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EVERY NONNEGATIVE SUBMARTINGALE IS
THE ABSOLUTE VALUE OF A MARTINGALE

By DAvID GILAT
University of Minnesota at Minneapolis'

It is shown that every nonnegative superfair process (in particular a non-
negative submartingale) is the absolute value of a symmetric fair process
(martingale). Is every submartingale a convex function of a martingale?
No. If however the adjective convex is omitted from the question, an
affirmative answer is provided. Furthermore, transforming functions ¢,
such that every superfair process (submartingale) is that ¢ of a fair process
(martingale), are shown to exist. The results are extended to continuous-
parameter submartingales with rightcontinuous sample functions.

1. Introduction. Let M = (M,, M,, - . .) be a martingale and suppose ¢ is a
convex function such that E|¢(M,)| < oo for all n. It is then an immediate and
well-known consequence of Jensen’s inequality ([7], page 29) that the process
d(M) = (¢(M,), (M,), ---) is a submartingale. In particular, |M| = (|M,|,
|M,|, ---) is a nonnegative submartingale. The main purpose of this note is to
establish Theorem 1 which asserts that every nonnegative submartingale can
be obtained as the absolute value of a martingale. More precisely, given a non-
negative submartingale S = (S,, S, - - -), there is a martingale M for which |M]|
has the same distribution as S. Furthermore, M can be chosen either to be
symmetric or else to have any mean m with |m| < ES,.

In view of this result, it seems natural to further inquire whether every sub-
martingale can be represented as a convex function of a martingale. That this
is not the case was pointed out by Thomas M. Liggett and independently by the
referee. Here is their counterexample. Let X be any random variable whose
support is the entire real line, e.g., take X to be normally distributed with mean
zero and variance one. Define the process § = (S, S,, ---) by S, = X + «, for
n=1,2, ..., where {@,} is any strictly increasing sequence of real numbers.
Clearly S is a submartingale. Suppose there is a martingale M and a convex
function ¢ such that ¢(M) and S have the same distribution. Since the range
of ¢ is the entire real line, it cannot have a minimum; using convexity one then
concludes that ¢ is strictly monotone and has a strictly monotone inverse ¢~*.
But then ¢~*(S), being the image of the strictly monotone process S, under the
strictly monotone function ¢-*, must itself be strictly monotone, which means
that it, hence M, cannot be a martingale. By choosing the sequence {«,} to be
bounded, it is seen from the example that a uniformly integrable submartingale,
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or even one that is dominated by an integrable random variable, may fail to be
a convex image of a martingale. The problem of characterizing all submartin-
gales which are convex images of martingales, has not been pursued. Such a
characterization is perhaps possible in terms of the Doob-Meyer decomposition
of the submartingale into the sum of a martingale and an increasing process.
If, however, convexity is not required and one merely asks which submartin-
gales are functions of martingales, then the answer is all of them. Furthermore,
there are functions ¢ such that every submartingale is that ¢ of some martingale.
In fact, Theorem 2 shows that such a function ¢ can be made to be symmetric
and to resemble (see (13) of Section 2) the absolute-value-function outside an
arbitrarily small neighborhood of the origin. Incidentally, Theorems 1 and 2
are shown to hold not only for (sub)martingales but for the rather more general
class of (super) fair processes. The distinction being that in order for a process
to qualify as a (sub)martingale it is required to have finite expectations in addi-
tion to being (super) fair.

Section 3 is devoted to the extension of Theorem 1 to continuous-parameter
submartingales with right-continuous sample functions. Here the obvious ex-
cursion through the hierarchy of binary rationals is taken. The trouble is that
the construction suggested in the proof of Theorem 1 does not necessarily yield
a consistent family of finite-dimensional distributions. Consequently one has to
resort to some weak-convergence arguments in order to establish the existence
of the desired martingale. In some special cases, such as the Poisson process,
it is possible to explicitly construct a martingale whose absolute values form the
given submartingale. In general, however, the method of proof gives practically
no insight into the nature of these martingales. It may perhaps be of interest
to find out more about a martingale whose absolute value is distributed like, for
example, the square of Brownian motion.

