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OPTIMAL REPLACEMENT FOR SYSTEMS GOVERNED
BY MARKOV ADDITIVE SHOCK PROCESSES

BY RicHARD M. FELDMAN
Texas A & M University

Consider a system subject to periods of deterioration. The system
might fail at any time within the set of deterioration time, and the prob-
ability of failure is a function of the accumulated damage caused from past

. deterioration. When the system fails, it is immediately replaced and a fail-
ure cost is incurred; if replacement is made before failure, a lesser cost is
incurred and that cost may depend upon the amount of accumulated
damage at the replacement time.

The purpose of this paper is to derive the optimal replacement policy
for such a system whose set of deterioration times contains no isolated
points and whose cumulative damage process is a semi-Markov process.
Only those policies which make a replacement within the set of deteriora-
tion times are considered. Optimality is based on a discounted cost criterion.

1. Introduction. Consider a system subject to failure. Let the failure depend
on the amount of accumulated damage caused from past shocks, the collection
of shock times being a random set. An optimal replacement problem will be
analyzed in this paper under the conditions that the cumulative damage process
is semi-Markovian. Optimality is based on a discounted cost criterion where a
cost is incurred at replacement time.

In the situation where there are (almost surely) a finite number of shocks in
any finite-length time interval, both an average cost and a discounted cost opti-
mal replacement problem have been solved (see Feldman (1976a) and (1976 b)).
The situation where shocks may occur continuously during a time interval, or
more generally, where the collection of shock times forms a random set con-
taining no isolated points, is discussed here.

If the set of regeneration points (shock times) for a semi-Markov process
contains no isolated points almost surely, then the semi-Markov process (under
fairly loose conditions) contains an imbedded Markov additive process. In this
paper, the imbedded Markov additive process is used to solve the optimal re-
placement problem. In Section 2, a brief review of the relevant definitions for
semi-Markov and Markov additive processes is given and the optimal replace-
ment problem is explicitly stated. In Section 3, the theory for the optimal
stopping of a Markov additive process'is developed. In Section 4, the optimal
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stopping theory is used to obtain the optimal replacement time. In Section 5,
some computational aspects are given.

To illustrate the use of Markov additive processes, consider a machine subject
to deterioration. Let f(x) denote the cost of replacing the machine if its dete-
rioration level at the time of replacement is x. Let (X,),,, be a Markov process,
where X, denotes the level of deterioration if the machine is used continuously
during the time interval [0, r]. However, in actual operation, the machine is
not in continuous use. The length of intervals of operating time follows an
exponential distribution and the length of intervals of down time follows an
arbitrary distribution that possibly depends on the level of deterioration. Let
(C.)iz0 be the “clock time” process; that is, C, denotes the actual amount of time
that the machine was used during [0, 7]. Let Y be the inverse of the clock time
C; that is

(1.1) Y,=inf{s=0:C, > 1}.
The real time damage process is given by (Z,),, which is defined by
(1.2) Z, = X, if Y,=C, forsome s,

= Xe,- otherwise.

The real time process Z is a semi-Markov process and (X, Y) is a Markov addi-
tive process. (It might seem more natural to define Z by setting Z, = X;, for
eachz. The definition of (1.2) is used instead so that the initiation of an operating
interval may cause a jump in the deterioration level.)

We close this section by giving some of the notations and conventions to be
used throughout the paper. In general, the notations follow Blumenthal and
Getoor (1968). The letter E will denote the state space of a stochastic process
and can be taken as an interval of R (real) or of N (nonnegative integers). The
set E will be closed on the left and the letter A will designate an element adjoined
to E such that A > x for all xe E. The point w, € Q is such that for a process
Z = (Z,)120» We have Z(w,) = A.

Using the terminology of Dellacherie (1972), a random set G of the probability
space (Q, &, P) is a mapping from Q into .2, i.e., for each we Q, G(w) is a
Borel subset of R,. The random set G is called right closed if, for every w € Q,
G(w) contains the limit of any decreasing sequence of points contained in G(w).
The contiguous intervals of G are the connected components of R,\G. A random
set G is called minimal if the left extreme points of its contiguous intervals are
not in G almost surely. (The term minimal means it is the smallest right closed
set having the given closure.) The random set G is called perfect if for almost
every o, G(w) contains no isolated points. If 7 is a random variable and G is a
random set such that T(w) € G(w) for almost all w e {T < oo}, T is said to be
contained in G and is written 7 — G. For this paper, a random set G is always
assumed to contain zero and be minimal, perfect and right closed.

