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THE FOUNDATIONS OF STOCHASTIC GEOMETRY"

By B. D. RIPLEY
University of Cambridge
We show how to build models of random collections of geometrical

objects: lines, circles, line segments, etc. This basic problem in stochastic
geometry is solved using the theory of point processes on abstract spaces.

1. Introduction. This paper provides the foundations for the study of random
collections of congruent geometrical objects. Stochastic geometry, in the sense
of Kendall (1974), is the representation of such a collection as a point process
on a suitable space. We deal with the problem of identifying the ‘natural’ struc-
tures on this space and so define the point processes using the theory of Ripley
(19764).

Davidson (1968, 1970) considered general stationary line processes. His ap-
proach (for oriented lines) was to take a particular parameterization and use the
induced topology. For unoriented lines other parameterizations are equally nat-
ural but give rise to different topologies (Ripley (1976Db)).

Throughout we assume that G is a locally compact second countable Hausdorff
(LCD) topological group acting continuously on a Hausdorff topological space
X (i.e., there is a continuous map (g, x) — gx from G x X to X satisfying g(hx) =
(gh)x and ex = x).

2. The representation. Suppose 0 is a nonempty subset of X; 0 is a typical
geometrical object. Let ¢7 be the class of subsets of X congruent to 0 under G.
For each 4 e @ let f(4) = {g: g0 = A} and let f(0) = H. Then H is a subgroup
of G. Let g be the (open) quotient map G — G/H.

PROPOSITION 1. ¢ o f is a bijection from &7 to G|H.
Proor. Elementary.

We will identify ¢” with G/H. The simplest nontrivial example is the group
G of rigid motions of the plane X with the usual topologies (Nachbin (1965)).
Various choices of 0 show that < is not determined by H, and that not all sub-
groups can occur.

We give G/H the quotient topology, which is Hausdorff if and only if H is
closed, in which case G/H isa LCD space. Let 7, be the topology induced on 2.

PROPOSITION 2. If 0 is closed then H is closed.

ProoF. H={g:90=0}={g:90C0,97'0C 0} =.,co{g9: 9x€0, g7'x€0}.
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The example of an open disc in the plane shows the converse to be false.

The topology 7, depends on the topology of the group (which is often rather
artificial) and does not seem completely natural. If £ can be represented by
some Hausdorff Baire space on which G acts continuously (as in Davidson’s
example of line processes), Lemma 2 of Bourbaki ((1963), Appendix 1) shows
that this space is isomorphic to (¢7, ;). This is a useful method of identifying
7,. We use A 1 E (‘A hits E’) as shorthand for A n E + @.

ProrosITION 3. If U is open then {A: Ae &, A1 U} is open in t,.

PrROOF. f~}({Ad: AT U}) ={g: 901 U} = U.o{9: gx € U} whichis open, and
g is an open map.

3. Another approach. We suppose throughout this section that 0 is closed.
Then  is contained in &, the class of closed subsets of X, so ¢” can be given
any of the topologies proposed for &. The compact-finite topology with subbasic
open sets {F: F1 U}and {F: F n K = @} for Ue &, the open sets, and K ¢ %,
the compact sets, considered by Choquet (1953-1954), Mrowka (1958), Fell
(1962) and Matheron (1972, 1975) seems to be the most suitable because of the
following theorem. We define G to act on & by gF = {gx: x e F}.

THEOREM 1. G acts continuously on .

Proor. The map (g, F) — gF obviously satisfies all the conditions except con-
tinuity. Suppose F,e &, goeGand V={F: F1G,i=1,...,n, Fn K=}
is an open neighbourhood of g,F, with G, e ¥ and Ke %" For each i pick
x;€(9,7'G;) N F,. We can find open neighbourhoods U; of g, and V; of x; with
UV,cG. If F1V,and geU, then gF n G, D g(FnV,) + @, so gF n V,.
Let (W,) be a decreasing base of compact symmetric neighbourhoods of the
identity in G. Then (W,K) is a sequence of compact sets decreasing to K, so
for some m W, K n g,Fy= @. Let Uy= W,g,and K, = ¢g,7'W,K. Let U =
NeUs,and V' ={F: F1V,i=1,.--.,n, FNK, = @}. Then U’ x V' is an
open neighbourhood of (g,, F,) and U'(V") c V. Thus (g, F) — gF is continuous
at (g,, Fy)-

PRroPOSITION 4. If 0 is closed and K compact then {A. Ae &, A1 K} is closed
in 7,.

Proor. By Theorem 1 {g: g0 7 K} is closed and g-saturated, so {4: 41 K} is
open in 7,.

