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REPRESENTATIONS OF INVARIANT MEASURES ON
MULTITYPE GALTON-WATSON PROCESSES
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We show that there is a one-to-one correspondence between invariant
measures for the noncritical multitype Galton-Watson process and invari-
ant measures for the single type process with a linear offspring probability
generating function. Two corollaries emerge as simple applications, the
first being Spitzer’s Martin boundary representation, the second giving
the asymptotic behaviour of the measures. Both require no extra moment
assumptions and are valid for the multitype theory.

We consider a d-type Galton-Watson process {Z,}, positively regular, subcriti-
cal (maximal eigenvalue p < 1), with offspring probability generating function
(p-g.f.) F(x) = (F¥(x), - -+, F*¥(x)), x € [0, 1]*. An invariant measure is a non-
negative solution of the system

n(k) = X =(i)P(i, k)
where P(i, k) = Pr[Z, = k|Z, = i] and i, k are d-tuples of nonnegative inte-

gers excluding zero. There is a one-to-one correspondence between invariant
measures and generating function (g.f.) solutions of Abel’s equation

(1) P(F(x)) = P(x) + 1, xe[0,1)4, P(0) =0,

this correspondence being valid under the normalization P(F(0)) = 1. For d =
1 a proof may be found in Harris (1963) and for d > 2 in Hoppe (1975a).

Let A(x) denote the p.g.f. of the conditional Yaglom limit distribution (Joffe
and Spitzer (1967)). It satisfies the Schroder equation

() 1 — A(F(x)) = p(1 — A(x)),  xe[0, 1], 4(0) = 0.

Associate with {Z,} the single type Galton-Watson process with linear
offspring p.g.f.

1 —p+ps
so that the g.f. of an invariant measure on this process satisfies
3) H(l —p+ ps)y=H(s)+ 1, se[0, 1), H0)=0.

THEOREM. There is a one-to-one correspondence between g.f. solutions of (1) and
(3) given by
(4) P(x) = H(A(x)) .
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This means that if H satisfies (3) then (4) defines a solution of (1) and, conversely,
if P is a solution of (1) then there is a solution H of (3) giving the representation (4).

PrOOF OoF THEOREM. The direct part follows by substitution. The converse
will obtain after we prove the following lemma. F, denotes the nth functional
iterate of F.

LeMMA. The function
5) H(s) = lim, ., P(F,(0) + s(1 — F,(0))) — n, se[0, 1)
exists, is a g.f., and satisfies (3).

ProoF oF LEMMA. Let
6) H,(s) = P(F,0) + s(1 — F,(0))) — n, sel[0,1),n=0,1,2, --..

Writing the argument of P as (1 — s5)F,(0) + sl shows that it lies in [0, 1)* and
so (6) is well defined. We first establish that {H,} is a monotonic nondecreasing
sequence of functions. By convexity of F,

F(F,(0) + s(1 — F,(0))) = F(1 — 5)F,(0) + s1)
< (1 = 5)F,4,(0) + 51

= 'n+1(0) + S(l - Fn+1(0)) H
which implies

P(F,s(0) + S(1 — F,,,(0))) = P(F(F,(0) + s(1 — F,(0))))
= P(F,(0) + s(1 — F,(0))) + 1 (by (1)),
and then subtracting n + 1 from both sides
H,.\(s) = H,(s)

proving monotonicity. Next we show that for each s, { H,(s)} is bounded above.
According to the recipe for 4 given by Joffe and Spitzer, for any x, given ¢ > 0,
for all n sufficiently large

) (1= — A@)(1 — F,(0)) < 1 — F,(x)
= (14 o1 — A())(1 — F,(0)) .
Given s € [0, 1) choose x so close to 1 that
®) 0<3(1—Ax)<1—s.
Rearrange part of (7), add and subtract F,(0), obtaining
Fo(0) + [1 — (1 4 e)(1 — AT — F,(0)) = Fu(x) ,
and then letting ¢ = § and using (8),
F,(0) + s(1 — F,(0)) < Fy(x) .

