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A RATIO LIMIT THEOREM FOR SUBTERMINAL TIMES!

By SAMUEL D. OMAN
Case Western Reserve University

Consider a recurrent random walk {X,} with state space S € R (d < 2).
A stopping time T is called subterminal if it satisfies a technical condition
which essentially states that it is the first time a path possesses some prop-
erty which does not depend on how long the process has been running.
Suppose T is a subterminal time which can occur only when {X,} is in a
bounded set; then under an additional assumption a ratio limit theorem
(as n— co) is obtained for P(T > n|Xo = x) (x€ S). The theorem applies
in particular to the hitting time of a bounded set with nonempty interior
in the general case, and to the hitting time of a bounded set with nonzero
Haar measure in the nonsingular case.

1. Introduction and statement of results. Let u be a probability measure on
R? (d < 2) and let S be the closed subgroup of R* generated by the support of
p#. We assume that S is equal to R¢, Z¢, or R x Z. Let {X,} be the random
walk generated by y, and assume {X,} is recurrent (i.e., >}, #™(G) = oo for all
nonempty open sets G S, where ¢™ denotes the n-fold convolution of x with
itself). For any Borel set BC Slet T, = inf{n > 0: X, € B} (= oo if no such
n exists) be the hitting time of B, and set R, = P?(T, > n) = {, P*(T, > n)dx
where D is the unit ball in S. Here P?(.) denotes P(+ | X, = x) and dx denotes
Haar measure. We assume given shift operators 4, which are transformations
on the underlying probability space Q on which {X,} is defined and which satisfy
for all m and n

X,00,0) = X, (o) (weQ).
Recall that random variables composed with ¢, should be interpreted as “starting
from time n.”

Our main result concerns the asymptotic behavior as n — oo of P*T > n),
where T is a member of a class Z2 of stopping times which will be defined in a
moment. Specifically, the following result will be proved:

THEOREM 1.1. Let TeZ/. Then for any xS
mﬂ(TT>”_) = Ly(x).

n

lim,_,
Moreover, the convergence is uniform for x in compacts and the limit is bounded on
compacts. '

In order to define 77 we first define the following classes of sets:
< = {bounded Borel subsets of S}
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and
F#={Be ¥ foreach Ce o7, In such that inf, ., P*(Ty < n) > 0}.

We shall see that sets in <% have properties (in the general state space case)
similar to properties of points in the lattice case. %/ is then defined to be the
set of all stopping times T (relative to the sigma fields &, = o(X,, - -, X,))
which possess properties (i)—(iii) of the following definition.

DErFINITION 1.2. A stopping time T

(i) is subterminal if for alln, T<n+4 To0,a.s.;
(ii) has the uniform lower bound property if for some C e <7 there exists n
such that inf,., P*(T < n) > 0; and
(iii) has bounded support if there exists some B € % such that T < oo implies
XreBa.s.

Some comments on (i)—(iii) are in order. Since T o @, is the time of T’s oc-
currence for the process starting from time n, (i) essentially means that T is the
first time the path of the process possesses some property which does not depend
on how long the process has been running. Any terminal time (T satisfying
T=n+To0,a.s. on {T > n}) is subterminal, and in particular T, e % for
any Be . More examples of subterminal times will be given at the end of
Section 3.

(iii) is self-explanatory. Condition (ii) allows certain estimates to be made in
the general state space case which use point recurrence in the lattice case. We
shall show in Proposition 3.1 that for general g, if Be . has nonempty in-
terior then B e <#; while for nonsingular random walks, |B| > 0 (|+| denotes
the Haar measure) is sufficient for Be % to be in <%. In particular, in the
lattice case the uniform lower bound property reduces to the requirement that
P¥T < o0) > 0 for some x € S.

We also prove the following result, which shows that the set used in defining
R, is of no special importance:

THEOREM 1.3. Let A, Be <%, Then

P4T, > n) - 1.
P(Ty > n)

Note that this result shows that P4(T, > n)and P*(T, > n) are asymptotically
equal, while in the lattice case they wduld in fact be equal for all n if 4 and B
were one point sets.

Theorem 1.3 together with the fact that T, ¢ 27 if B e <7 results in the fol-
lowing special case of Theorem 1.1. Although in fact a corollary, it is stated
as a theorem because of its independent interest.

THEOREM 1.4. If B e <, then for any x € S

lim,

n~>00

. PX(T, > n)
1.1 1 B2 = .
(1.1) T YY) #(x) < o
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Moreover, the convergence is uniform on compacts and the limit is bounded on
compacts.

