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INSENSITIVITY OF STEADY-STATE DISTRIBUTIONS
OF GENERALIZED SEMI-MARKOYV
PROCESSES. PART I

By R. SCHASSBERGER
University of Calgary
New proofs are given for results by Matthes concerning a certain

insensitivity phenomenon displayed, for instance, by many well-known
stochastic models from the areas of reliability and telephone engineering.

1. Introduction. One of the classical problems of the theory of stochastic
service systems was to find a proof for the conjecture that the steady-state distri-
bution of the number of busy servers in the M/G/n loss or Erlang system depends
on the service-time distribution only through its mean. The phenomenon was
already known to Erlang, who gave a proof for the case of Erlang service-time
distributions. The general case was settled as late as 1957 by Sewastjanow in [9].
In the meantime, the theories of telephone traffic and reliability had producéd
further examples of stochastic systems for which the distributions of certain life-
times such as repair times, conversations lengths, or interarrival times, influence
certain steady-state distributions only through their means. One such system, of
equal importance as the Erlang system, is the Engset system, for which Cohen
(in [1]) proved the corresponding result in 1957. Another example is provided
by the semi-Markov scheme, where jumps on a countable state space S occur in
Markovian fashion with the sojourn times in a given state, s, say, distributed
according to a distribution function F,(+) with finite mean 2,7*. If it exists, the
limiting distribution, as t — oo, of the state at time ¢ depends on the collection
{F,(+); s € S} only through the means {1,7%; s € S}.

This background of examples motivated Matthes to study the phenomenon
within a general framework rather than for just a particular system. For this
purpose he introduced in [6] a rich class of models comprising many well estab-
lished or potentially interesting members from such areas as reliability and tele-
phone engineering, queuing theory, inventory theory, and others. Given a model
from this class, one of his main results is a necessary and sufficient condition for
the insensitivity phenomenon to prevail. This condition is of great interest not
only because it usually allows in practice to actually determine whether or not
the phenomenon is present but also because it allows a certain “partial balance”
interpretation and thus contributes significantly to a better understanding of the
phenomenon. Matths=s’ results along with those of later coworkers are presented
in detail in [2] and [5], where also many important examples can be found.
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Unfortunately, the methods of analysis in these references are heavily involved,
rendering simpler approaches highly desirable.

The purpose of the present paper is to present such an approach within the
framework laid down by Matthes. In Section 4 an elementary proof of the ne-
cessity of Matthes’ condition is given, followed by an equally elementary proof
of its sufficiency in Section 5.

In Section 3 a general concept of insensitivity is introduced. It provides a
perspective from which to view insensitivity results such as Matthes’ or the new
result of Theorem 5.3 (i) which says that Matthes’ type of insensitivity is equiva-
lent to an apparently much weaker one. A further study of insensitivity as de-
fined in Section 3 is contained in [7], and much remains to be done.

The notational complexity arising within this theory is considerable as illus-
trated in [2] and [5]. In order to keep the notation fairly simple we refrain from
rigorous constructions of the various processes involved and give, in Section 2,
a verbal outline only. The same concern causes us to consider the insensitivity
problem under a certain restriction only (we vary only one “input” distribution).
While the essence of our approach shows clearly and fully in this restricted case,
some aspects of the general result get lost, and we shall therefore supplement
the present paper by a sequel.

2. Generalized semi-Markov processes. Consider an organism (a “system”)
that is, at any time ¢, t > 0, in one of the states g € G, where G is a finite set.
Each state g is a set itself such that g N § £ 0 and U, 9 N S = S, where S is
another finite set. There is, at any time ¢, t > 0, a “living” part of the organ-
ism, consisting precisely of the elements sc g N S, where g is the state at the
given time. Each of these elements of g is living independently of the others
and for a randomly distributed time. When one of these elements, say s, dies,
the organism jumps to a new state, ¢’, with probability p(g, s, ¢’) and independ-
ently of everything else present and past. Those elements living independently
of each other, the jump does not affect the residual lifetime distributions of the
ones in g N (S/s) and, of course, p(g, s, ') = Ounless (¢’ N §) D g n (S/s). The
jump may cause new elements of S to start living, i.e., g N (S/s) may be a proper
subset of g’ N §. Included is the possibility that the element s—which caused
the jump—is revived immediately after the time of the jump and starts a new
life. All elements of ¢’ N S are again living independently of each other, the
lifetimes of the new ones, s/, s”, ..., say, being drawn from the distributions
Qs Py - - - independently of everything present and past. This may serve as
our presentation of the class of models to be considered.