Applying P to this inequality, subtracting n, and since iteration of (1) shows
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P(F,(x)) — n = P(x), we get
H,(s) = P(x)

for all n sufficiently large, proving the asserted boundedness.

Hence H(s) = lim (n — oo0)H,(s) exists and since for each n, H,(s) is a g.f.,
H(s) is also a g.f. by the continuity theorem. It remains only to show that H
satisfies (3). Clearly H(0) = 0. Again from Joffe and Spitzer, given any ¢ > 0,
for all sufficiently large n,

(9) (l - e)p(l - Fn(o)) = 1 — F'n+1(0) = (1 + s)p(l - F’Ib(o)) .
Therefore
(10)  Fy(0) + [1 — (1 + e)p](1 — F,(0))
é Fn+l(0) § Fn(o) + [1 - (1 - E)p](l - Fn(O)) )

and multiplying (9) by s and adding to (10),

F(0) + [1 — (1 + ) + s(1 — e)o](1 — F,(0))
(11) = Fona(0) + s(1 — F,14(0))

= F(0) + [1 — (I — ¢)o + s(1 + ¢)p](1 — F,(0)) .

For any fixed s € [0, 1) whenever ¢ is sufficiently small the coefficients of 1 —
F,(0) in (11) lie in [0, 1). Thus

Hy(1 = (14 €)p + 5(1 — )p) = Hypa(s) + 1 < Hy(1 — (1 — ) + s(1 + €)o)
and taking limits as n — oo then letting ¢ | 0 we see that H satisfies (3). []

Returning to the proof of the theorem, let P(x) be any g.f. solution of (1).
Let x be chosen and fixed. Suppose first that 4(x) == 0. Then from (7),

(12)  Fy0) 4 [1 — (1 + &)(1 — A(x))(1 — F,(0))
S Fu(x) = F(0) + [1 — (1 — e)(1 — 4(x))(1 — F.(0)),

where, as before, for ¢ sufficiently small the coefficients of 1 — F,(0) lie in
[0, 1). Consequently

H(l — (1 + ¢)(1 — A(x))) = P(x) = Hy(1 — (1 —¢)(1 — A(x))),
and letting n — oo followed by ¢ | 0,
H(A(x)) = P(x) .
If A(x) = 0 we proceed analogously but using the inequalities
F,(0) < Fy(x) < F\(0) + e(1 — F,(0))

in place of (11) to deduce that P(x) = 0 = H(0) = H(A(x)). Thus in all cases
we obtain (4). []

ExAMPLE. H(s) = log (1 — s)/log p is obviously a g.f. solution of (3) so we
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immediately have P(x) = log (1 — A(x))/log p as a solution of (1), a result previ-
ously established (Hoppe (1975a)) by a direct calculation. This example is a
special case of the following much more general result.

COROLLARY 1. For every probability measure v on [0, 1), the function

(13)  P(x) = o {X7-w [exp{—(1 — A(x))o"™*} — exp{—p"~}]}u(d!)
is the g.f. of an invariant measure and conversely every invariant measure has a re-
presentation (13) for some probability measure v on [0, 1).

Proor. Spitzer (1967) has shown that in the case of a Galton-Watson process
with a linear offspring p.g.f., for every probability measure v on [0, 1), the
function

H(s) = §5 Uls, )w(dr)
is the g.f. of an invariant measure, where

Us, 1) = D7 [exp{—(1 — 5)o"} — exp{—p*~1] .
Conversely, every invariant measure has such a representation for some ». Our
corollary follows as an immediate consequence. []

REMARKS. When p > 1 there is a similar representation obtained by employ-
ing the usual fixed point transformation to reduce the supercritical case to the
subcritical case. In case p = 1, invariant measures exist and are unique (Hoppe
(1975b)). In fact, the uniqueness proof in the critical case depends on a lemma
similar in spirit to the one used here.