Theorem 1.4 was proved for the lattice case S = Z¢ by Kesten and Spitzer
in [1]. In [3], Ornstein generalized these results to show that, for x an arbitrary
probability measure on R with infinite variance, (1.1) holds for any bounded
interval B and any x € S. His proofs actually are valid for any bounded set B
with nonempty interior and |§B| = 0, and work in the two-dimensional case as
well. We shall briefly outline these extensions in Section 6. Using Tauberian
theorems, Port and Stone ([4]) obtained (1.1) for 1 on R? in the domain of at-
traction of a stable law. Their theorem requires B to have nonempty interior
in the general case and positive Haar measure in the nonsingular case. They
also obtained weaker ratio limit theorems, including a version of Theorem 1.3,
for arbitrary z on R%.

Theorem 1.4 generalizes these previous results on T, in that there are no re-
strictions on 0B and that B need only have positive Haar measure in the non-
singular case. Even in the singular case (1.1) may hold for sets with empty
interior, since examples may be constructed of singular random walks which
have sets in <% with empty interior.

Our stopping times are quite similar to some which Port and Stone considered
for stable processes in [5], where they obtained a version of Theorem 1.1 by
Tauberian methods. Our methods are similar to those of Kesten and Spitzer
and of Ornstein.

The outline of the paper is as follows: In Section 2 the necessary notation
is introduced. Section 3 contains examples and some elemeéntary properties of
Z/. In Section 4 we define the function L, which arises as the limit in Theorem
1.1, and give it a characterization in terms of the behavior at infinity of the
“Green’s operator” G, of T. Section 5 develops and states some analytical
properties of R, and x™(B), using in part some of Ornstein’s techniques to adapt
Kesten and Spitzer’s lattice case arguments to the case of general S. The methods
of Section 5 also can be used to prove sup, P*(T, > n)/P?(T, > 2n) < oo, which
was proved by Ornstein ([3]) for B an interval. The proofs of Theorems 1.1
and 1.3 are then given in Section 6.

2. Notation. We introduce here some general definitions and notation which
were not covered in the introduction. For events 4 and B we denote (4 n B)
by (4; B). If Y is a random variable with range in S and f a measurable func-
tion on S, then we denote E[f(Y)] by { P(Yedy)f(y) and more generally
E[f(Y)-1,]1by § P(4; Y edy)f(y) (provided the integrals are defined, of course),
where 1, is the indicator function of A.

If B C S is a Borel set (we shall only consider Borel sets), we define

T, =0 and
Ty, =inf{n > T,*V: X, eB} (k=1);
= oo ifnosuch n exists (k=1).
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T,® is thus the time of the kth visit to B; T will be generally written as T'.
In addition to the classes . and <% defined in the introduction, we shall have
occasion to consider
“F, = {Be ¥ int(B) = @}.
For a stopping time T we define the operator G, on S x {Borel subsets of S} by
Gp(x,dy) = 2w PA(T > n; X, € dy);

G,(x, A) is thus the expected number of visits to 4 before T occurs. If T = T,
then we shall write G, for G,,. We remark here that P*(X, e +) = 9,(+) where
d, is the unit point mass at x. For Be % and x € S we also define

ru(x, B) = P(T5 > n) .
By an abuse of notation, we will occasionally write { , f(x) dx as f(A); in particular
PA(s) = §, P*(+) dx
and
r. (A4, By =\, r(x, B)ydx .

Let f, defined by fi(4) = p(—A), be the dual measure to y; f also defines a
(recurrent) random walk on §, which is {X,} “reversed.” Quantities referring
to the reversed random walk will be denoted by “; e.g., %, G,. It follows
easily from

Sap(B — x)dx =5 4(A —y)dy

P4(X, e B) = P*(X, ¢ A)

that

and
P4(X,e B; Ty = n) = PP(X, e A; T, = n)

for any sets 4, B, C and any n > 0.
Finally, {X,} is said to be nonsingular if some convolution of y has a nontrivial
absolutely continuous component with respect to Haar measure.

3. Subterminal times: elementary properties and examples. We first de-
termine sufficient conditions for a set to be in the class <# defined in the
introduction.

ProrosiTioN 3.1. If Be % and int (B) + @ then B e <Z. In the nonsingular
case, if Be % and |B| > 0 then B ¢ &%.

REeEMARK. It follows from the second part of this proposition that in the non-
singular nonlattice case, <% strictly contains the set of all bounded open sets.
Examples may also be constructed of singular random walks where this occurs.