We wish to study the limiting distribution, if it exists uniquely, of the state of
the organism. For this purpose, after having enumerated S as {s,, -- -, sy}, we
assume that a process {X(7), Y(7); t = 0} has been constructed along the following
lines. At time t = 0 a state g, e G is specified and each element s, e g, N S is
assigned a positive number y, ,, its residual lifetime. Puttingy, , = 0fors, ¢ g,n S
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we let yo = (yro ***»> Y, 0) and (X(0), Y(0)) = (9o, o). We now let X(¢) = g,
Y(f) =0 for s,¢g,N S, and Yy(t) = y;o — ¢, for 0 <t < 7, = min, ¢, o5Yi0
By specifying the positive y;, to be all different from each other we select
uniquely the element of g, which dies at time 7,. Denoting this element by s,
we select at its time of death, r,, a new element of G according to the distribution
p(9os 5, +). Denoting the new state by g,, we then obtain y; = (y;,1, = - > yx,1) by
letting y,, = 0if 5,29, N S, o1 = yio — 71 if 5;€ 9o 0 (S/s), and by picking the
remaining y, ,, i.e., those corresponding to newly living elements, from the dis-
tributions ¢, . We then let (X(z,), ¥(;)) = (9,, y») and now continue the process
beyond ¢ = 7, until the time of the next death just as we continued it beyond
t = 0 until the time of the first death. It is henceforth assumed (following [5])
that the distributions ¢,, s e S, are concentrated on (0, o), have finite means
2,"! and are absolutely continuous. The assumptions ensure that simultaneous
deaths occur with zero probability and that the process continues ad infinitum
almost surely (see [5]). A construction similar to the one outlined here has been
rigorously carried out in [5].

Some terminology is needed. The collection 2 = (G, S, p), where p denotes
the family {p(g, s, +); g € G, s € g n S} of distributions on G satisfying p(g, 5, 9") =0
unless ¢’ N S D g N (S/s), is called a generalized semi-Markov scheme (GSMS);
the process {X(¢); t = 0} is called the generalized semi-Markov process (GSMP)
based upon X by means of the family {¢,; se S}; and the process {X(r), Y(7);
t = 0} is called a supplemented GSMP.

The latter can be shown to be a homogeneous Markov process, following
closely the arguments in [5] for a similar construction. If, for some §'  §, and
for s € &' the distributions ¢, are exponential, it is sufficient for obtaining a Markov
process to supplement X(f) by the N-dimensional vector Y’(r), where Y/(r) = 0
if 5, 8" or s;¢ X(/) N S and Y/(f) equals the residual lifetime of s;, otherwise.
A process {X(f), Y'(1); t = 0} obtained in this way will be referred to as a reduced
supplemented GSMP.

Our interest is focused on the unique stationary distribution of a given sup-
plemented GSMP, where it exists, and, more specifically, on that of the GSMP.
Adapting the relevant arguments in [5] to the present construction it is readily
seen that the above stationary distributions exist uniquely provided that the un-
derlying GSMS is irreducible and all distributions ¢, have (Lebesgue a.e.) positive
density functions. A GSMS is called irreducible if, for every pair g, ¢’ € G, there
exist finite sequences {g;, - - -, g}, 9; €0, and {5, ..., s}, 5V € §, such that
p(9, 59, 91) p(G1s 575 95) - -+ PGy S™5 8") > 0. The positivity of the density func-
tion guarantees the impossibility of a certain blocking effect (see [5]).

