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PURELY ATOMIC STRUCTURES SUPPORTING
UNDOMINATED AND NONUNIFORMLY
INTEGRABLE MARTINGALES!

By DAviD A. LANE
University of California, Berkeley

Let (Fu)n=1,2,..- be a sequence of sigma-fields on a set Q, each F, purely
atomic with respect to a measure P. Let C denote a nested sequence of
sets Cy, where C, is a P-atom of F, for each n. Define S(C) = Za(P(Cr —
Cu41)/P(Cn)). Then every L'-bounded martingale relative to (Fu)n=1,2,---
and P is uniformly integrable if and only if S is finite-valued, and every
such martingale is dominated if and only if S is uniformly bounded.

1. Introduction. Let Q be a set and (F,),_,,... a nested sequence of sigma-
fields on Q. Suppose F, is generated by a partition of Q, (I(j, n));-1,4,...,m, Where
m, may be infinite. Let P be a measure on F = V/, F, such that for all n and
J» P((j, n)) > 0. Call the pair ((F,),-1,,..., P) a purely atomic structure on Q.

A chain is a nested sequence of partition sets I(j,, 1) D 1(j,, 2) D ---. We
denote this chain by A, I(j;, {). A chain may also be denoted by the letter C,
and the atom of F, in C will be denoted C,.

We now define a function on the space of all chains:

S(C) = Z,(P(C, — Cui)[P(C,)) -
S may, of course, be infinite.

If (M,),_, ,... is a martingale relative to (F,),_,,... and P, we say that M is
supported by ((F,)pz14,..., P). If E(sup, M,) < oo, M is dominated.

In this paper, we establish the following result: every L'-bounded martingale
on a purely atomic structure is uniformly integrable if and only if S is finite-
valued; and every L'-bounded martingale on the structure is dominated if and
only if S is uniformly bounded.

2. Characterization of purely atomic structures supporting nonuniformly in-
tegrable L'-bounded martingales.

PRroPOSITION. Suppose C is a chain. S(C) = oo if and only if P((, C,) = 0.
Proor.
P(Cy) = P(C) (P(C)IP(CY) - - - (P(C)[P(C;))

= P(C) [Ta=1,r i gl — (P(C, — C,11)[P(C,))) -
The product converges to zero as i — oo if and only if S(C) = oo.
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THEOREM 1. A purely atomic structure ((F,),,.,,..., P) supports nonuniformly in-
tegrable L'-bounded martingales if and only if there exists a chain C with S(C) = co.

Proor. (1) Suppose C is a chain with S(C) = co. Let M, = 1, P(C,)™".
Then M is a martingale supported by ((F,),-; ..., P). By the proposition, M, — 0
a.s. Since E(M,) =1 for all n, M,, -» 0 in L*, so M is not uniformly integrable.

(2) If Mis a nonuniformly integrable L'-bounded martingale supported by
((Fu)az=12,...o P), f is the a.s. limit of M,, and X, = M, — E(f|F,), then X isa
nonuniformly integrable martingale supported by ((F,),-;....., P) and X, — 0 a.s.

Since X is not identically zero, there exist integers n and j, such that |X,| =
¢+ 0 on I(j,, n). Since X, = E(f|F,), there is some integer j,,, such that
I(juys n + 1) C I(ju, n) and |X, .| = ¢ on I(j,;, # + 1). Continuing in this
manner we obtain a chain A, I(j;, i) such that for i > n, |X,| = ¢ on I(j, i).
Since X,, — 0 a.s., P(N, I(j;, i)) = 0, and so S(A; I(j;, i)) = oo.

3. Characterization of purely atomic structures supporting undominated L'-
bounded martingales. For each partition set I(j, n), let

T(I(j, n)) = SUP.c,=10j,n S(C) -
LEMMA. Suppose for each chain C of (F,)n=1,,..., P), S(C) < oo but sup, S(C) =
oo. Then either:

(1) there exist an n and (j);—,,,... such that T(I(j,, n)) > k;
or
(2) there exists a chain C such that for all n, T(C,) = co.