2. Discrete-parameter processes. As is evident from the introduction, this
note is concerned with distributions of stochastic processes rather than with the
processes themselves. It is therefore expedient and does no harm to identify a
process with its distribution. Both terms will thus be treated as interchangeable
synonyms, letting convenience dictate which is to be used in any particular
statement. The distribution of a real-valued process X = (X}, X,, - --) is most
conveniently perceived as the sequence ¢ = (g, gy, - - -) of its successive regular
conditional distributions given the past, where of course o, is the distribution
of X,, while for each n = 1 and every n-tuple (x,, ---, x,) of real numbers,
o,(x; -+, x,) is a regular conditional distribution of X, , given X, = x;, 1 <
J < n. Indicative of the gambling ideas that have produced Theorem 1, ¢ might
be called a strategic form of the process X, or simply its strategy. In fact o is a
(measurable) strategy in the sense of Dubins and Savage [4]. Plainly, two pro-
cesses have the same distribution iff they admit of equal strategic forms. Hence-
forth a process will be identified with its strategy.
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A lottery is a probability measure on the real line. If ¢ is a lottery with
§ |x] d0(x) < oo, write m(@) for § x df(x) = the mean of . A process or strategy
0 = (0,, 0y, - - -) is fair (superfair) if for each n > 1 and every n-tuple (x;, - - -, x,,)
of real numbers, m(s,(x,, - -+, x,)) = x, (is finite and no less than x,). Notice
that for ¢ to be (super) fair, neither o, nor the marginal o-distributions of the
coordinates need have a mean. Given a lottery @, it is convenient to introduce
two related lotteries  and |0| defined by

(1) B(4) = 6(—4)
®) 6] = 6(4*%) + G(4%) — 6({0})
for every (Borel) subset, 4, of the real line, where
—A={x: —xe A4} and At = A n [0, o).

Note. O(—A) = 6(A); |0] = |0]; @ is symmetric iff § = 6; it is nonnegative
(i.e., 0[0, c0) = 1) iff || = 0.

Similarly, a process or a strategy ¢ = (g,, 0;, - - -) is nonnegative if |o,| = g,
and if for each n > 1 and every n-tuple (x,, - - -, x,) of nonnegative numbers,
|0(Xp5 + - =5 X,)| = 04(Xp, - -+, X,); 0 is symmetric provided ¢, = g,and G,(—x;, - - -,
—Xx,) = 0,(X, -+, x,), foralln > 1 and all n-tuples (x,, - - -, x,) of real numbers.
These conditions on ¢ are of course equivalent to the corresponding conditions
on the coordinate-process X = (X, X,, - - -) induced by o; i.e., o is nonnegative
iff so is X; ¢ is symmetric iff X and —X = (—X,, —X,, ---) have the same
distribution.

THEOREM 1. Suppose ¢ = a(oy, 0y, - - -) is a nonnegative superfair process. Then
there is a symmetric fair process p = (g, 1, ++ - ), Such that

(*) |/"0| =0, and |/"n(x1’ ] xn)l = an(|x1|’ | |xn|) ’

for all n = 1 and all n-tuples (x,, - - -, x,) of real numbers.
Furthermore, if o, has a finite mean, then for every m with |m| < m(a,), there is
a fair process p with m(p,) = m for which (*) holds.

The key to the construction of ;1 is a mapping @ which associates with every
pair (6, x), where 6 is a lottery with a finite mean and x is a real number with
|x| < |m(0)|, another lottery, a(@, x), defined as the unique convex combination
of 6 and § whose mean is x. Formally,

o _ m(0) + x m(f) — x 5
) 6= ey Tt om0 OO
— 10+ 40, C mO) =0, |5l < m(o)].

Some easily verifiable properties of the mapping a are listed here for later refer-
ence. All pairs (+, +) occurring in the list, (4) through (10), are assumed to be
in the domain of definition of a.

4) m(a(., x)) = x .
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(3) |a(8, «)| = |0] . (a was aimed at these two properties.)
(6) a(e, x) = a(s, —x).

W) a@, +) = a(o, +) .

(8) afa(s, x), y) = a(+, y) -

9) a(s, Ax 4+ (1 — 2)y) = Aa(+, x) + (1 — Da(-, y), 0agt.

(10)  a@l, + (1 — Dby, +) = da(By, +) + (1 — Da(By, +) ,
provided m(6,) = m(0,) .

Proor oF THEOREM 1. The construction of p is facilitated essentially by (4)
and (5), thus. If m(o,) is finite and it is desired that y, have a prescribed mean
m with |m| < m(a,), set p, = a(g,, m); otherwise pick any 1¢[0, 1] and take
ty = 20, + (1 — 2)G,. In both instances || = g,; p, is symmetric provided
m = 0 in the first case, and when 1 = } in the second. The construction of
(#4415 495 - - -) proceeds with no regard to the choice of y,. Forn > 1, p, is defined
simply by

(11) JZN ¢ RN X.,,) = a(an(|x1|’ IR |X,”|), X,) s

where (x,, ---, x,) is any n-tuple of real numbers. Observe that |x,| <
m(c,|x,|, - -, |x,|) because ¢ is superfair and thus g, is well defined. Clearly,
(4) implies that the process # = (g, 4, - - -) is fair, whereas that p satisfies (*)
is an immediate consequence of (5).

