PURELY ATOMIC STRUCTURES SUPPORTING UNDOMINATED AND NONUNIFORMLY INTEGRABLE MARTINGALES¹

BY DAVID A. LANE

University of California, Berkeley

Let $(F_n)_{n=1,2,\cdots}$ be a sequence of sigma-fields on a set Ω , each F_n purely atomic with respect to a measure P. Let C denote a nested sequence of sets C_n , where C_n is a P-atom of F_n for each n. Define $S(C) = \sum_n (P(C_n - C_{n+1})/P(C_n))$. Then every L^1 -bounded martingale relative to $(F_n)_{n=1,2,\cdots}$ and P is uniformly integrable if and only if S is finite-valued, and every such martingale is dominated if and only if S is uniformly bounded.

1. Introduction. Let Ω be a set and $(F_n)_{n=1,2,...}$ a nested sequence of sigmafields on Ω . Suppose F_n is generated by a partition of Ω , $(I(j,n))_{j=1,2,...,m_n}$ where m_n may be infinite. Let P be a measure on $F = \bigvee_n F_n$ such that for all n and j, P(I(j,n)) > 0. Call the pair $((F_n)_{n=1,2,...}, P)$ a purely atomic structure on Ω .

A chain is a nested sequence of partition sets $I(j_1, 1) \supset I(j_2, 2) \supset \cdots$. We denote this chain by $\bigwedge_i I(j_i, i)$. A chain may also be denoted by the letter C, and the atom of F_n in C will be denoted C_n .

We now define a function on the space of all chains:

$$S(C) = \sum_{n} (P(C_n - C_{n+1})/P(C_n)).$$

S may, of course, be infinite.

If $(M_n)_{n=1,2,...}$ is a martingale relative to $(F_n)_{n=1,2,...}$ and P, we say that M is supported by $((F_n)_{n=1,2,...}, P)$. If $E(\sup_n M_n) < \infty$, M is dominated.

In this paper, we establish the following result: every L^1 -bounded martingale on a purely atomic structure is uniformly integrable if and only if S is finite-valued; and every L^1 -bounded martingale on the structure is dominated if and only if S is uniformly bounded.

2. Characterization of purely atomic structures supporting nonuniformly integrable L^1 -bounded martingales.

PROPOSITION. Suppose C is a chain. $S(C) = \infty$ if and only if $P(\bigcap_n C_n) = 0$. PROOF.

$$P(C_i) = P(C_1) (P(C_2)/P(C_1)) \cdots (P(C_i)/P(C_{i-1}))$$

= $P(C_1) \prod_{n=1,\dots,i-1} (1 - (P(C_n - C_{n+1})/P(C_n)))$.

The product converges to zero as $i \to \infty$ if and only if $S(C) = \infty$.

www.jstor.org

Received September 5, 1975; revised April 9, 1976.

¹ Research supported by NSF GP-31091X 2, by DA-ARO-D-31-124-73-G31, and by AFOSR-73-2564.

AMS 1970 subject classification. Primary 60G45.

Key words and phrases. Purely atomic structure, dominated martingale, uniformly integrable martingale.

1016

THEOREM 1. A purely atomic structure $((F_n)_{n=1,2,...}, P)$ supports nonuniformly integrable L^1 -bounded martingales if and only if there exists a chain C with $S(C) = \infty$.

PROOF. (1) Suppose C is a chain with $S(C) = \infty$. Let $M_n = 1_{C_n} P(C_n)^{-1}$. Then M is a martingale supported by $((F_n)_{n=1,2,...}, P)$. By the proposition, $M_n \to 0$ a.s. Since $E(M_n) = 1$ for all $n, M_n \to 0$ in L^1 , so M is not uniformly integrable.

(2) If M is a nonuniformly integrable L^1 -bounded martingale supported by $((F_n)_{n=1,2,...}, P)$, f is the a.s. limit of M_n , and $X_n = M_n - E(f | F_n)$, then X is a nonuniformly integrable martingale supported by $((F_n)_{n=1,2,...}, P)$ and $X_n \to 0$ a.s.