Propositions 3 and 4 show that the injection map (7, ;) — & is continuous
so the topology 7, which this induces on £7 is coarser than 7,. Now suppose X
is a LCD space. Then & is a LCD space (Matheron (1975)) and 7, and r, have
the same Borel o-field % (Kuratowski' (1968) Section 39 or Dellacherie and
Meyer (1975) II1 21). Other topologies on .5, notably Michael’s finite topology
(Michael (1951)), have the same Borel g-field on & (Ripley (1976a)) and hence
on . Thus % is the natural o-field to choose on 7. The topologies 7, and 7,
may differ (but see Proposition 5(ii)).
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ExaMpLE. Let G be the group of rational translations on R with the discrete
topology. Then G is a LCD topological group acting continuously on R. Let
0 = {0}. Then H is the subgroup of the identity, so r, is the discrete topology,
whereas 7, is induced from the rationals by x — {x}.

4. Geometrical point processes. We require our random collections of objects
to be locally finite in the sense that only a finite number hit each member of a
class & of ‘bounded’ sets in X. We may assume that & is an ideal in AX)
(the class of subsets of X) covering X, and we will assume 2’ = 2 n & is
cofinal in D under inclusion. Let <2 be the ideal in G4 ) generated by {{4:
AT E}: Ec ). Then {{A: A1 F}: Fe 2"} is cofinal in &Z, so by Proposition
3 €=.¥'nZis cofinal in &%. Thus if H is closed then (&, &, &%) is a
bounded space (Ripley (1976a)). If 0 is closed then Proposition 4 allows us to
assume only that &7’ n 7] is cofinal in .

PROPOSITION 5. Suppose &7 is the class of relatively compact subsets. Then:

(i) &# contains all the compact sets of (7, t,).

(ii) Suppose X is a topological homogeneous space G|J, J is compact, and 0 = HK
where K is compact in X. Then SZ is the class of relatively compact sets in t,, 7 is
closed in &, = F\[@}and v, = 7,.

ProoF. (i) Suppose K is compact in ¢7. There is a compact set E C G with
4(E) = K (Bourbaki (1966) I Section 10.4, Proposition 10). Fix x €0, and let
F = Ex which is compact. Then K = ¢q({g: g€ E}) C q({9: (gHx) 1 F}) c {4:
Ae @, A1 F}e &B. (ii) Suppose E is a compact setin X. Let L = {g: gK | E}
and let p be the quotient map G — G/J. Then p is proper, so p~*(K) and p~(E)
are compact and L = {hg~: p(9) € K, p(h) € E} is compact. Thus {4: Ae 7,
AT E}Y=q({g: (9HK) | E}) = ¢q(L) is compact. Now suppose ¢,0 — Fe .7 .
Then (g,0) hits a compact set E infinitely often and so for a subsequence we
may assume that g, e L. Then (g,) has a cluster point g, and (g, 0) has a cluster
point g0 by Theorem 1. Thus g,0 — g0 € 7. Now 7 is a Baire subspace (since
X and & are LCD spaces) and so by Lemma 2 of Bourbaki ((1963), Appendix
1) (&, =,) is a topological homogeneous space, hence 7, = t,.

The conditions of (ii) are usually satisfied in Euclidean geometry. The ex-
ample of half-infinite rays in the plane shows that the condition on 0 is necessary
(here r, = t, but the other conclusions are false). Part (i) shows that the section
on more general random sets in Ripley (1976a) is applicable.

We assume from now on that (7, %7, &%) is a bounded space (i.e., € is cofinal
in &Zand .97 contains all singletons). Let N be the class of completely additive
functions n: & — Z_, the nonnegative integers, and let 4" be the smallest o-
field on N making the evaluation maps e, measurable for all 4e <. Then
(Ripley (1976a)) a point process on (7, .57, &%) is a measurable map from a
probability space to (N, .#7). We define G to act on N by gn(A4) = n(g~'4).

PROPOSITION 6. Suppose 7 has a countable cover from . Then the map (g, n) —
gn is measurable on G x N, G having the Borel o-field.
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PROOF. Suppose E is a Borel subset of G. Then (g, n) — § 1, (9, 1) dn(u) =
15(9)n(A) is measurable for all 4 in the o-field % which is generated by &.
By the usual approximation we have (g, n) — § f(g, #) dn(x) measurable for all
bounded measurable functions fon X x G. We may take f(g, u) = 1,(gu) for
A e &, 50 (g, n) — gn(A) is measurable.

Proposition 6 generalizes a result of Mecke ((1967), Anhang B). Ambartzumian
(1972) uses the space (<7, %7, &) with G = X = Rand 0 = {0}. He considers
a point process to be a map Z from a probability space to N such that (g, ») —
9Z(w)(A) is measurable for all open spheres 4. By Ripley ((1976a), Theorem
4(i)) (9, w) — gZ(w) is measurable, so this is a point process in our sense and
conversely by Proposition 6. Thus every probability on .#" is induced by a point
process in Ambartzumian’s sense, answering his final question (Ambartzumian
(1972)), and his method for Palm probabilities is available.
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