The examples mentioned in Section 1 can all be seen to fit the above setup.
Shortage of space forces us to refer the reader to [5] for detailed presentations
of many interesting examples. :

3. A general insensitivity concept. Let X = (G, S, p) be an irreducible GSMS
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and ®(2) the collection of all families ¢ = {¢,; s € S} of distributions concentrated
on (0, co) which are absolutely continuous, have finite means, and imply the
existence of a unique stationary distribution for the correspondihg supplemented
GSMP’s based upon X. Let ® be a nonempty subset of ®(Z). Then X is called
®-insensitive, if every GSMP based upon X by means of an element of @ has the
same stationary distribution. Several special cases may serve to 1llustrate this
concept.
IfS = {Sv - -+, 5y} as in the previous section, one may have

={¢: @, exponentlal with fixed means A 1, i=1, .-,k

Py = = ¢,, with fixed mean 217%}.

A model from the area of telephone engineering displaying this type of intensi-
tivity has been studied by Jacobi in [4]. The type studied by Matthes is charac-
terised by specifying @ as
= {¢: ¢,, exponential with fixed mean 27}, i=1, ..., k;
Pa, arbitrary with fixed mean Z;il, i=k+1,...,N}.
Finally, a type of insensitivity studied in [7] is described by
= {¢: @s, exponential with fixed mean Z;i‘, i=1...,N—1,
¢,, arbitrary with certain values of b{)(+) prescribed,
where v =0, 1, ..., and b,,(+) the LST of ¢,,(+)}.
Obviously, many other types of ®-insensitivity may crop up. Moreover, in-
sensitivities not covered by our concept are encountered in many models, such

as, for instance, insensitivity of certain characteristic values of the limiting dis-
tribution of GSMP’s. The mean queue length in the M/G/1 model is an example.

4. Necessity of Matthes’ condition. Let X = (G, S, p) be an irreducible

GSMS, s,¢ S fixed, and
(ID‘,O = {¢: ¢, exponential with fixed mean 2,7, for s = s,
¢,, arbitrary with fixed mean 2;'}.

' We shall derive a necessary condition for @, -insensitivity of X, due to Matthes.
He studied the more general case of more than one nonexponential ¢,, which we
shall treat in a sequel to this paper. For the family ¢’e @, corresponding to
exponential ¢, it is easily seen that the GSMP {X(¢); r = 0} based upon Z by
means of ¢’ is a Markov chain with stationary transition probabilities and a
unique limiting distribution {p,: g € G} Wthh is the unique probability solution
of the equations

(4'1) Aan = Zg’eapg’ erg’nsp(gly S, g)ls, geG,

where

(4'2) Ag = Zaegns 23
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Now consider a family ¢” ¢ @, corresponding to a distribution @,, With distri-
bution function

(4.3) Fso(‘) = 7z"1E111(') + ”zExz(') * Exl(’) ’

where 4,2, >0, Ex(f) =1 —e* fort>0,0<r, <1, 7, + 7, =1, and the
symbol « denotes convolution. Notice that

T, 1 Iy _ 1

(4.4) Z+ﬂ2<Z+Z>_Z'

The supplemented GSMP based upon X by means of such a family can be con-
structed by first realizing, each time s, starts living, a random number taking on
the values 1 and 2 with probabilities 7, and z,, respectively, and proceeding then
as follows: if the number equals 1, realize for s, a (residual) lifetime distributed
according to E, (+); if the number equals 2, realize for s, a (residual) lifetime
which is the sum of two phases: a first phase distributed according to E 2,(+) fol-
lowed by a second one distributed independently of the first one according to
E; (+). Instead of the supplement Y, (+) one may then introduce a supplement
K, (+), where K, (1) = 0, 1, or 2 depending on whether, at time ¢, s, is not alive,
in a phase of parameter 2,, or in a phase of parameter 2,, respectively. Such
constructions have been more rigorously outlined in [3]. It is easily seen that
the process {X(7), K, (); t = 0} is a Markov chain with state space {(g, i); g € G,
i =0, 1, 2} and stationary transition probabilities. The chain is, also obviously,
irreducible and therefore has a unique limiting distribution {pyo9€G,i=
0, 1, 2}, where, of course, p,, =0 if s,eg and p,, = Pys = 0if 5,¢ g. Letting