CorOLLARY 2. If {n(k)} is an invariant measure for p < 1 then
(14) Ty 1K) ~ T1BY a5 oo,
log p

Proor. Let H(s) = }; v;s? be the g.f. defined by (3). Iterate (3) and set s =
0 obtaining H(1 — p") = n. For each s, let nbesuchthat ]l —p* <s< 1 —
p"*'. This yields the bounds

n~ H(s) log p Sn—i—l.
n+4+17"log(l—s) =~ n

We conclude that
lim, ,_ H(s)logp _ 4
log (1 — )
Define ¢(f) = 1 — A(1 — tu) for small positive  where u is the right eigenvector
corresponding to the eigenvalue p of the offspring expectation matrix for the
process {Z,}. It is shown in Hoppe (1975a) that

(15) (1) = tL(1)
where L(.) is slowly varying at 0. Thus

(log p)P(1 — 1) _ H(1 — ¢()) [1 4 log L(t)]logp
t

log ¢ log ¢(¢) log
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and so

(16) lim,, 108 0)P(1 —m) _ |
log ¢

Setting e~ = (e~*1, ..., e~*4) it follows from (16) that

lim,_, 108 2)P(e™) _ |
log ¢
However P(e~**) is the Laplace-Stieltjes transform of the measure g on [0, co)
where ’

[J{[O, y]} = Zk:k-uéy ﬂ(k) *
Karamata’s Tauberian theorem (Feller, page 445) then yields (14). []

REMARKs. Lipow (1971) (see Athreya and Ney, page 89 for the proof) first
obtained this corollary for d = 1 under the logarithmic moment condition
E[Z log Z|] < oo. Seneta (1971) also had shown (14), without this moment
restriction, for the special invariant measure whose g.f. is

(17) G(x) = 108 (1 = A(x))

log p
G(x) was characterized as the unique g.f. satisfying a regular variation condition
and then (14) obtained directly from analogous properties of the p.g.f. A(x).

Seneta’s result also holds for multitype processes and the precise condition on
G(x) is

(18) lim,_, G(1 — tw) — G(1 — ) = 982 250,
log p
Thus in this case, (16) may be strengthened to
(19) G(1 — ) = 1987 | 10g L(1)
logp = logp

(We note in passing that L(0) < oo iff the logarithmic moment condition holds.)
A little further analysis will now give relations similar to (18) and (19) valid
for all g.f. P(x). In fact it is easy to see that *

log ¢
H(l — 1) — 5 =7t
) = gy = 1l0)
where [r,(f)] < 1 for all . Now invoke the representation (4) to obtain
P(1 — tu) = H(A(1 — tu))
log[1 — A(1 —
log o

I L1 — A — ).

Thus by (17)
(20) P(1 — tu) — G(1 — tu) = 75(1 — A(1 — )
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and therefore

POl — )y =187 L IBL() 4 o 1 _ 401 — ).
logp = logp

This generalizes (19). Notice also that if P(r) and Py () are any g.f. of in-
variant measures then

[Pl — tu) — Py(1 — tu)| < 2 forall ¢.

Equation (20) shows that any g.f. “stays close” to the special one G(x) uniformly
as t — 0 (i.e., as the functions blow up). This suggests on an intuitive level
why there is one and only one G(x) satisfying the property (18). Specifically,
from (3),

Hl—p)=Hl—-—1H+1,

so that
_ log ptil
= H(l — — | ==
7x(0?) (1 — p) [ og o
logp logt
— H(1l — 1 — —
=n+ logp logp
= rH(t) .

Also, r4(1) = 0. Thus, unless y,(?) is identically a constant (in which case the

constant is zero) it repeats itself over each interval [p"*!, p*] and since these

intervals decrease to zero, as t — 0, y,(7) oscillates wildly near ¢+ = 0. This is

what causes the regularity manifested by (18) to break down in general.
Finally, consider the difference

(21) P(1 — 2tu) — P(1 — tu) = [G(1 — 2tu) — G(1 — tu)]
+ [ra(l — A(1 = 2tw)) — rp(1— A(1— tw)) .
Define r(f) = expP(1 — tu). Then from (18) and (21) it follows that

2w < TCD < ¢ ove t>0,
o)
for positive constants ¢, and c,. In the terminology of Feller (definition, page
289) the function r(7) is said to vary dominatedly at zero. This appears to be
the best universal regularity condition analogous to (18) possessed by arbitrary
g.f. P(x).
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