Proor ofF THE ProrosiTION. For the first statement let / be a ball centered
at 0 sufficiently small that B, 4+ / < B for some open set B;, and fix x ¢ §. Then
for any uel, P**(Ty < n) = P(Tp_, < n) = P(Tp, = n) = 6 > 0 for n suf-
ficiently large. A covering argument then yields the desired result.
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For the second statement fix x e S. As in [4], we may find » such that ™
may be decomposed as ¢, + v,, where ¢, has a density f which is bounded away
from 0, say f = 0, on some ball N — x. Let then N, be a ball such that N, +
I < N for some ball I centered at 0, and pick m such that PNO(X €B) =
P*(X,eN,) =¢>0. Then forany uel

Pz+u( n+meB) g S #(m(dz)llvo(z + x + u)Pz+z+u(Xm GB)
= de,
and thus inf,.,,, PY(T < n + m) = de. A covering argument again completes
the proof. []

Observe that, by writing {x € §: P%(T < o0) > O}as U, ;o {x e S: PH(T < o0) >
0,}, one has from Proposition 3.1 that in the nonsingular case the uniform lower
bound property reduces to the requirement that |{x e §: P%(T < o0) > 0}| > 0.
In particular, in the lattice case T has the uniform lower bound property if
PHT < o0) > 0 for some x ¢ S.

The following result gives some useful consequences of the uniform lower

bound property. Note that a subterminal time satisfies Definition 1.2 (i) with
n replaced by any nonnegative integer-valued random variable.

ProOPOSITION 3.2. Let T be a subterminal time.

(i) If T has the uniform lower bound property, then for each A € . there exists
n such that inf,. , P*(T < n) > 0.

(ii) If T has the uniform lower bound property, then for any A, C € S there exist
0 < 1 and j such that for all k = 1, sup,., P(T > T,¥*) < o*.

(iii) T has the uniform lower bound property if and only if lim,,_,, P*(T < n) = 1
uniformly for x in compacts.

Proor. To verify (i) let 4 € % and pick C € &% and n such that inf, ., PY(T <
n) = ¢ > 0. Since C € &%, m may be found such that inf,. , P%(T, < m) = 6 > 0.
Then for x € 4, T’s subterminality guarantees that

PAT < m+4n)2 P(Ty <m;Ty+ Toby, <m+ n)
= Vo P(Ty < m; Xy, e dy)PY(T < )
=0 >0.

For (ii) we use an argument similar to one in [5]. Let 4, Ce % and use part
(i) of this proposition to pick j sufficiently large that inf,.,,, PY(T < j) =
1 — 6 > 0. Since T,? = j, this proves (ii) for k = 1. Now assume (ii) true
for k < [, and use T’s subterminality to conclude that for x ¢ 4

P(T > TC(j(t+1))) = P¥T > T, 9, T > T, 4 T, o 0Tc(ﬂ))
S PAT > T T o Oppin < To'? 0 0r404n)
— SC Px(T > Tg(jl); Xro(ﬂ) e dy)P”(T > Tc‘j’)
< o+,
This proves (ii).
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The if part of (iii) is immediate. For the only if part, let 4 be compact and
p > 0 be given. Let C be a ball large enough that C — A 2 C, for some other
ball C,. By part (ii) of this proposition, pick k so large that

Wpes AT > T < £

Then pick N so large that for n > N and xe 4 one has PH(Ty'™ > n) =
PYT, > n) < P(TE > n) < p/2. Then for all such x and » one has
PAT > n) < P*(T > T,*) 4+ P*(T,;'® > n)
<p,
completing the proof of (iii). [J
As an immediate consequence we obtain the following useful result:

ProposITION 3.3. Let Te 7/ and C e 7. Then G(x, C) is bounded for x € S.

Proor. Use Proposition 3.2(ii) to pick j and d < 1 such that sup,., P*(T >
T,#) < o for all i = 1. If N is the number of visits to C before T occurs, one
then has for x e C that

Gy(x, C) = E(N) = L PN 2 k) = L PA(T > T,™)
Sj—1+j0mP(T > T <)~ 1+ 2500,
showing that sup,., G,(x, C) = M < oo. T’s subterminality then guarantees
that for any x ¢ S,
Go(x, C) = Ny PAT > TW) < 1+ 05, PAT 0 0y > To™ Y 0 0,
=1+ §o PP(Xpp e d))Gr(y, €) = 1 + M,

establishing the proposition. []

We next investigate some closure properties of 7.

ProrosITION 3.4. If R, S € 7/ then

(i) max (R, S)eZ,

(ii) min (R, S)e Z,
and

(iliy R+ SoblzeZ.

Proor. It is evident that the stopping times defined in (i)—(iii) have bounded
support. Subterminality is also gasily checked in cases (i) and (ii). For case
(iii), note first that for any i, j and k one has X,(0,0,0) = X, ;,1(®) = X;(0;,, )
for all @ € Q. Therefore by the monotone class theorem, U(0,0,) = U(f;,,) a.s.
for any .5 -measurable random variable U. It follows then by S’s subterminality
that for any i < j, i + S(0,) <j + S(0,_,0,) =j + S(0;) a.s. Now let T =
R 4+ S o0y, let n be arbitrary, and suppose R(w) =i < n 4 R(6,0) =j. One
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then obtains T(w) = i + S(0,0) < j+ S(0;0) = n+ R(0,0) + S(0,4r0,.@) =1 +
R(0,®) + SO ru,ml.0) = n 4 T(0,w)a.s., showing that T is indeed subterminal.