G, ={g9:s5¢€g}
the standard linear system for this distribution is given by
(Ag "I" '22 - 'zso)pg,i = Zi+1pg,i+1 + Zg'eaopg',i Za#so;aeg'ns P(g', S, g)Z,
(4.5) + 7 Zg'eao Py P95 S0 )44
+ T Zg'eGopg',O Zseg'nsp(g’a S, g)],
forgeG, i=1,2, 4;p,; =0, and by
(4'52) Avpg,o = Zv'eGo pa',lp(g” So» g)ll + Zv’eGo Py 0 Zsea’ﬂsp(g” S, g)Z,

for g ¢ G,.
We are now in a position to prove

THEOREM 4.1. If X is d)ao-insensiti've, then the limiting distribution {p,} of a
GSMP based upon X by means of a family ¢ € ®,  satisfies the equations (4.1) and

(4'6) Z,OP,, = Zg’eGo Py Zsea’nS P(g,’ S, )4, + Zg'eao Pg'P(gl’ So» g)lao s
the latter for g € G,.

Condition (4.6) is condition “Z"” of [5]. It allows the followiﬁg “flow” inter-
pretation: if s, is part of g, then under equilibrium conditions the flow out of g



92 " R. SCHASSBERGER

via inactivation of s, equals the flow into g via activation of 5,. This is a sharp-
ening of the flow statement expressed by (4.1) and is known in the literature as
partial balance.

Proor. If X is @, -insensitive, any choice of ¢,, satisfying (4.3) (and (4.4))
yields a distribution {p, ,} satisfying (4.5) and the relations

(471) Pyo=Ppyg> 9 é Go
and
(4.7,) Por + Pys=p,» 9€G,,

where p, are as in (4.1). By some enumeration of G let G, = {gs» -+, g,) and
then let

(4’8) _aij = Agi - '230 - Zs#ao;seginsp(gi’ S, gj)ls fol' l =_] = 1, cee, N
= _Zaéao;aeginsp(gi, 5, gj)l, for i i] = 1’ ooy n,

A the matrix (a,;), P the matrix (p,;) with
(49) Pij=p(gtaso,gj)" i,j:l,...’n,
and 4, x and y the n-dimensional column vectors given by

di = Zg’eGopg’ Zaeg'nsp(g,a S, gi)zx ’
(410) X; = Py and

Vi = Po 2> respectively.

Then (4.5,) can be written in matrix form as the system of the two equations

(4.11) —A"x 4+ 4x = 471, P'x + md + 2,y
and
(4.12) — A"y + 4y = 47, PTx + m,d ,

where the symbol T denotes the transpose of a matrix. All the quantities in
(4.11) and (4.12) can be identified with those in (A4) and (AS5) corresponding to
the same symbols. Hence (A7) is true, which, together with (4.1), yields (4.6).

In fact we have proved more. An immediate consequence of Corollary A2 is

CoROLLARY 4.1. Let ¢' € @, be the family corresponding to exponential Payy
¢" € @, a family with ¢, satisfying (4.3), where Az, = 2. Then, if Zis {4, ¢"}-
insensitive, (4.1) and (4.6) hold.

The condition 4,7, # A, cannot be dropped, as A7, = 2, implies that P,y 18
exponential.

It should be noted that the family of distributions given by (4.3) and (4.4) can
also be represented by letting

4.3) Fo(+) = ME,(+) + 7By (+)
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and

(4.4 A

This representation could be used to shorten the exposition of our proof to some
—rather small—extent. We prefer not to do this as (4.3) is the representation
which is in line with the traditional phase method as well as the approach taken
in Section 5, where an alternative representation corresponding to (4.3") would
be detrimental to the analysis.

