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THE CONDENSER PROBLEM

By K. L. CHUNG! AND R. K. GETOOR?

Stanford University and
University of California, San Diego
The condenser theorem in classical potential theory is studied within
the framework of Markov processes and probabilistic potential theory.

The condenser charge is expressed in terms of successive balayages of a
capacitary measure.

1. Introduction. In classical potential theory on R* with d = 3 (or, more
generally, in theory of Dirichlet spaces) the “condenser theorem” states the
the following (see, for example, page 380 of [5]). Let G, and G, be open sets
with disjoint closures G, and G, and assume that G, is compact. Then there
exists a potential p of a signed measure v such that:

(i) 0<p=<1lae. onR%

(ii) p=0a.e.onG,and p=1a.e. on G,.

(iii) The support of v* is contained in G, and the support of v~ is contamed
in G,

From (i) and (ii) one would guess that p(x) is just the probability that a Brown-
ian motion starting at x hits G, before G,, and consequently (i) and (ii) hold
everywhere rather than almost everywhere. With this motivation it is very
easy to give a probabilistic proof of the condenser theorem and to study the
condenser problem within the framework of Markov processes. This note is
devoted to such a study. In order to keep things simple we shall consider only
Hunt processes with a locally compact metrizable state space E. (The expert
should have no difficulty extending our results to the “right” processes.) Our
method yields some interesting by-products. For example, it turns out that v*
is the capacitary measure, z, of G, for the process killed when it first hits G,
and that v~ is the balayage of v* = y on G,. Moreover, we obtain an explicit
formula (3.2) for y in terms of the successive balayages on G, and G, of the capa-
citary measure 7 of G, for the entire process.

2. Let X be a Hunt process with state space E as in [2]. We refer the reader to
[2] for all unexplained notation and terminology. Let D and B be nearly Borel
sets with disjoint closures. We assume that D is transient in the sense that if
L =L, =sup{t: X,e D), then L < oo almost surely. (By convention the supre-
mum of the empty set is zero and the infimum of the empty set is infinity.) As
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usual T, = inf {t > 0: X, € D} denotes the hitting time of D. Let
2.1 ¢(x) = P,1(x) = PY(T, < o) = P*(L > 0),
p(x) = PX(Tp < Ty) . ‘

Then ¢ is an excessive function, while p is excessive relative to (X, Tj). See Sec-
tion III-5 of [2]. The operators P, and P, are the usual balayage or hitting
operators. An inclusion-exclusion argument leads to the following formula

p=P(T, < Tp) =P,1 — Py P,1 P, P, P, 1 — ...,
The next proposition makes this precise. (C. Nevison informed us that he used
it in a prior discussion.) '

(2.2) ProroSITION. Let p, = (PD Pp)*P,1 = (P, Pg)"¢. Then

P= 2r=0(Pn— Pppa)-

Proor. Each p, is excessive, bounded by one, and P,p, < p,. Therefore
0p, —Pyp, 1. Let Ty=0, T, =T,, T, = Ty +Tgely, Ty =
Ty + Tpo 07,5 Tongs = Topsy + T o Ory iy Thus Ty, T,, Ty, - - - are the times of
the successive visits to D, then to B, then back to D, and so on. A simple in-
duction shows that P, = (P, Py)" for each n > 0. Itis straightforward to check

that
PZ{T2n+1 é L é T2n+2; TD < TB} = Pn(x) - PBpn(x)

because L must lie in one of the intervals [T,,,,,, Ty, ,]. Note that the quasi-left-
continuity of X implies that lim, T, = co. This completes the proof of (2.2).
If 3 p, converges, then (2.2) may be written in the more agreeable form

(2.3) P=2P— 2 Psp,.
We shall give some simple conditions that guarantee the convergence of Y, p,.
The hypotheses on D and B in the first paragraph of this section are still in force.

2.4) PROPOSITION. Suppose there exists a nearly Borel set G with D — G C B°
and satisfying:

(i) sup{U(x,G): xe E} = M < co.
ii) There exist ty > 0 and 7 > 0 such that P*(Ty = t,) = 7 for all x € D/—the
( 7 7

fine closure of D.

Then 3 p,(x) is bounded in x.
Proor. Let (T,) be the sequence defined in the proof of Proposition 2.2. Then
Pu(%) = P, 9(x) = Pp, Pp1(x) = P*(T}py, < 0)
for each n = 0. Since L < oo and T, | oo it is obvious that
P*(Ty,,1 < oo forall n) =0.
Thus (2.4) is a matter of strenghtening this trivial fact to
sup 33, P(Tyyy < 0) < 0.
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If y € D, then by (ii)
Ev (T 14(X,) dt = nt,.
Now using (i) we have

Mz U(x, G) 2 Ngo B {iavts 14(X,) dt

2n+1

= Yweo EA{E Tty (75 14(X,) dt} .
But T, = Ty and X(T,,,,) € D7 if T,,,; < co. Therefore

M = 7ty oo P*(Topir < 00)
establishing (2.4).

REMARKS. In (2.4ii) one need only assume that g(x) = P*(T4 = t,) = 7 for
x € D because it is immediate from (II-4.14) of [2] that g is finely continuous. If
in (2.4i) one only assumes that U(x, G) is finite for each x, then the proof shows
that ) p,(x) is finite for each x.

We next formulate a simple condition under which the hypotheses of (2.4)
hold. The basic result that we need is a “separation” lemma that holds when
the semigroup (P,) maps C,into C,. Here C, is the space of continuous functions
on E that vanish at infinity. This result is well known and may be found in [1],
for example. Nevertheless we shall give the simple proof for the convenience of
the reader.