We next verify the uniform lower bound property. Since P*(min (R, S) < n) =
P%R < n) for any x and n, min (R, S) has the uniform lower bound property
if R does. For (i), let C be a given compact set. For given ¢ > 0, use Propo-
sition 3.2(iii) to pick N so large that P*(R > n) < ¢/2 and P*(S > n) < ¢/2
whenever x e C and n > N. Then P*(max (R, S) > n) < ¢ for all such nand x,
so Proposition 3.2(iii) implies that max (R, S) has the uniform lower bound
property. As for (iii), let 4 be compact and pick m so that inf, ., P*(R < m) =
6 >0. Let R have support in a bounded set B, and pick n so that
inf,. , PY(S < n) = ¢ > 0. Then for x € A oneobtains PX(R + So b, <m +n) =
P(REm;Sol,<n)=(,P(RIm Xpedy)P!(S<n) =0 sO R+ Sol,
has the uniform lower bound property. []

We shall now give some examples of stopping times in Z7. Our examples are
intended to be indicative rather than exhaustive. As remarked earlier, T, e Z
for any Be &%. By writing T;* = T;%*" 4 T, 0 0;,,_,, and using induction,
it follows from Proposition 3.4(iii) that T,® € 2 for any k. This may be
generalized by considering a general additive functional {A4,} defined by 4, =

» 1 v(X,,) for some function v = 0. Let ¢ be a fixed positive number. If v
has compact support and v >4 -1, for some 6 >0 and Be <%, then T =
inf{n >0: A4, =cle?. For ¢c = kand v = 1,, T of course reduces to 7,*.
As another example, let B be bounded and let A be a (not necessarily bounded)
set such that 4 © C for some Ce <7 such that inf, ., P¥(X,e B) > 0. Then
T=inf{n >1:X,eB; X, €A eZ/. One can of course generalize this to
T=inf{n>n:X, , €4 -5 X, , €A X, € B} for appropriate sets 4, and
fixed integers n, > n, > ... > n, > 0. Next, suppose that B, B,, - - -, B, are
all in &Z. Then Proposition 3.4(iii) guarantees that 7, + T o6, , the time
of the first visit to B, after hitting B, is in Z7. By the same reasoning, 7/ also
contains T = first time that B, then B,, - - -, then B, are visited. Finally, Propo-
sition 3.4(i) shows that T = max {T;, - -, Ty}, the first time that all of the
B, are visited, is in 7.

4. The function L,. In this section we define the function L, which will arise
as the limit in Theorem 1.1. Recall first that <&, = {Be .%: int (B) + @} & ¥
and that Port and Stone in [4] have defined for each C € &% a function L, : § — R
with the following properties:

(i) L, = 0and §; Ly(x)dx = 1;
(ii) if Ae .7 and |0A4] = 0, then |4|L,(x) = Lim,,| ., Gi(x, 4 4 y)
uniformly for x in compacts; and
(iii) Ly(x) is bounded for x in compacts.

(Here Lim,,_,, = lim,,,_, unless d = 1 and p¢ has finite variance, in which case
. N .
Lim,, ., = $(lim,_,, + lim,__,).)
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DeriNITION 4.1. Let T e Z/. Define
Ly(x) = Lo(x) + §¢ Gr(x, dy)Lo(y) xes,
where C is any member of &% such that T has support in C. .
PRrROPOSITION 4.2. L, is well defined and is bounded on compacts. Moreover, if
Be &), then L, = Ly.

Proor. Let Te Z and x e S, and suppose C and F in <7, are such that T has
support in both C and F. Let 4 be a ball such that A n (C U F) = ¢¢. For
n =1 write

PXT > n; X, e A) = PX(T, > n; X, € A) + Yn_, Pi(0,(C) = m; T > n; X, € A),

m=1

where ¢,(C) is the time of the last visit to B in the interval [1, n]. Since T
cannot occur if the process is not in C, for each term in the summation the
condition T > n is equivalent to 7 > m. Conditioning on &, then results in

PT > n; X, e A) = P(T, > n; X, € A)
+ Zaa e P(T>m; Xy e dy)PU(Te >n—my X, _, € A),
and summing this on n yields

Gr(x, A) = Go(x, 4) + Yo Gr(x, dy)Go(y, 4)

since 4 N C = @. Clearly the same decomposition may be made according to
Ty, and equating these expressions gives

Go(x, A) + (¢ Gr(x, dy)Go(y, A) = Gp(x, A) + § Gp(x, dy)Gy(y, A) .