2. Preliminary difinitions and problem formulation. The process Z is
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semi-Markovian if, loosely speaking, for any stopping time T G the future of
Z is independent of the past given in the current value Z,. The semi-Markov
process Z is constant over the contiguous intervals of G, and for ¢ ¢ G(w), the
value of Z(w) is equal to lim,_ ;- Z,(w) where Ufw) = sup {s < t: se G(w)};
that is, Z, is determined by the left closest portion of G. The definition of a
semi-Markov process used in this paper is due to Jacod (1974). The value of the
semi-Markov process over the contiguous intervals is the main difference between
the definition of Jacod and the definition of Maisonneuve (1974). Maisonneuve
assumes the process can jump at the left endpoints, but is continuous at the right
endpoint of the contiguous intervals. Jacod assumes the process is continuous
at the left endpoints and can jump at the right endpoints of the contiguous
intervals.

The formal definitions for the processes to be used throughout this paper will
now be given.

(2.1) DerINITION. The process Z = (Q, &, 5, Z,, 6,, P*; G) is called a
standard semi-Markov process with state space (E, &) and lifetime r = inf {r =
0: Z, = A} if the following properties hold:

(a) G is a right-closed, random set, includes 0 if w +# ®,, and G(w,) = @.

(b) The mapping o — 14,,(?) is in &F,.

(c) Zisadapted to (7 ,),s,, is right-continuous, has left-hand limits, Z,(w) = A
for t = r(w), and Z,0 0, = Z, , for ¢, s = 0.

(d) lim,_, Z; = Z,on{T < r}P*-a.s. for any ze E if T,, — T where (T,),.n
is an increasing sequence of stopping times contained in G.

(e) P{Z, =z} =1forall zeE.

(f) E[f(Zry,)| 5 1] = EZD[f(Z,)] for any z € E, fe b&,, and stopping time
TcCG.

(g) t— Z,(w) is constant over contiguous intervals of G and is left-continuous
at each ¢ ¢ G(w).

(h) Any (&) stopping time T — G — G is totally inaccessible on {T < t}.
The set G is called a semiregenerative set and (Z, G) is called a semiregenerative
system.

(2.2) REMARK. By conditions (a) and (b), we have that the process (14(7)),5,
is progressively measurable. The semi-Markov process Z will induce a Markov
process; conditions (c), (d) and (e) will be used to insure that the induced Markov
process to be defined below is a standard Markov process. Condition (f) is the
key semiregenerative property. Condition (g) indicates that the value of Z over
the contiguous intervals is determined by the value of Z in G on the left. Con-
dition (h) is more easily understood when considered in conjunction with the
induced Markov additive process and thus will be discussed later (see the remark
after Proposition (2.10)). It will turn out that the condition (h) is not very
restrictive.

Associated with the semiregenerative system (Z, G) is an additive functional
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(Ly)izo of Z such that the set of points of increase of (L,) is indistinguishable
from G. Such an additive functional is called a local time of (Z, G) and plays a
key role in defining the imbedded Markov additive process.

(2.3) ProrosiTION. Let Z = (Q, &, .5 ,, Z,, 0,, P*; G) be a standard semi-
Markov process and let G be minimal and perfect. There exists a unique continuous
increasing process (L,),5, adapted to (7 ,),5, with the following properties:

(a) Ly(w) = 0 for we Q.

(b) L, (w) =Ly(w)+ L,o 0 (w)foralls,t>0andweQ whereQ =Q — A
for some A with P*(A) = 0 for all ze¢ E.

(c) The set of points of increase of (L,) is indistinguishable from G and the set of
points of right increase of (L,) is indistinguishable from G;

(d) E*[§7e'L(dt)] =1 forzeE.

Proor. This proof is given in Maisonneuve ((1974), page 66). Condition (b)
implies that L is a perfect additive functional and condition (d) gives the unique-
ness. It should be noted that condition (h) of Definition (2.1) is needed for L
to be continuous. []

As an example of the local time, the process C = (C,),;, from Section 1 is a
local time for (Z, G). In this case Z is as defined by (1.2) and G(w) is the range
of the function ¢t — Y,(w) deéfined by (1.1).