Since X is not identically zero, there exist integers n and j_n such that $|X_n|=c\neq 0$ on $I(j_n,n)$. Since $X_n=E(f|F_n)$, there is some integer j_{n+1} such that $I(j_{n+1},n+1)\subset I(j_n,n)$ and $|X_{n+1}|\geq c$ on $I(j_{n+1},n+1)$. Continuing in this manner we obtain a chain $\bigwedge_i I(j_i,i)$ such that for $i\geq n$, $|X_i|\geq c$ on $I(j_i,i)$. Since $X_m\to 0$ a.s., $P(\bigcap_i I(j_i,i))=0$, and so $S(\bigwedge_i I(j_i,i))=\infty$.

3. Characterization of purely atomic structures supporting undominated L^1 -bounded martingales. For each partition set I(j, n), let

$$T(I(j, n)) = \sup_{(C:C_n = I(j, n))} S(C).$$

LEMMA. Suppose for each chain C of $((F_n)_{n=1,2,...}, P)$, $S(C) < \infty$ but $\sup_C S(C) = \infty$. Then either:

- (1) there exist an n and $(j_i)_{i=1,2,...}$ such that $T(I(j_k, n)) > k$; or
 - (2) there exists a chain C such that for all n, $T(C_n) = \infty$.

PROOF. Suppose the purely atomic structure has the required property and condition (1) is not satisfied. Then, for each n, there exists at least one and at most a finite number of partition sets I(k, n) with $T(I(k, n)) = \infty$. Also, if $T(I(k, n)) = \infty$ there exists at least one partition set $I(j, n + 1) \subset I(k, n)$ with $T(I(j, n + 1)) = \infty$. Condition (2) follows.

THEOREM 2. A purely atomic structure $((F_n)_{n=1,2,...}, P)$ supports undominated L^1 -bounded martingales if and only if there exists $c < \infty$ such that $S(C) \le c$ for every chain C.

PROOF. (1) Suppose S is unbounded. By Theorem 1, we may assume that S is finite-valued. The lemma reduces our considerations to two cases:

Case 1. There exist n and $(j_i)_{i=1,2,...}$ with $T(I(j_k, n)) > k$.

Choose chains $(C^k)_{k=1,2,...}$ with $C_n^k = I(j_{k+n}, n)$ and $S(C^k) > k + n$. Now $P(\bigcap_n C_n^k) > 0$, so we may define

$$f = (k^2 P(\bigcap_n C_n^k))^{-1}$$
 on $\bigcap_n C_n^k$, $k = 1, 2, \cdots$
= 0 elsewhere.

Since f is P-integrable, we may define the martingale $(M_n = E(f | F_n))_{n=1,2,...}$. Set $A(k, m) = C_m^k - C_{m+1}^k$. For $m \ge n$,

$$1_{A(k,m)}M_m=(k^2P(C_m^k))^{-1}$$
,

and so

$$E(\sup_{n} M_{n}) \geq E(\sum_{k} \sum_{m} 1_{A(k,m)} \sup_{n} M_{n})$$

$$\geq \sum_{k} E(\sum_{m=n}^{\infty} 1_{A(k,m)} M_{m})$$

$$= \sum_{k} \sum_{m=n}^{\infty} P(A(k, m))(k^{2}P(C_{m}^{k}))^{-1}$$

$$\geq \sum_{k} (1/k)$$

$$= \infty,$$

since

$$k + n < S(C^{k}) = \sum_{m=1}^{n-1} P(A(k, m)) / P(C_{m}^{k}) + \sum_{m=n}^{\infty} P(A(k, m)) / P(C_{m}^{k})$$

$$\leq n + \sum_{m=n} P(A(k, m)) / P(C_{m}^{k}).$$

Thus, M is an undominated L¹-bounded martingale on $((F_n)_{n=1,2,...}, P)$.