Now replace 4 by 4 + z in the above expression and let |z] — co. It follows
from the finiteness of G,(x, C) and G,(x, F) together with property (ii) of L, that

Lo(x) + §6 Gr(x, dy)Lo(y) = Le(x) + (5 Go(x, dy)Lp(y)

proving that L, is well defined. That L, is bounded on compacts follows im-
mediately from Proposition 3.3 and property (iii) of L,. For the third assertion,
let Be %, and use C = B in Definition 4.1. Since G, (-, B) = 0, it follows
that LTB =Lz [J

Henceforth we shall denote L, by L, for Be <5. We have just seen that
property (iii) of L, extends to L,. The next result deals with properties (i)
and (ii). :

ProrosiTION 4.3. Let Te 7.

(i) If Ae Y and |0A| = O, then |A|L,(x) = Lim,,_ G,(x, A + y) uniformly
for x in compacts.
(if)y If T = T, for Be &5, then \; Ly(x)dx = 1.

Proor. For (i), let 4 e .97 be such that |04] = 0 and pick C e £Z, such that
T has support in C. If |z| is large enough that (4 4+ z) N C = @, one has as in
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the preceding proposition that
Gr(x, A+ 2) = Go(x, A + 2) + (¢ Gr(x, dy)Go(y, 4 + 2) .

Letting |z| — oo and using property (ii) of L, together with Proposition 3.3 then
establishes (i). To prove the second assertion, pick C e %, containing B. By
using the definition of L, and reversing the process one obtains

§2 Lp(x)dx = (5 Lo(x) dx + §pdx Sonp v PY(Ts = 15 X, € dy)Lo(y)
= $5 Lo(x) dx + So\a dy Lo(y) V5 Dor PUT5 = 13 X, € d)
= {5 Lo(x) dx + Yop Tea PUT5 = n)Lo(y) dy
= V5 Lo(xX) dx + o5 PUTy < 00)Ly(y) dy -

Now Proposition 3.2 shows that P*(T, < o) = 1 for all x € S, and hence results
in Port and Stone ([6], page 216) guarantee that P¥(T, < co) = 1 for (Haar)
a.e. ye S. The right-hand side above then reduces to {, Ly(x)dx = 1. []

Part (i) of the last proposition says that L,(x) is in some sense the expected
number of visits from x to co before T occurs, which is interesting in view of
the role L,(x) playsaslim,_, P*(T > n)/R, in Theorem 1.1. It is also of interest
to know if L, cannot be identically 0. Since by definition L, = L, for any
C e &, in which T has support, {, L, = 1 guarantees, as was noted in [5], that
L, is bounded away from O on a set of positive measure. The following propo-
sition shows that in fact L, is bounded away from 0 on an open set.

ProrosiTION 4.4. If C e &5, and |0C| = 0, then there exists an open set U = C
such that

inf ., Lo(y) > 0.

Proor. Letl, = {xeS:||x|| < l/n}andletC, = C 4 I,. Since L, < L,for
each n, property (iii) of L, guarantees that sup, sup,., L (2) < co and con-
sequently that lim,_., {; \¢ L;, = 0. Since {, L, =1 for all n, it follows that
lim,_,, §; Ly, = 1. In particular, there is some y € int (C) (recall that [0C| = 0)
and some m such that L, (y) > 0.

Now let 4, and A be balls such that 4, + I,, £ A. For any ze S, uel,, and
n one has P*T, >n; X,e A+ z2) = P(T; >n; X, eA + z) and hence
Go(y + 4, 4 + 2) 2 Gy _(y, Ay + 2). Part (i) of Proposition 4.3 then shows that
Lo(y + u) = (|4l/|4])Le, (y), so setting U = int (C) N (y + 1,) completes the
proof. [] '

5. Some properties of R,. The main purpose of this section is to develop
some analytical properties of R, and g™ which will be needed in the sequel.
Several of these results use simple modifications of Kesten and Spitzer’s lattice
case arguments. As their proofs are rather long, only their statements are
given here.

First note that since ¢ is not degenerate, Lemma 1 in [2] gives the following
result:
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LemMA 5.1. Let Ce 7. Then there exists A < oo such that for all m > 1

A
mis

SUp, o5 1™(x + C) <
The following result is easily proven by applying Lemma 5.1 and Ornstein’s
methods to the proof of the simpler half of Theorem 3 in [1]:
PROPOSITION 5.2. (d = 2.) If Be &5, then

lim, _ 8. B) _
"a(B, B)
In particular, r,(B, B) is slowly varying at infinity.
For B e 7 define the following generating functions:
Up(2) = 2in-o F‘m)(B)zn and Ry(2) = Yo, r.(B, B)z» ze(0,1).