Let ¢ designate the time inverse of L, let X denote the time changed process
of Z, and let £ denote the maximum value of L.

P (o) = inf{s = 0: L(0) > 1} for t1>0, 0weQ;
X (0) = Z(? (0), v) for 120, 0weQ;

C(w) = L(0) =inf{t 2 0: P,(0) = 00} for weQ.
We now form the process (X, Y). Define {, ¥, X and 6, for each w e Q by

(2.4) {(w) = E(w) A inf{r = 0: X,(0) = A};
(2.5) Y(0) = Py (0) if t < (o),
= Yc(w) if t={(w);
(2.6) X (0) = X(0) if t<{(w),
=A if 1> ¢(w);
(2.7) 8, = 0P (0), 0) if t<{(w),
= w, if t={(v).

Let (_#,),5, be the canonical family of s-algebras generated by (X, Y). Let
A = _#,. Define P'* in the obvious manner.

The result we are leading up to is the theorem of Jacod (1974) stating that
(X, Y) is a Markov additive process. Before giving Jacod’s theorem, we first
give the definition of a Markov additive process from Cinlar (1972).
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(2.8) DerINITION. The process (X, Y) = (Q, #, #,, X,,Y,, 0,, P*) is called
a Markov additive process with state space (E, &) if the following hold:

(a) X =(Q, # #, X, 0,, P*) is a standard Markov process with state space
(E, &) (in the sense of Blumenthal and Getoor (1968), page 45);

(b) for almost all w € Q, t — Y,(w) is right continuous, has left-hand limits,
Yy (@) = 0, and Y,(w) = Y (o) for t = { where {(w) = inf {t = 0: X,(v) = A}

(c) Yis adapted to (_#);

(d) x— P{X,eA4,Y,eB}isin& foreacht >0, A&, Be %,;

(e) Y,(w) = Y (w)+Y,00,(w)foralls, t = 0and we Q" where Q' = Q — A
for some A with P*(A) = O for all x ¢ E;

(f) P{X,00,c A, Y,00,eB| #)}=PX,eA Y,eB}forallt,s =0,xe¢
E,, Ac&,, Be Z,.

REMARK. Definition (2.8) is more restrictive than as introduced by Cinlar
(1972). Namely, we insist that X be a standard process, that the state space of
Y be (R,, &2,), and that (X, Y) be perfect.

(2.9) THEOREM. Let Z = (Q, &, %, Z,, 0,, P*; G) be a standard semi-Markov
process. Let G be minimal and perfect. Then the process (X, Y) = (Q, #, 4,
X,, Y, 0, P'*) defined by equations (2.5) through (2.7) is @ Markov additive process.
Furthermore, t — Y, (o) is strictly increasing on [0, {] almost surely.

Proor. This theorem differs from Jacod ((1974), Proposition 2.4) only in that
we say that X is a standard Markov process. The only property necessary for a
standard process not obvious from Jacod’s proof is quasi-left continuity. To
prove this, first define the random set N by

N) ={t=0: Y,—(0) < Y,(0)}.

Jacod ((1974), Proposition 2.3) shows that any stopping time of (_#) contained
in N is totally inaccessible (condition (h) of Definition (2.1) is necessary for
this); thus, if T is a predictable (_#) stopping time, then Y, (0) = Y (v). If
T, is an increasing sequence of () stopping times converging to a predictable
stopping time T, then Y, — Y, a.s. The fact that Y(T,) is an () stopping
time follows from a lemma of Jacod which is repeated in this paper as Theorem
(2.14). By condition (d) of Definition (2.1), Z(¥(T,)) — Z(Y(T)) a.s. which
gives X(T,) — X(T) a.s. ] ‘

For the Markov additive process (X, Y), the process Y has been completely
characterized by Cinlar (1972). We summarize the characterization of Y in the
following proposition.