The issue of symmetry is settled by means of (6). As has been demonstrated,
, can always be made symmetric simply by taking it to be 4o, + }G,. Having
done so, the entire process z, as constructed, is necessarily symmetric because

(12)  pa(=xy -y =x,) = alou(|xi], o5 X)) —X,)
= a(an(lxll’ ] |xn|)’ xn) = ﬂn(xv tt xn) )

where the first and last equalities are the definition, (11), of z,, while the middle
equality follows by an application of (6). Equality of the extreme sides of (12)
foralln = landall (x,, - - -, x,), together with the symmetry of y,, is precisely
the symmetry of the entire process x. Incidentally, (12) alone can naturally be
interpreted as conditional symmetry given the initial state of the process. It is
thus evident that all the fair processes ¢ obtained here are, in this sense, con-
ditionally symmetric. Another pleasant feature of the method is that if ¢ is fair
to begin with and one chooses y, = g,, then the construction yields # = o.

For the rest of this section it is convenient to switch back to the traditional
language of sequences of random variables. A (sub)martingale is of course a
(super) fair process X = (X,, X,, - - -) such that E|X,| < oo for all n.

COROLLARY 1. Given a nonnegative submartingale S = (S,, S,, - - -), then for any
real number m with |\m| < ES,, there is a (conditionally symmetric) martingale
M = (M, M,, - - .) with mean m such that, the process |M| = (|M,|, |M,|, - - -) has
the same distribution as S. If m = 0, then M can be made symmetric.
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Proor. Translate from strategic to random-variable terminology and interpret

Theorem 1 accordingly.
Proceed now to general submartingales. For each ¢ > 0, introduce the func-

tion ¢ = ¢, defined by
(13) o(x) = |x| —e, x| = e
=¢(lnjx| —Ine), 0< |x| <e.

THEOREM 2. Suppose S = (S,, S,, - - -) is any superfair process (submartingale).
Then for every ¢ > 0, there is a fair process (martingale) M, = M = (M, M,, - - )
such that the process ¢ (M) = (p(M,), ¢.(M,), - - -) has the same distribution as S.

Proor. Given ¢ > 0, consider the function ¥ = ¥, defined by
(14) T(x) =ece®s x<0
=x+¢e¢ x=0.

Plainly, ¥ is positive, convex and increasing. Therefore W(S) = (¥(S,),
¥(S,), - - ) is a positive superfair process. Apply Theorem 1 to ¥(S) to obtain
a fair process M, such that |M| has the same distribution as W(S). Next apply
W~ to both of these processes to obtain that U-Y(|M|) and S have the same dis-
tribution. Finally, observe that ¥,~)(|-|) = ¢,(+). If S is a submartingale (i.e.,
superfair with E|S,| < o), it is easy to check that so is W(S), therefore in this
case M is indeed a martingale and not merely a fair process. The proof is thus
complete.

3. Continuous-parameter processes.

THEOREM 3. Let Z = {Z,,t = 0} be a nonnegative submartingale, almost all of
whose sample-functions are right-continuous. Then there exists a martingale Y =
{Y., t = O} such that, the process Y = {|Y,|, t = O} has the same distribution as Z.
Furthermore, Y can be chosen either to be symmetric or else to have any mean m
with |m| < EZ,.

Let T be a countable dense subset of [0, co), such as for example the set of
binary rationals. The major step in the proof of Theorem 3 consists of demon-
strating the existence of a martingale {Y,, r € T} for which the distribution of
{IY.|, t € T} is the same as that of {Z,, t € T}. The existence of such a martingale
is the content of Theorem 3*. Before Theorem 3* can be conveniently stated,
some handy notation is needed.

Let T be any countable subset, of [0, co) (think of T as being the set of rationals
in [0, c0)). Let Q be the set of all real-valued functions on T. For te T and
we Q, let X(w) = (). Take <7 to be the smallest sigma-algebra of subsets of
Q with respect to which every X,, 7 e T, is measurable from (Q, £2) to be Borel
real line, and, for t e T, <, to be the sigma-algebra generated by the collection
{X,seT,s < t}. A probability measure ¢ on <% turns the coordinate-process,
{X., 1€ T}, of Q into a real-valued stochastic-process whose paths are points in



480 DAVID GILAT

Q. Denote by E, expectations as well as conditional expectations with respect
to ¢. Identifying a process with its distribution, refer to ¢ as being the process
itself. Say that ¢ is nonnegative, if for each t = 0, s{w: X, (w) = 0} = 1; that ¢
is a (sub)martingale, if E,|X,| < oo for all reT, and E,(X,| %) (=) = X, for
alls < ¢, sand r both in T.

THEOREM 3*. Let ¢ be a nonnegative submartiﬁgale on (Q, ). Then there
exists a martingale p on (Q, SZ) such that the p-distribution of {|X,|,te T} is o.
Furthermore, given any real number m with |m| < inf,., E,X,, ¢ can be chosen to
have meanm (i.e., E, X, = m,allte T). Whenm = 0, the y obtained is symmetric.