LeMMA 5.3. Let B e <5, and suppose B, D B — B. Then

i |B| |B,| :
i 0 SRy —2 ze (0, 1);
“ (=90, = =T 50,6 o0
and
(ii) there exists a > O such that for n sufficiently large,

1 1
P 2o t'P(B) S Uy (1 — —n—> < a Fhao 1By

ProoF. (i) is of course a generalization of a well-known fact from renewal
theory. To prove the first half of (i), write for any n
|B| = §, 1dx
= §pdx [ 25 $5 PU(Xy € dy)r,_i(y, B) + r.(x, B)]
= Z%:o SB Py(Xk € B)F,,,_k(}’, B) dy
= 2o AO(Byr,_i(B, B) .
Multiplying by z* and summing on n then gives the desired result. The second
half of (i) is proved in a similar manner. The proof of (ii) proceeds exactly as
the proof of Lemma 3 in [1], except that estimate (4.8) there is replaced by
Dty pP(B) = Lt 5 PATp 0 0, = 3 X; e dy) "7 PY(X, € B)
<1+ i r™(B). 0

Using in part Lemma 5.3, the proof of Lemma 4 of Kesten and Spitzer [1]
can be modified to give the following result:

LEmMA 5.4. (d = 1.) Let A, Be <Z,. Then

ns k
lim,_,,, Ml_ =0 uniformly in n.
§+ 2o #'V(B)
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6. Proof of Theorems 1.1 and 1.3. We shall now prove Theorems 1.1 and
1.3. Recall first that the following is true:

THEOREM 6.1. If C e &, is such that |0C| = 0, then

i lim, ., _’M_)_ = L(x uniformly for x in compacts;
() tim o S = Lo(x)  wniformy f P
(i) lim, (GO _

7,1(C, C)
and
r.(C, C)
up, ~m 72 =/ .

(i WP 7€ 0y <

We note that Lemmas 5.3 and 5.4 can be combined with arguments in [1] to
show that (iii) holds even without |0C| = 0.

REMARKS. Theorem 6.1 was proved by Port and Stone ([4]) for one-dimen-
sional random walk with finite variance, and by Ornstein ([ 3]) for one-dimensional
random walk with infinite variance. Although Ornstein’s results are only proved
for C a bounded interval, his arguments may be extended to Ce <% with
|0C| = 0 (and to the two-dimensional case) in the following manner: Observe
first that Lemmas 6 through 19 in [3] do not depend on the dimension of the
random walk, and that they depend on C being an interval only in that an in-
terval is a bounded set with nonempty interior with a boundary which allows
it to be suitably approximated by other’such sets. More precisely, the proofs of
those lemmas may be easily modified to cover sets in <%, with boundary measure
0 because of the following result (d(4, B) is the distance between two sets 4
and B):

LEMMA 6.2. Let Ce &, have |0C| = 0. Then for any ¢ > O there exist p > 0
and sets A, F € <&, such that

(i) 04| = |9F| = 0;
(ii) dA4,C)zp and  dC,F)Zp;
and
(iii) [F\A| < e.

Proor. Simple compactness argument. []

Lemma 6.2 may be used in a number of instances to pick, for given ¢ > 0,
p and sets 4 and F satisfying (i) and (iii) which are such that

P=+10(Ty > n) < |L|P*(T, > n) < P+1o(T, > n)

for any x € S, where I, = {y € S: ||y|]| < p}. With some other minor changes,
Lemmas 6 through 19 in [3] may then be extended to our more general setting.

Theorem 6.1 will then be proved as stated once one proves an analogue to
Ornstein’s Lemma 5, viz., the following result:
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LEMMA 6.3. Let Be <5, have |0B| = 0. Then there exist p > 0 and sets
A & B C F such that
(i) A, Fe <5, and |04] = |0F| = 0;
(ii) d(A4, BY) = p and d(B, F*) = p;

and
(iii) there exist ny and M < oo such that
' r(C, C)
SupAECgF Supn;no'rm((ﬁ)— é M.

Proor. For the one-dimensional case, the conclusion follows from Lemmas
5.3 and 5.4 by the same arguments as in [1]. For d = 2, the uniformity in C
which is required in (jii) may be gotten as follows: By reasoning as in Propo-
sition 4.4, use Lemma 6.2 to pick 4, F, and p satisfying conclusions (i) and (ii)
of this lemma, and also such that {, L, > 0. Corollary 5.2 and Theorem 5.4
in [4], together with our Proposition 5.2, then imply that

lim,_., ’_’»(%’_F_) —§,L, and 1imww =, L,.

n n

Thus
lim sup,,_,., IM ,
P py) S
from which (iii) follows. []
The following result is essentially Theorem 4.b in [1].

ProrosITION 6.4. Let C € <, have |0C| = 0. Then for each k = 1

. P(T,® > n _ "

i, . L2 = B2 P € )La()
= LT(;'(")(x) ’

uniformly for x in compacts.