(2.10) ProposITION. Let (X, Y) be a Markov additive process. The process Y
can be decomposed as :

Y,=A°' 4+ YP + Y, 4+ Ve for t=0,

where the components are conditionally independent given X and satisfy the following:
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(a) A° = (A°).z0 is a continuous additive functional of X;

(b) Y? = (Y\").5, is a predictable pure jump process whose jump times are fixed
by X;

(€) Y = (Y,%., is a quasi-left continuous pure jump process whose jump times
are fixed by X; '

(d) Y? = (Y,%),.5is a conditionally stochastically continuous process given X whose
jump times are not fixed by X.

Proor. This proposition is a restatement of results given in Cinlar ((1974),
page 11) and its proof is in Cinlar ((1972), Theorems 2.23 and 4.5). []

REMARK. The predictable property and the quasi-left continuous property
refer to the g-algebras generated by X. A better intutitive feel for these com-
ponents can be obtained going through the computations in Section 5. Since,
for this paper, t+ — Y,(») is increasing, there is no Gaussian component of Y.
The predictable component Y? is sometimes called the natural component because
it has almost surely no common discontinuities with r — X,().

Condition (h) of Definition (2.1) can now be interpreted to be equivalent to
insisting that ¥Y? = 0. Thus, the Markov additive process (X, Y) of Theorem
(2.9) has Y7 = 0.

If we start with a Markov additive process (X, Y) such that Y» = 0 and ¢t —
Y,(w) is strictly increasing, a semiregenerative system (Z, G) with G minimal
and perfect is easily obtained by using the following definitions:

(2.11) Gw)={y=0:Y,(w) =y forsome t=0};
(2.12) L(w) =inf{s = 0: Y, (0) > t};
(2.13) Z(0) = Xpy(0) if teG(o),

= Xp-(0) if t1¢G(w).

Our goal is to investigate properties of the Markov additive process instead of
the semi-Markov process. For this reason we repeat the relationship between
the stopping times of the two processes as given by Jacod (1974).

(2.14) THEOREM. Let Z = (Q, &, % ,,Z, 0,, P*; G) be a standard semi-
Markov process such that G is minimal and perfect, let L = (L,),5, be the local time
of (Z,G), and let (X,Y) = (Q, #, #,X,, Y, 0/, P*) be its imbedded Markov
additive process. If T is an () stopping time, then L, is an (_#,) stopping time;
if S is an (_#,) stopping time, then Yy 'is an (7 ,) stopping time.

Proor. See Jacod ((1974), Lemma 2.2).

To formulate the optimal replacement problem using discounted costs, let f(z)
be the negative of the cost of replacing the system if at the time of replacement
the system is in state z. (In order to use the existing optimal stopping theory
without unnecessary technical detail, it is easier to work with a maximizing
problem instead of a minimizing problem. For this reason, the payoff function
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will be negative.) Thus —f(A) is the cost of replacing a failed system. (Note
that for fe E,, f(A) need not be zero.) The optimal replacement problem can
be stated in two equivalent formulations.

(2.15) ProBLEM. Let Z = (Q, &, &, Z,, 0,, P*; G) be a semi-Markov pro-
cess. Let G be a perfect minimal set. Let - = inf{r > 0: Z, = A} and let
& ={S < r: Sisan (F,) stopping time and S c G}. For fixed 2 > 0 and for
each z e E, determine w(z), where w(z) is defined by

w(z) = sups. . E*[e"*f(Z)],
and if possible, find §, € & such that

E’[e"zSOf(ZSO)] = w(z).
(2.16) ProBLEM. Let (X, Y) = (Q, #; #, X,, Y,, 0,, P*) be the Markov
additive procees imbedded in the semi-Markov process of Problem (1.1). Let
{=inf{r = 0: X, = A}andlet 7 = {T < {: Tis an (_#,) stopping time}. For
a fixed 2 > 0 and for each x ¢ E, determine v(x), where v(x) is defined by

v(x) = supy. - E[e" Tf(X;)]
and, if possible, find T, € 7" such that
E*[e " Tof(Xyp,)] = v(x) -

(2.17) THEOREM. If Y is strictly increasing, then Problem (2.15) and Problem
(2.16) are equivalent.