(2.5) LEMMA. Let (P,) map C, into C,. Let K be compact and let G be an open
neighborhood of K. Then for each 6 > O there exists a t, > 0 such that
(2.6) inf, x P(Tge 2 1) =1 — 9.

PrRooF. We may assume without loss of generality that G has compact closure.
For typographical convenience let T = T during this proof. Since (P,) maps C,
into C, and P, f — f pointwise as t — 0 for each fe C,, it follows that, in fact,
[|P.f — fl| = 0 as t — O for each fe C, where ||+|| is the usual supremum norm.
See, for example, II-(2.15) of [2]. Choose feC, with 0 < f< I, f=1 on K,
and f = 0 on G°. Given d > 0 there exists #, > 0 such that ||P, f — f|| < /2
for all ¢t < t,. Therefore

2.7 SUP,<y, SUP..¢ Py f(X) < /2

(2.8) inf,g, inf, . P, f(x) > 1 —0/2.

Thus if xe K

2.9) 1 -2 < E[foX, ]S PIT Z 6]+ E[feoX,;T < 1],

and the strong Markov property implies
Ef o Xt ;T < ] = E"{EX‘T’[fo X“o n+h T < t} .

But X(T) € G° if T < oo and so by (2.7) this last expectation does not exceed 9/2.
Combining this with (2.9) yields

1 —d2<inf,. , P(T =t) + 9/2,
completing the proof of (2.5).
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The following corollary is an immediate consequence of (2.4) and (2.5). Here,
of course, B and D satisfy the conditions in the first paragraph of this section.

(2.10) COROLLARY. Let (P,) map C, into C, and assume that X is transient in
the sense that x — u (x, K) is bounded for each compact K. Then if D has compact
closure 3 p,(x) is bounded in x and

P=2LPr— LPspu.

3. In this section we shall assume that X satisfies the duality assumptions in
Section VI-1 of [2] and the mild transience condition that there exists a sequence
(h,) of nonnegative functions with 4,11 and U, finite for each n. Then for
each x the potential kernel u(x, y) is finite almost everywhere in y. See Section
VI-1 of [2] for notation and terminology. As in the previous sections Band D are
nearly Borel sets with disjoint closures with L, < co. In addition throughout
this section we shall suppose that the capacitary measure 7, of D exists; that is,
7, is the unique measure carried by D satisfying ¢ = P,1 = Ur,. For example,
if D is compact and X satisfies conditions (VI-2.1), (VI-2.2), (VI-4.1), and (VI-
4.2) of [2], then z, exists. (See (VI-4.3)of [2].) However, much weaker condi-
tions suffice. See [3] or [6] in this connection.

Let v(x, y) be the potential kernel for (X, T;)—the process X killed when it
first hits B. Then v is positive kernel satisfying

@3.1) u(x, y) = v(x, y) + Pau(x, y)
= v(x,y) + uf’B(x, y).
See [4], for example. As usual,A write Vu(x) = § v(x, y)u(dy) when g is a posi-
tive measure. Let p, = Y, (P, Pp)*ny, and
(3.2) pp = lim, g, = 31, (ﬁDpB)k”D .
Then p,, is a positive measure carried by D since each g, is carried by D. Of

course, a priori, ¢, need not have any reasonable finiteness properties. How-
ever, V is a positive kernel and so

Vip(x) = lim Vy,(x)
exists. The fundamental identity for dual processes, VI-(1.16) of [2], yields
(3.3) Up, = 2t U(pDﬁB)k”D = i (PDPB)kU”D = D=0 Pi-

Consequently Uy, and P, Up, are bounded for each n, and so using (2.2) and

(3.1) '
Vyp = lim, Vp, = lim, (Up, — P, Up,)

= lim, 35 (pr — Psps) = p-
Therefore
3.49) P (T, < Ty) = p(x) = Vpp(x) s
that is, p, as defined in (3.2) is the capacitary measure of D relative to the
process (X, Tp).
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Next suppose that 3] p, is bounded, or only finite, for each x. Conditions
guaranteeing this are given in (2.4) and (2.10). Then from (3.3), Uy, = 3,20 P2
is finite and so (3.4) may be written

p="Vy, =Upp — PyUpy = Upp — UPBP‘D = U(pp — ﬁB/"D)'

If we define v = p, — B, 1), then v is a signed measure such that Uy(x) = p(x) =
P¥(T, < Ty). Therefore Uv = 1 on D"—the regular points of D—and 0 on B".
But D and B are disjoint, and so v+ = g, is carried by D, more precisely by
D U "D where "D is the set of coregular points of D, while v~ = P, is carried
by B, more precisely by B U "B. In other words v is the “condenser charge”
for D and B and the formula

(3:5) v=pp — Py

says that v* is the capacitary measure g, of D relative to (X, T) and that v~ is
the balayage of v* = y, on B.

Remarks. Of course, using the methods of Revuz [6], one can establish the
existence of a measure y, such that p = Vp, under duality and mild transience
hypotheses. Then it is immediate that

(3.6) Upp = Vpp + PpUpp = p + UﬁBF‘D .

But an additional “finiteness” argument seems to be necessary in order to con-
clude from (3.6) that

p=Up, — UPypyp = Uts —PB/"D)'

Our approach shows that whenever =, exists, then u,, exists and is given by (3.2).
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