Proor. The equality of the two expressions for the limit is clear (recall that
P Xy o € ») = PA(X, € +) = 0,(+)). To prove convergence, we proceed by in-
duction on k. Let F be a compact set. For k = 1 the result is simply Theorem
6.1(i). Suppose the proposition true for k = I. For k =1 4 1 a last entrance
decomposition gives for xe F

PATHY > n) = PAT6" > ) + 350§ PATLY = s X, e dy)r,_i(y, C) .
By the induction hypothesis, it suffices tq show that the sum above, when di-
vided by r,(C, C), converges to §, P*(Xy,u € dy)Ly(y) as n — co. We also need
the convergence to be uniform for xe F. Let ¢ > 0 be given, and write the
new sum as

.y -, C)
n_ PYT. Y —= ’Xed T .7(y’
Z] 1 SC ( c Js A y) I‘,,,(C, C)
=1t 280+ Dime + Dlewown
= 1 + I + IO + v
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for M and N fixed but arbitrary. By Theorem 6.1
lim, 1= Z¥, §o P(T" = j; X; e dy)Lo(y) ,

uniformly for xeS. Since T,» e %/, Proposition 3.2(iii) together with the
boundedness of L, on compacts shows that for sufficiently large M the differ-
ence between lim,_., I and §, P*(X, ) € dy)Ly(y) is less than ¢/3.

For the remaining parts of the sum, the following estimates may be made:

II £ P(T,"Y = M)su e_"ﬂ(_}_’&
=PIt 2 W spes =re e

b

so Theorem 6.1 together with the boundedness of L, on compacts and Propo-
sition 3.2(iii) shows that lim sup,_, sup,., II < ¢/3 if M is sufficiently large.
Also,

I < PA(T," > [nf2])

rn(C, C) supuec’ rN(.y’ C) *

The induction hypothesis combined with Theorem 6.1 and Proposition 3.2 (iii)
then proves that lim sup,_., sup,., III < ¢/3 if N is large enough. Finally,

Pi(n — N T,V £ n)

Iv<
= r(C, C)
. Px(Tc(l) > n — N) _ Px(TC(l) > n)
B r(C, C) r(C,C)

The induction hypothesis combined with Theorem 6.1 then shows that for fixed ‘
N, lim,_ sup ,., IV = 0. Combining these estimates completes the proof. []

The following result is crucial for the proof of Theorem 1.1:
LEMMA 6.5. Let C e <5, Then there exists K < oo such that

L s r(c, 0)<kr(c, C)
n

foralln > 1.

Proor. Denote r,(C, C) by r,. If d = 2, then by Proposition 5.2 r, is slowly
varying at co. Since r, is also monotone, standard Tauberian theorems imply
that in fact (1/n) Xt r,, ~ 1, as n — co.

If d = 1, we shall first show that if y > 0 is sufficiently small then

. Srn]
(6.1) lim sup, ., 2me1m < 4

m
Zinal

To do this note first that, as in the proof of Lemma 5.3, for any n > 2 one has

o Tharw < Ro(1- 1),
2e n
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On the other hand, for any n,

1 1y
Rc(l — —> IR S T (1 - —‘)
n n
é 2 an=0 rm
by the monotonicity of r,. Therefore there is some n, such that
Sei 7w < 5o Roll = 1/n)
Ziwatn — Re(1 —1/jn)
forallj>1and n = n,. Let C,=C — C. Then Lemma 5.3 and the above
estimate show that for some n,

Theirm — SelCy (a1 — 1/(jn)
Pre = ICl U = 1n)

<ec Zﬁlo ﬂ(m)(cﬁ)

T J D= £™(C)
for allj = 1 and all n > n,, where c is a finite constant. By Lemma 5.4 there
exists J such that if j > J then the last expression above is less than 1 for all n.
Letting y = 1/J then establishes (6.1).

From (6.1) one obtains

Z?ﬁ:[yn]+l rm > %’ ZZ:I rm
for all n sufficiently large, and hence by the montonicity of r,
(6.2) (=10 >4 Zneatm

for all such n. Since

r[rn] < Tiym) . Tatyn) R rzj—l[rn]

Tn Nyl Taggm T35 1]

if j = [log, (1/r)] + 2 and = is large enough, it is clear from the comment fol-
lowing Theorem 6.1 (iii) that (6.2) in fact proves the lemma. []

Lemma 6.5 is used in obtaining the following result:

LEMMA 6.6. Let T € 7 haves upport in C ¢ B, with |0C| = 0. Then there ex-
ists a finite constant A such that

. sup, .o PUT > m) < Ar,(C, C)
for all m.

