x—y, M >n] &
(1 —uw”Pr[M>n|Z,=x—y]
Io(x,y) = 1%, )) '
By either (4.6) or (4.30), the second factor is bounded if @ > 0 and u(n) = O(1/n).
Ifa =0and 0 < ¢ < nu(n) < /e, it is O(p(n)). In the first case,

(4.34)  A,(x,y) S C,E[F(Z)|M >n,Z,=x —y]
SC e Pr[Z, =z|M>n,Z, = x — y] + Cse,
where B = B(e) is the finite set {z: F(z) > ¢}. On the other hand,

X

LeEMMA 4.1. If (4.1) is satisfied, then for every x and z

lim, Pr[Z, =z|Z,=x,M>n]=0.

N —>00

Deferring a proof for the moment, note that the lemma implies 4,(x, y) — 0
and hence part (ii) of Theorem 4.3 by (4.34).

For part (iii)—i.e., F(x) = a(1/log ||x||) for a finite-variance random walk in
J*—we need a more delicate estimate of A4, in (4.34). First, by (4.9), Theorem
4.1, and (4.30) with ¢ = ¢(n) — 0

(4.35) 2 L(y,e(n)Pr[Z, =y|Z, = x, M > n]
~ (aresp. 1/pu(n)) {5 e *(1 + x)~'"*dx

as n — co, where 6 = log 1/(1 — ¢)*. Also

_ o= N+ HQO,r)—H(y,r) - N+ by _ c
L=L0»e) N+ HO ) = HO 7 T )

for r = (1 — ¢)®. Hence for sufficiently large n

(4.36) Diyesm Pr[Z, =y|Z, = x, M > n] £ 6/ndé(n)

for B(n) = {y: T(y, ¢(n)) < 2}. In our case, b(y) = (1/2ra,0,) log ||y|| + O(1)
and H(0,r) ~ (1/4rs,0,)log 1/(1 — r) by Section 4.2.2 and (4.23). Hence
B(n) 2 {y: ||y|l| = n°} for large n if 6 ~2¢~1—r<n*. For a=} and
o(n) = 1/n, we conclude ne(n) — co and the right-hand side of (4.36) is O(1/n?).
In particular

E[F(Z,)|Zy = x, M > n] = maXy,> . F(y) + O(1/nt)

which is o(1/logn), while the second factor in (4.33)is O(logn). Hence
A,(x, y) — 0, which is part (iii).

The same argument shows that 4, — 0 for finite-variance walks is one di-
mension if only u(n) = O(1/n’) for b = 2/(2 + a), provided F(x) = O(1/|x|*).
Alternately it gives an estimate for A, if u(n) = O(1/n) and F(x) = O(1/|x|*).

Proor or LEMMA 4.1. If {X,} is strongly aperiodic, then (3.10) and (3.11) and
Theorem 4.1 imply L(x,¢) > 0 for every x and ¢ > 0. Now, (4.35) holds for



724 STANLEY SAWYER

¢(n) = 4 if the right-hand side is multiplied by & log 2. Hence for {X,} satisfying
(4.1), (4.4) and (4.5),

(4.37) Pr[Z, =y|Z, = x, M > n] = O((1/n) resp. 1/nu(n))

for all x and y. Alternately we could argue as in Spitzer (1964, pages 162+)
(without assuming (4.4) and (4.5)).

5. Diploid populations. See Section 2.2 for a discussion of diploid dioecious
populations. Now, assume we have a diploid monoecious (i.e., hermaphroditic)
population arranged in a discrete array of colonies, with N creatures in each
colony. By random mating in this case, we mean that at each stage in Section
2.1 an individual is chosen at random from the colony to be a mother. Then,
with probability p, where 0 < p < 1, the mother produces one offspring by
cloning. In this case, the offspring is genetically identical with the mother. With
probability r, where r 4 p < 1, the mother selfs, i.e., fertilizes herself. This is
‘mathematically equivalent to her mating with a father which is genetically
identical with the mother. Finally, with probability ¢ = 1 — r — o, a father
is chosen at random from the remaining N — 1 individuals in the colony, and
produces one offspring with the mother. This process is repeated ¢ times per
colony, and for the rest of the generation we proceed as in Section 2.

Define /,(x, y) and J,(x) as in Section 2.2 for diploid individuals. Then as in
(2.2) and (2.5),

Lo 3) = (1= 4 { T Ty (@, b)aa, )aob, )

(51) + Zc 1 + J’n(c)z—]:, 21”((3, C)

Juwr = (1 — 0 T, [91,(@, @) + 13 + $,(@) + pJ.(@)]ou(@, %) -

Note that this reduces to (2.5) if r = p =0, ¢ = 1. If u > 0, the right-hand
side of (5.1) defines a contraction mapping of the pair (/,(a, b), J,(a)). Hence
by Banach’s theorem (/,(x, y), J,(y)) converges exponentially as n — co to a
unique time-independent solution of (5.1). However, if gy(x, y) = g(y — x) on
J*and I, = J, = 0, then by induction J,(x) = J, = const. for each n and /,(x, y)
depends only on the separation x — y. Hence the time-independent (equilibrium)
solution (/(x, y), J(x)) = (I.(x — y, u), J.,(u)). Let Q(x) and H(x, s) be as in (3.6),
(3.11). Then by iteration