5. Sufficiency of Matthes’ condition. We let X and @, be as in the previous
section and focus on the reduced supplemented GSMP’s {X(#), Y'(¢); t = 0} based
upon X by means of families from @, , where Y;/(f) = 0 for s, # 5, Y//() = 0
if s; = 5, ¢ X(?), and Y'() equals the residual lifetime of s, if s; = 5, € X(¢). For
these processes we consider initial distributions with the property that, for all
g € G,, the probability that the state is g and the residual lifetime of s, does not
exceed x, x > 0, is of the form

(5.1) Pos S5 (1 — Fo(n)) dt,

where F, (+) is the distribution function of ¢, and {p;} is a probability distri-
bution on G. A distribution of this type is said to possess the product property.
Matthes’ results imply

THEOREM 5.1. If the reduced supplemented GSMP based upon X by means of at
least one family ¢ € @, other than the exponential family has a stationary initial
distribution possessing the product property (5.1), then (4.1) and (4.6) are satisfied

for {Pg}‘

We have a very simple proof of this theorem for the case that F, (+) is of the
form

(5.2) Fo() = ZlamE(+)

where 1 < k < 00,07, <1, 3}k 7, = 1, and E;¥(+) denote the i-fold con-
volution of E;'(+) = E;(+). The class of distributions of type (5.2) is dense in
the set of all distributions concentrated on (0, o) (see [8], page 32), but we do
not see how to use this fact for a proof of Theorem 5.1 in all its generality.
Here is the proof of Theorem 5.1 under conditions (5.2):

In the spirit of the phase interpretation for (5.2) take the view that the life of
s, extends with probability m, i =1, ..., k, over i consecutive independent and
according to E;(+) distributed phases, starting with phase i. Consider the analogue
of the Markov chain that led to system (4.5). This chain has the state space

G=1{(9i);9€eG,i=0,-.-,k},

where (g, 0) denotes a state not containing s, and (g, i), for i > 0, one that con-
tains s, in its ith phase. The unique stationary initial probabilities p,, of this
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chain satisfy the equations -

(Ag + A— Zso)Py,i = Zpﬂ,i+1 + Zf’eGopf',i ZS¢so;sey'ﬂS P(g,’ S, g)l,
(531) + T; Zy’eGopy',lp(g,’ SO’ g)'2
+ ﬂi Zg’eGoﬁg’,O erg'ns[’(g,, S, g)zg

forgeGy,i=1,.--,k, p, .1 = 0, and the equations

(5.3, NyPyo= ngeaof’g',lp(g" S0s 9)4 + Zg’eGopg’,O Disegras P(9's S5 9)A,
for g ¢ G,.

On the other hand, there is a stationary initial distribution {p,; g € G} for the
GSMP under consideration such that {p,; g ¢ G,} and (5.1) for g € G, together
represent a stationary initial distribution of the reduced supplemented GSMP
under consideration. The latter process has a unique stationary initial distribu-
tion as X is irreducible and ¢, has a positive density function. Hence we have

(5'41) Do =Dy 9€ G,
and
(5'42) Z{'czlpg,i =pPy,> Q€ G,.

Furthermore, for g € G,, we have

Potsy S5 (1 — Fo(n)dt = 338, p, . E'(x)
or, applying the Laplace-Stieltjes transform on both sides,

1 w\~¢ w\~¢
i shan(1 )] 2+
Ps °w[ G =P F

for w = 0. This yields the relations
(55) py,i:(zso/l)(n‘i—l_ +7rk)Pg’ geGO’i=1"“’k’

Inserting (5.4,) and (5.5) in (5.3,) results in (4.1) for g ¢ G,. For fixed g € G,,
adding the equations (5.3,) for all i and using (5.4) and (5.5) leads to (4.1) for
geG,. As for (4.6), consider (5.3,) for i = k, say, and use (5.4) and (5.5) to
obtain the equation

Ay A
(Ag + A — 'zso)Py 7*9 T = ‘f T Zg’e(}o Po Zs*so;sey'ﬂs P(g,’ ) g)zs

+ ﬂ-k Zg'EGOPg'P(g,9 Soa g)'zso
+ 7, Zg’eGopg' ery’ns P(gl’ 5, 9)A, -

Dividing by =, (7, > 0 is assumed) and then subtracting (4, /) times the equa-
tion (4.1) for the same fixed g as above yields (4.6).