Proor. By Theorem (2.14), we have for Se¢.&, Lye.7; and for Te.7,
Y, e . Using equation (2.13) and letting Se .5~ and T = Lg, the functions
e *f(Zs) and e~ ")f(X,) are equal for all w € Q, and thus their expectations are
equal. Using equation (2.6) and letting T € .7~ and S = Y, the same is again
true. To show w(z) = v(z), let {S,; n e N} be a sequence contained in & such
that

lim,_, . E’[e—‘snf(ZSn)] = w(2).
For each n, let T, = Lg ; then if w(z) = v(z), we would have for some T* e .o~
lirnnh*°° Ez[e—lY(T,n)f‘(XTn)] < Ez[e—ZY(Tv)f(XT*)] .
By letting $* = Y. a contradiction is obtained. []

(2.18) CoRrOLLARY. If T, is a solution to Problem (2.16), then Y, is a solution
to Problem (2.15). ‘

Proor. Obvious from the proof of (1.3). []

3. Optimal stopping of a Markov additive process. Problem (2.16) expresses
the semi-Markov optimal replacement problem as a Markov additive optimal
stopping problem. The theory for the optimal stopping of a Markov process
with continuous paths (see Fakeev (1971)) and a Markov process with a Feller
transition function (see Taylor (1968)) has been developed. In this section, the
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theory for the optimal stopping of a Markov additive process will be developed.
The general approach will follow that used by Fakeev (1971); however, the
assumptions used will (among other things) imply a Feller-like property (see
(3.3)) but not continuous paths. Fakeev assumes that both f and ¢ — X, are
continuous (he calls X an “unbroken” process). If it were not for these assump-
tions, Fakeev’s results could be applied directly since the Markov additive process
(X, Y) is also a Markov process with state space E X R,.

The results of this section are analogous to the results for Markov processes
in which excessive functions play a key role. Fakeev’s (1971) definition of an
excessive function for a Markov process is the traditional definition except that
the function is not restricted to be positive. In a similar manner, we shall
define an excessive function for a Markov additive process in the traditional
manner (see Maisonneuve (1974), Definition 5.4)) except without the restriction
of positivity.

Let (X, Y) be a Markov additive process with { = inf {r > 0: X(f) = A}. Let
4 > 0 be a fixed discount rate. For any (_#,) stopping time T, the operator Q,’
is defined by

(3.1 0,g(x) = Ef[e-¥Dg(X,)] for ge%,.

3.2) DEeFINITION. The function g € &, is called A-excessive if the following
two properties hold:

(a) lim,_, Q,%g(x) = g(x) for x ¢ E,
(b) g = 0,%g for each r = 0.

The following assumptions will be used throughout the remainder of this paper.

(3.3) AssuMPTIONS. Let (X, Y) be a Markov additive process and let f ¢ b&,
be the payoff function, then

(a) Xisa Hunt process and t — X,(®) is nondecreasing for all w € Q;

(b) t— Y,(w) is strictly increasing for all € Q;

(c) fis nonpositive, nonincreasing, and right-continuous on E,;

(d) x— P*{X, = r, Y, < y} is nondecreasing and right-continuous on E, for
reEandt,y = 0.

REMARKs. Condition (a) implies that the system cannot repair itself and X
quasi left-continuous on [0, co). Conditiion (b) is due to the assumption that
the semiregenerative set representing times of deterioration is minimal and per-
fect. Condition (c) indicates that costs instead of profits are involved, that the
cost increases as damage increases, and that the process (f(X,)).s, is right-
continuous. Condition (d) implies that as the initial state gets worse, the damage
stochastically increases, while the time actual damage occurs stochastically
decreases. Condition (d) also implies a right-continuous version of the Feller
property. One of the main uses of Assumption (3.3d) is the following lemma.
(See Serfozo (1977), Section 4) for general results similar to Lemma (3.4).)
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3.4 LEMMA. For each x ¢ E, let (Q, 5, P*) be a probability space and let
X and T be two random variables with their range in E and R, respectively. Let
g€ bZ, and he bR, satisfy the following:

(a) g is nonpositive, nonincreasing and right-continuous;
(b) & is nonnegative, nonincreasing and right-continuous.

If x > P*{X = y, T < t}isnondecreasing and right-continuous for each y e E, t = 0,
then x — E*[h(T)g(X)] is nonincreasing and right-continuous.

Proor. In this proof we make use of the fact that a decreasing right-continu-
ous function is lower semicontinuous. Several proofs in this section use the
elementary properties of lower semicontinuous functions as found in Royden
((1968), pages 48-49).