PRrOOF. As in the proof of Proposition 4.2, one has for any y th;at
PUT > k) = 1y, €) 4+ X5z o PUT > Js X; e d2)r_i(2, C)
and consequently
(6.3)  mPYT >m) < Zp, PAT > k) < Zpan(y, €)
+ 27 e PUT > i X; edz) isir(z, C)
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for any m. Now Theorem 6.1(i) and the boundedness of L, on compacts guar-
antee the existence of a finite constant 4’ such that

SUPyec ZianuC)y s A N, r(C, C)
for all m. Using this inequality in (6.3), together with the fact that
2 (€, C) = oo, then shows that for some A"

mPYT > m) < A"[1 + Gy(y, O)] Tt ri(C, C)

for all ye C and all m. Combining this with Lemma 6.5 and Proposition 3.3
then completes the proof. []

Proor oF THEOREMs 1.1 AND 1.3. Let T have support in C ¢ &%, with |aC| = 0.
We shall first prove that

. P*(T > n)
6.4 lim, -~ = 1 — L
(6.4) im, . ey = L)
uniformly for x in compacts. For any x and n one has
P(T >n) _ ry(x,C) w PHNL(C)=k;T >n)
6.5 = _ ,
(6:3) n(C.C) ) L r.(C, C)

where N, (C) is the number of visits to C by time n. For each k < n
PNAC) = ks T > m) = 33§ PAT > J5 T = J; X; e dy)r,_i(, C)

since a.s. T can only occur when the process is in C. The same arguments as
in Proposition 6.4 then show that

P(N(C) = k; T > n)
r.(C, C)
= 25k e PAT > 3 To® = j; X; e dy)Ly(y)
= Yo PAT > To'"5 Xpoum € dy)Lo(y)
uniformly for x in compacts. Let F be a compact set. Since

(%, €) _
n—00 rn(—c’c—) - C(X)

(6.6) lim, ..,

lim
and

lim, _, Zfsﬂ So PAT > To'™; Xppuwr € dy)Lo(y) = o Gr(x, dy)Lo(y)
uniformly for x ¢ F, it follows from (6.5), (6.6), and the definition of L, that
(6.4) will be established once we show
PAN(C) = LT >n) _

r.(C, C)

(6.7) lim,_, lim sup, ., sup,.» 0.

To this end, fix [ and observe that
P(NC)Z LT >n)=P(T;» <n; T > n)
S X P (T =/3T>j+Tob; >n),
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the second line following from 7”s subterminality. Since T is an { &} stopping
time, we may condition on .& ; in the summation above to obtain
PN(C) Z T > n) £ Tjey Vo PAT = ji T > s X; e dy)PUT > 1 — )

for any x and n. Dividing by r,(C,C) and using Lemma 6.6 to bound
PY(T > n — j) then shows that for some 4 < oo (which is independent of /),
PY(N(C)= ;T > n) ;(C, C)

< A PAT > T, — j)Tn=
7.(C, C) = AL P> T8 =D e

for any x and all n. By reasoning as in the proof of Proposition 6.4, one sees
that the lim sup, ., sup,., of the right-hand side above is
< Asup,ep PA(T > T,7),

which together with Proposition 3.2 (ii) proves (6.7) and hence (6.4).
We now prove Theorem 1.3. If T = T, for Be <% where B C C e &%, then
the uniformity (on compacts) of the convergence in (6.4) shows that

lim.  Ia(B:B) _ {5 lim dex
e r,(C, C) " r.(C, C)
= {p Ly(x)dx
=1

by Proposition 4.3. Since any sets 4 and B in £ may be inscribed in a common
C € <, this proves Theorem 1.3. Theorem 1.3 combined with (6.4) then proves
Theorem 1.1. []

Acknowledgments. This paper comprises part of the author’s Ph. D. disser-
tation, written at UCLA under the direction of Professor Sidney Port. The
author wishes to thank Professor Port for his guidance and Professor Charles
Stone for a number of useful conversations. He would also like to thank the
referee and the editor for some helpful comments.

REFERENCES

[1] KesTEN, H. and SPITZER, F. (1963). Ratio theorems for random walks (1). J. Analyse Math.
11 285-322.

[2] KoLMOGOROV, A. (1956). Two uniform limit theorems for sums of independent random
variables. Theor. Probability Appl. 1 384-394.

[3] ORNSTEIN, D. (1969). Random walks II. Trans. Amer. Math. Soc. 138 45-60.

[4] Porr, S. and SToNE, C. (1968). Hitting time and hitting places for nonlattice recurrent
random walks. J. Math. Mech. 17 35-58.

[5] Porrt, S. and SToNE, C. (1968). Stopping times for recurrent stable processes. Duke Math.
J. 35 663-670. '

[6] PorrT, S. and STONE, C. (1971). Infinitely divisible processes and their potential theory (1).
Ann. Inst. Fourier (Grenoble) 21 157-275. .

[7] SeitzER, F. (1964). Principles of Random Walk. Van Nostrand, Princeton.

DEPARTMENT OF MATHEMATICS AND STATISTICS
CASE WESTERN RESERVE UNIVERSITY
CLEVELAND, OHIO 44106