9o(¢, X)go(c5 )’)} ’

L(x,u) = (1 — u)2|: 5L (x — y, )Q() + L F Jw(”)2; 21,(0, u) Q(X)}

_ 1+ Jm(u)2; 21,,(0, u) Hx, (1 — uy],
Jo(t) = (1 — )'[q1u(0, ) + 37 + (0 + $7)Ju(¥)]
= (1 — up 291,00, u) +r
2 — (1 —upRo+1n)
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After some algebra

(52) I (x—y) = . Hx=y,9)
' ) 2N — s(Nr/(1 — p9)) 4+ [1 + (1 — )/(1 — ps)]H(0, 3)

where s = (1 — u)*. Hence if the'probability of cloning p < 1,

(5.3) I(x, 1) = fzv_ljff}fi)Ts)’

(I + O(u))

2q1°°'(0, u) +r
J =2 7 T 7 o) ,
(%) P + O(u)

where N, is the “effective population size”

(5.4) 2N,=2N-N_T_|
q+r

See Section 5.2 below for a heuristic explanation of the weight “2¢/(2¢ + r)” in
the formula for J(«) in (5.3).
For a diploid dioecious population, (5.2) holds with p = r = 0; i.e.,
H(x, 5)
2N, + (1 4 2u — w?)H(0, s) ’
Jo(u) = (1 — w10, u),

(5.5) I(x, u) =

where here 2N, = 8m,m,/(m, 4+ m,) if the effective population densities of males
and females differ (see Section 2.2).

In particular, approximating a diploid population by a haploid model with
2N, genes (individuals) per colony gives an error in I(x, u) of O(u) (see (3.10)).
Since the mutation rate  is usually assumed quite small (¥ < 107%), this is a
very good approximation. For u > 0, the asymptotic probability of homozy-
gosity J.(u) is related to the local probability of i.b.d. 1,,(0, u) by (5.3).

Curiously, N, is independent of p for p < 1, and depends only on the prob-
ability of selfing within the probability ¢ 4 r of bisexual reproduction. In gen-
eral N < 2N, < 2N. For “complete random mating,” i.e., r = 1/N, p = 0, one
has 2N, = 2N — 1. In particular, for the equation of Malécot (1948-69), (1967)
to be correct within O(u) for a diploid monoecious population, selfing must be
prohibited.

5.1. Inview of (5.2), and the estimate H(0, s) = O(1 — 5)~ if Q(0) < 1 (see
Section 4.1), the analytic arguments of Section 4 go through with 2N, in place
of N. For example,

I — L(x, 1) ~ @N, + b())/H[0, (1 — uy’]

as u— 0, and similarly 1 — I,(x, y) ~ 2N, + b(x — y))/R(n) for u=0 and
I,(x, y) as in Theorem 4.1. There is a similar theory for 1 — J,(x). The proofs
of Theorem 4.2 and 4.3 generalize in exactly the same way.

5.2. We can also generalize the more probabilistic arguments of Section 3.2
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and (4.25) and (4.26). Suppose we are given two genes presently at x and y, in
distinct individuals if x = y. Let {Z,} be a random walk with Z, = x — y and
step distribution Q(x), and let {T,, T,, T,, - - -} be as in Section 3.2 or (4.25).
Then with probability 1/2N, M = T,; i.e., that is the generation of the first
common ancestor. With probability 1 — (1/N), the genes are in separate indi-
viduals in that generation, and M = T, + T, with probability 1/2N, etc.

However, with probability 1/2N, the two ancestral genes form the gene pair
of a single individual in that generation. If selfing and cloning are prohibited,
they were in distinct individuals in some one colony in the previous generation,
and M = T, + 1 + T, with probability 1/2N, etc. In general, the two ancestral
genes remain as gene pairs in various individuals for n generations, and have
their first common ancester in the generation (n 4 1) before the present-minus-
T,, with probability 4r(o + 4r)*. They are then in separate individuals with
probability g(o + 4r)*. Thus the total probability of having their first common
ancestor before being in separate individuals before the present-minus-T, gener-
ation is (1/2N) + (12N)4r/(1 — p — ) = (12N)(1 + (¢fr + 29)) = (1N)(r +
9)/(r + 2¢9)*= 12N, if p < 1, and

THEOREM 5.1. Let{T,, T,, T,, ---, Ay, Ay, B,, - - -} be independent random vari-
ables where {T,, T\, T,, - - -} are as above, {A,, A,, - - -} are identically distributed,
and Pr[A, = n] = Cy(p + 4r)*, Pr[A, = n] = C\(0 + r)* for some C,, C, and
n = 2. Then for all n

Pr[M=n|A4,=x, By =y]
1 1 \*
(5.6) = a3 25 (1= 55) POl 8t Tt Byt -
+Tk+Ao=anO=x_y]'
Since the {A,} are asymptotically trivial with respect to the {T,} given (4.1)
and Q(0) < 1 (Feller (1966), page 271), it follows as in Section 4.3

sinar 2N, 4+ b(x — y)

Pr[M=n|4,=x,B,=y]~ - Rin)

under the assumptions of Theorem 4.1. []

Also, it is easy to obtain the equilibrium solution (5.2) from (5.6) by arguing
as in (3.12)+.
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