Proor. Suppose the purely atomic structure has the required property and
condition (1) is not satisfied. Then, for each n, there exists at least one and at
most a finite number of partition sets I(k, n) with T(I(k, n)) = co. Also, if
T(I(k, n)) = oo there exists at least one partition set /(j, n + 1) C I(k, n) with
T(I(j, n + 1)) = co. Condition (2) follows.

THEOREM 2. A purely atomic structure ((F,),—, ..., P) supports undominated L'-
bounded martingales if and only if there exists ¢ < oo such that S(C) < ¢ for every
chain C.

Proor. (1) Suppose S is unbounded. By Theorem 1, we may assume that S
is finite-valued. The lemma reduces our considerations to two cases:

Caske 1. There exist n and (j,);,,,... With T(I(j,, n)) > k.
Choose chains (C*),_,,.. with C* = I(j,,,, n) and S(C*) > k 4+ n. Now
P(N. C,F) > 0, so we may define

f=&PN.CH)T on N,CF, k=12,
=0 elsewhere.

Since f is P-integrable, we may define the martingale (M, = E(f|F,))u_14....-
Set A(k, m) = C,* — Ck. .. Form = n,

lA(k,m) Mm = (kzP(ka))_l ’
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and so
E(sup, M,) = E(X) Xim Lack,m SUPs M,)
; Zk E(Z::n lA(k,m) M’m)
= 2k Zim=n P(A(k, m))(K*P(C,*))™!
= 2 (1/k)
since ,

k+n < S(C%) = L2 P(A(k, m)[P(C,*) + 25, P(A(k, m)[P(C,")
= 1+ Zimen P(A(k, m)[P(C,F) .
Thus, M is an undominated L'-bounded martingale on ((F,),-,,...., P).

Caskg 2. There exists a chain C such that for all n, T(C,) = oo.

Suppose S(C) = c. Since T(C,) = oo, there exists a chain C* with C;! = C,
and S(C") > ¢ + 1. Letm, = inf; (i: C;! # C}). Since T(C,,) = oo, there exists
a chain C*with €}, = C,, and §(C*) > ¢ + 2. Let m, = inf, (i: C # C,). Pro-
ceeding in this way, we obtain an increasing sequence of integers (m;);_,, ...

and ‘a sequence of chains (C);_, , ..., such that Cf;»,-_l = ij_l, Cg;,j * ij, and
S(C) >+
Set

f=UPN.CH* on N,CJ, j=12,...
=0 elsewhere.
As in Case 1, (M, = E(f|F,))a1,,... defines an undominated L'-bounded mar-
tingale on ((F,),-1,..., P).

(2) Suppose for each chain C, §(C) < c¢. By Theorem 1, we need only show:
if fis a P-integrable function, f > 0, then (M, = E(f|F,)),<,,... is @ dominated
martingale.

By the proposition, there is an at most countable number of chains (C*),_, , ...,
with U, (N. C.') = Q, and for all i P(N, C,) > 0. Thus f= 33, f;1, ¢

For each i, define the martingale M* by

M, = E(filq, o, i|Fa) -
Then on A(i, n), sup,, M,,' = (P(C,))f;P(Nn Cn’), sO
E(supy, M,) = 25 (P(A(E m)[P(C)fiP(NmCn)
= SV P(N Co)
g cf:iP(nmCmi) ‘
But sup,, M,, < >;,sup,, M,?, so :
E(sup,, M,) < 3, E(sup,, M%)
é ¢ Zif;lP(nm sz)
= cE(f),

and we see that M is dominated.
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4. Notes.

(1) If there exists a chain C with S(C) = co, it is possible to construct an
undominated uniformly integrable martingale.

(2) Suppose (X,),-1,,... is a stochastic process with countable state space I.
If F, =0(X,,m <n)and P is the measure induced by X on V,F,, then
((Fa)n=1,s,... P) is a purely atomic structure. We can represent chains by ele-
ments of /~: if (i}, i, +++,1,, +--)=C, then C, = (X, =i, ---, X, = i,). The
summands appearing in the definition of S correspond to the conditional prob-
ability P(X, ., # i, | Xy =i, -+, X, = i,).
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