Using the connections between product property and (4.1) and (4.6) we can
now give a simple proof of the sufficiency of (4.1) and (4.6) for @, -insensitivity.
To start with we prove a little less, namely
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THEOREM 5.2. If there exists a distribution {p} on G satisfying (4.1) and (4.6),
and if F, () is of type (5.2), then {p,} is the (unique) stationary initial distribution
of the GSMP based upon X by means of the family ¢ € @, for which ¢, is given by
F,(+). Furthermore, the (unique) stationary initial distribution of the corresponding
reduced supplemented GSMP is given by {p,} and (5.1).

Proor. The function F,(+) being of type (5.2) we may consider the Markov
chain of the preceding proof, with stationary probabilities satisying (5.3). We
are going to show that the values suggested by (5.4) and (5.5) for these probabili-
ties yield a probability solution of (5.3). Inserting into (5.3,) these values yield
(4.1) for g ¢ G,. Inserting similarly into (5.3,) for a fixed i yields the equations

2,
(A, —24) —f (ts + «++ + m)p,

2, ,
= 79 (7 4+ 4 M) Zigreay Por Lisesyocaras PG5 55 )4,

+ 7 Zy’eGOPy’P(g,’ So g)'zso
+ 7 Zy'eaopg' Zseg'nsp(g,’ 55 g)]s - 'zsoﬂi}’g
for g € G,.

Here the last three terms on the right-hand side add up to zero as {p,} is as-
sumed to satisfy (4.6). Subtracting, for fixed g € G,, (4.6) from (4.1) reveals that
the above relation for {p} does, in fact, hold. Thus, the values suggested by
(5.4) and (5.5) for the p, ; do indeed yield a probability solution of (5.3). There
is, however, only one probability solution of (5.3). The properties expressed
in (5.4) and (5.5) imply the statements of the theorem.

The condition (5.2) on F, (+) can be removed as follows: if F, () is continuous
but not of type (5.2), there is a sequence {F, ,(+); n = 1} of distribution func-
tions of type (5.2) with F, (1) — F, (1) for all t = 0 as n — co (see [8], page 32).
It has been shown in [3] that the corresponding stationary distributions con-
sidered in Theorem 5.2 converge weakly to the one corresponding to F, (+), pro-
vided that

By $5 (1 = Fyp () dt — 2, V5 (1 — F, (1)) dt

for x = 0 as n — co. This, however, can be arranged to hold, and hence the
condition on F,(+) can be dropped in Theorem 5.2. Using this fact we now
sum up our findings of Sections 4 and 5 in

THEOREM 5.3. Let X and @, as defined in Section 4, and let ¢’ € @, be the family
corresponding to exponential ¢,, ¢" € @, a family corresponding to a ¢, of type
(4.3) with A7, # A »

(i) If 2 is {¢', ¢"}-insensitive, it is D, -insensitive;

(i) If Zis @, -insensitive, (4.1) and (4.6) hold for the stationary distribution of
the GSMP based upon X by means of a ¢ € D, ;

(iii) If there is a distribution on G satisfying (4.1) and (4.6), X is ®@, -insensitive;



96 R. SCHASSBERGER

(iv) If X is @, -insensitive, the stationary distribution of the reduced supplemented
GSMP based upon X by means of a map ¢ € @, possesses the product property.

Theorems 5.1 and 5.2 imply moreover that X is @, -insensitive, provided there
isa family ® € @, other than the exponential family producing the product prop-
erty. We have, however, shown this only for the case that ¢ satisfies the addi-
tional condition (5.2). Theorem 5.3 (i) seems to be new. It is evident from the
results in [7] or from well-known examples of GSMP’s, that insensitivity with
respect to two different elements of ®,, does not in general imply ®, -insensitivity.

APPENDIX
THEOREM A. Let A be an n X n conservative Q-matrix, i.e.,

a; =0 for j#i
and
(A1) 2,a,; =0 Vi.