Proor. Given a subset, S, of T, let <#(S) be the sub-sigma-algebra of <%
generated by {X,,te S}. <Z(S) is of course isomorphic to the product sigma-
algebra on the set of all functions from S to the real line R, RS. For each ¢ in
S let ZZ(S) be the further sub-sigma-algebra of <Z(S) generated by {X,, se S,
s < t}. Letogdenote the restriction of ¢ to <#(S). Clearly, under o, the pro-
cess {X,,te S} forms a nonnegative submartingale with respect to its intrinsic
sigma-algebras {<Z(S), t € S}. Suppose now that S'is a finite subset of T. Theorem
1, then, applies to obtain a probability measure ps on (Q, <&(S)) for which the
adapted process {(X,, <5,(S)), t € S} is a martingale with the prescribed mean m
and such that, the py¢-distribution of {|X,|, ¢ € S} is the same as the g-distribution
of {X,,te S}. Doing so for every finite subset, S, of T, produces a system of
finite-dimensional distributions, {¢}, for the coordinate-process, {X,, t€ T}, on
Q. Unfortunately, however, as pointed out in the introduction, the system {z}
is generally not consistent and therefore it does not extend as such to a measure
¢ on the full sigma-algebra <%. An additional argument is thus needed to obtain
the desired p.

Enumerate T and arrange it in a sequence (,, t,, - --). For n > 1, let S(n) be
the set {t,, - - -, t,}, reordered so as to form an increasing sequence of real num-
bers. Abbreviate <Z(S(n)) by ZZ(n), pg., by ¢, and let %, 1 < k < n, be the
restriction of p, from <&(n) to ZZ(k). Since p,* is essentially a probability
measure on the Borel sigma-algebra of Euclidean k-space, the standard diagonal
method (see, for example, page 205 of [5]) applies to obtain a subsequence, {r'},
of {n}, and for each k a sub-probability-measure u#* on ZZ(k), such that {zk}
converges weakly to p*. That the u* are proper probability measures, follows
~ from the fact that for each fixed k, the p, *-distribution of {|X,|, t € S(k)} is g5,
independently of n = k. Therefore for each k, the sequence {u,*, n > 1} is tight
and no mass can escape in the limiting process. By the very nature of the
diagonal method, {#*} forms a consistent system of finite-dimensional distri-
butions on {<Z(k)}; and since S(k) increases to T, Kolmogorov’s consistency
theorem applies to obtain a probability measure p on (Q, &%) whose restriction
to <Z(S), for any finite subset, S, of T, is ¢S, where p5 is of course the restric-
tion of p* to <Z(S) for any k such that S(k) D S. Plainly, the p-distribution
of {|X,|,teT} is o, E,X, =m for all ¢t in T and, if m =0, {X,,teT} and
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{—X., 1 € T} have the same p-distributions. Also, it is not hard to argue that
under ¢, the adapted process {(X,, <&,(S)), ¢ € S} forms a martingale, for every
finite S ¢ T. That under such circumstances, the entire coordinate process
{(X,, &), te T} forms a martingale is perhaps noteworthy for its own sake,
especially when contrasted with an example, due to Dieudonné [1], of a uni-
formly-integrable, countable martingale-net which fails to converge in the al-
most-sure sense. To establish this fact, let s < ¢ be two fixed elements of 7.
Let C be the collection of all finite sets F, such that {s,(t} c FcT. ForcFin
C, let Y, = E(X,| Z(F)). Since the pair {(X,, FB/F)), (X,, Z,(F))} forms a
martingale, Y, = X, a.s. for every F in C. In particular Y, converges a.s. to
X,, as F filters to T. On the other hand, when C is ordered by inclusion, the
process {(Y;, Z,(F)), F € C} forms a uniformly integrable martingale-net. Ob-
serve that since T is countable, sup {ZF(F), Fe C} = Z(T) = &, So, by
Helms [6], Y, converges in L, to E(X,| <) as F filters to T. Of course, the
L,-limit of Y, has to agree a.s. with its almost-sure limit and consequently
E(X,|Z) = X, a.s.
The proof of Theorem 3* is thus complete.

Theorem 3 follows frqm Theorem 3* by standard martingale arguments, such
as can be found, for example, in Chapter 6 of Meyer [7].

COROLLARY 2. Let Z = {Z,, t > 0} be a submartingale with right-continuous
sample functions. For every ¢ > 0, there is a martingale Y = {Y,, t = O} such that,
the process ¢ (Y) = {¢(Y,), t = O} has the same distribution as Z. Here ¢, is the
function defined by (13).

Proor. The same as the proof of Theorem 2.

Acknowledgment. Steven Orey’s initial skepticism and later interest regarding
the validity of Theorems 1 and 3 have led to their proofs. The idea of Theorem
2 occurred to me after a conversation with M. L. Eaton.
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