Case 2. There exists a chain C such that for all n, $T(C_n) = \infty$.

Suppose S(C)=c. Since $T(C_1)=\infty$, there exists a chain C^1 with $C_1^1=C_1$ and $S(C^1)>c+1$. Let $m_1=\inf_i{(i\colon C_i^1\neq C_i)}$. Since $T(C_{m_1})=\infty$, there exists a chain C^2 with $C_{m_1}^2=C_{m_1}$ and $S(C^2)>c+2$. Let $m_2=\inf_i{(i\colon C_i^2\neq C_i)}$. Proceeding in this way, we obtain an increasing sequence of integers $(m_j)_{j=1,2,\ldots}$ and a sequence of chains $(C^j)_{j=1,2,\ldots}$, such that $C_{m_{j-1}}^j=C_{m_{j-1}}$, $C_{m_j}^j\neq C_{m_j}$, and $S(C^j)>c+j$.

Set

$$f = (j^2 P(\bigcap_n C_n^j))^{-1} \quad \text{on} \quad \bigcap_n C_n^j, \quad j = 1, 2, \cdots$$

$$= 0 \quad \text{elsewhere.}$$

As in Case 1, $(M_n = E(f | F_n))_{n=1,2,...}$ defines an undominated L^1 -bounded martingale on $((F_n)_{n=1,2,...}, P)$.

(2) Suppose for each chain C, $S(C) \leq c$. By Theorem 1, we need only show: if f is a P-integrable function, $f \geq 0$, then $(M_n = E(f \mid F_n))_{n=1,2,\dots}$ is a dominated martingale.

By the proposition, there is an at most countable number of chains $(C^i)_{i=1,2,...}$, with $\bigcup_i (\bigcap_n C_n^i) = \Omega$, and for all $i \ P(\bigcap_n C_n^i) > 0$. Thus $f = \sum_i f_i \mathbb{1}_{\bigcap_n C_n^i}$. For each i, define the martingale M^i by

$$M_n^i = E(f_i 1_{\bigcap_m C_m^i} | F_n).$$

Then on A(i, n), $\sup_{m} M_{m}^{i} = (P(C_{n}^{i}))^{-1} f_{i} P(\bigcap_{m} C_{m}^{i})$, so

$$E(\sup_{m} M_{m}^{i}) = \sum_{n} (P(A(i, n))/P(C_{n}^{i})) f_{i} P(\bigcap_{m} C_{m}^{i})$$

$$= S(C^{i}) f_{i} P(\bigcap_{m} C_{m}^{i})$$

$$\leq c f_{i} P(\bigcap_{m} C_{m}^{i}).$$

But $\sup_m M_m \leq \sum_i \sup_m M_m^i$, so

$$E(\sup_{m} M_{m}) \leq \sum_{i} E(\sup_{m} M_{m}^{i})$$

$$\leq c \sum_{i} f_{i} P(\bigcap_{m} C_{m}^{i})$$

$$= cE(f),$$

and we see that M is dominated.

4. Notes.

- (1) If there exists a chain C with $S(C) = \infty$, it is possible to construct an undominated uniformly integrable martingale.
- (2) Suppose $(X_n)_{n=1,2,\cdots}$ is a stochastic process with countable state space I. If $F_n = \sigma(X_m, m \le n)$ and P is the measure induced by X on $\bigvee_n F_n$, then $((F_n)_{n=1,2,\cdots}, P)$ is a purely atomic structure. We can represent chains by elements of I^∞ : if $(i_1, i_2, \cdots, i_n, \cdots) = C$, then $C_n = (X_1 = i_1, \cdots, X_n = i_n)$. The summands appearing in the definition of S correspond to the conditional probability $P(X_{n+1} \ne i_{n+1} | X_1 = i_1, \cdots, X_n = i_n)$.

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720