Let P be an n X n substochastic matrix. Let d be a fixed nonnegative n-dimensional
vector. Let A, 4, > 0and 0 < 7, r, < 1 with

(A2) T+ r,=1
and

1 1 1
A3 — — =,
( ) 7 + 7, 7 7

where A, is fixed. If, for every choice of ,, 2,, T, 7, satisfying these conditions, the
system

(A4) —A"x + Ay x = Am PTx + md + A,y
(AS) —ATy + Ay = A7, PTx + m,d
has a nonnegative solution (x, y) satisfying
(AS) x+y=p,
where p is a fixed vector not depending on the choice of 2, 2, and w,, then
(A7) A'p = 0.
Here the symbol T denotes the transpose of a matrix.
Proor. For 7, = 0 and hence, by (A2) and (A3), 1, = 2,, (AS) yields
ATy =. Ay .

The eigenvalues of AT having nonnegative real parts, it follows that either A” = 0
or y = 0. The former implies (A7), the latter, by (A6), x = p and, by (A4)

(A8) —ATp 4 A p = 2 PTp + d.
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Adding (A4) to (AS) (for general parameters) and using (A2) and (A6) results in

(A9) —A"p = A(PT — Dx +d
where I is the identity matrix. Subtracting (A8) from (A9) yields
(A10) (PT — I)(4x — 4,p) = 0.

Eliminating P” from (A4) by means of (A10) produces
(Al1) AT(r = 7 p) = 2 (x = 20p).
0

and it is also easily verified that

(A12) (-AT + %ﬁz 1) (hx — 2 p) = (W7, — )(d + (P — DAyx) .

0
We want to show that 4, x = 4,p. This follows from (A10) provided that P does
not have the eigenvalue 1. Hence assume it does and that the algebraic multi-
plicity is k, 1 < k < n. Then it is well known that P” may be assumed to appear
in the form

P R,
PT 0 R,

(A13) Pr = T ,
0 P’ R,
Pi,

where the P,, i = 1, ..., k, are irreducible and stochastic and P, , does not have
the eigenvalue 1. Putting

Ax —2lyp=u
and
U
U =
Upyr

in accordance with the partitioning underlying (A13), we conclude from (A10)
that

(A14) Uy = 0
and
(A1) (P — I, =0, i=1, k.

As P, i =1, - .-, k, has the simple eigenvalue 1, the Perron-Frobenius theorem
tells that, for fixed i, either u; < Ooru, >0o0ru, <0,i=1, ..., k.
We may assume that (A13) can be written as

P(I)T O R(l)
(A16) Pr=| 0 po»r R®
0 0 P(3)T
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and, correspondingly,
782
u=|u?
u®

where 4 <0, u® >0, u® =u,,, =0, POTy® = y®, POTY® — y®, and
P®T = P ,. Now notice that (Al1) and the properties (A1) of 4 imply that the
component sum of u equals zero. Hence either ¥ = 0 and u*® is absent which
we want to show, or else u” has at least one negative component and neither
PDT nor PT are absent in (A16). It remains to deal with the latter case. There-
fore let ’
AL AL AL
AT = | AL AL AL
Ay Ah Ag

be the pai‘titidning of A7 corppatible with that of P* in (A16). Thgn (AIZ) 4Yiellds
(A17) (—Aﬁ : MI) u
4
= ALY 4 (T — WD + (PUT = DL + RO(49)]

with the obvious interpretatidn of the symbols 7, d*, (4, x)® and (4,x)®. This
relation is valid for all allowable choices of 2,, 4,, 7;, with x depending on the
choice. Now suppose the choice is such that 4,7, — 2, > 0, which is clearly
possible. Then our assumptions about # imply that summing up the individual
equations of (A17) yields a negative number on the left-hand side and a non-
negative one on the right-hand side. Thus #® = 0 and #® is absent, i.e., 2, x =
4, p» for such a choice, and (A7) follows by (All).

CoROLLARY Al. The assumptions of Theorem A imply that 2,x = A, p, provided
that
ATy Ay .
Proor. The assertion has been proved for the case 2,7, > 4, by partial ex-
ploitation of (A12) in (A17). Further exploitation of (A12) yields the rest.

COROLLARY A2. The assertions (A7) and (A18) are valid provided the assumptions
of Theorem A hold for the parameter choice ©, = 0 and one other choice such that
ATy = A
The condition 4,7, # 4, cannot be dropped. A probabilistic reason is given in
Section 4.
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