Assume first that g and # are right-continuous decreasing simple functions.
They can then be written as

9(x) = 20 Cnlia,,m(X) for xekE,
where each ¢, < 0and g, < a, < -+ < ay, and
W) = Sod, g, () for teR,,
where each d, > 0 and b, < b, < ... < b,. Then
EM(T)9(X)] = 0 Do €,y PAAX 2 0, T < B,} .

Since c¢,d, < 0 and there are only finitely many terms, x — E*[#(T)g(X)] is
decreasing and right-continuous.

General functions g and 4 can be expressed as the limit of an increasing
sequence of step functions, each step function being decreasing and right-
continuous and thus, lower semicontinuous. With the monotone convergence
theorem and since the supremum of lower semicontinuous functions is again
lower semicontinuous, the proof is complete. []

In this section, we shall rely heavily on the results of Fakeev (1970). Define
the following:
(3.5) T ={T: T isan () stopping time and ¢ < T < oo},
(3.6) W, =e"wfX,) for t=0,
(3.7)  v(%) =SUppe,, B FDAX,)] for 120, xek,,
(3.8)  V(x) = ess. supy., EX[e ¥ Df(X,) | 4] for 120, xek,.

By Fakeev ((1970), Theorem 2), (V,, _#,),5, is the minimal right-continuous
supermartingale majorizing (W,),,,. This fact will be utilized to show that v,
is the minimal A-excessive function majorizing f. (This property of v, is needed
in the next section to show that a “control limit” type policy is the optimal
policy.) In order to prove the characterization of v,, we define a sequence of
random variables {H,(x, f); n € N} and a sequence of functions {g,; n € N}. First
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let Q, denote the set of rational numbers greater than . Now define the following:
Hyx, 1) = W, for t=0, xekE,,
(3-9)  Hy(x, ) = sUp,eq, E[H,_(x, 5)| A]
for +=0, xecE,, n=1,2,...,

(3.10) gdo(x) = f(x) for xekE,
9a(X) = SUp,z, E*[e*" g, _,(X))] for xeE,, neN,.

3.11) LEMMA. The function t — g,(X,) is lower semicontinuous for n € N.

Proor. For a decreasing function, right-continuity is equivalent to lower
semicontinuity. If it can be shown that x — g,(x) is decreasing and right-
continuous, then by the increasing and right-continuous property of ¢t — X,
the proof would be complete. By Assumption (3.3c), the property holds for g,.
By induction, assume g, is decreasing and right-continuous for a fixed n. From
Lemma (3.4), we have that x — E*[e~**‘*g,(X,)] is decreasing and right-continu-
ous for each 5. Since the supremum of lower semicontinuous functions is again
lower semicontinuous, the proof is complete. []

(3.12) LEMMA. For each ne N and t = 0, there is a version of the conditional
expectation in (3.9) such that

H,(x, 1) = e-¥®g (X,)  foreach weQ.

Proor. The proof is by induction. Clearly the lemma is true for n = 0.
Assume it is true for n > 1. Then, for each w ¢ Q,

H, \(x, t) = sup,cq, E°[H,(x, 8) | A]
= supse QO Ez[e—‘zY(t“—S)gn(Xt-l-s) | ‘%t]
= SUp,cq, e—zY(t)Exm[e—zY(s)vn(Xs) ]

= e g  (X,).

The third equality is the Markov property as given in Cinlar ((1972), page
106). The last equality follows, since Lemma (3.11) gives right-continuity so
that supremum over s € Q, is equivalent to s = 0. []

(3.13) LEMMA. Let {H,(x, t); ne N} be defined by (3.9) and (3.12), then
Vy(x) = lim,_, H,(x, 1) .

Proor. Using (3.10) and (3.12), we have that {H,(x, #); n € N} is an increasing
sequence, and thus, a limit exists; call it H(x, f). Let (U, _#,),s, be any super-
martingale majorizing (W,),5,. Clearly U, > Hy(x, {). By induction, it follows
that H,,,(x, f) < sup,cq, E°[U,|#] < U,, and thus H(x, f) < U,. By the mini-
mality of (V,(x), -#;).z0 the proof will be complete when we show that (H(x, ?),
)20 Is a right-continuous supermartingale majorizing (W,)»,-

Clearly H(x, f) = W, and by the Lebesgue convergence theorem, we can pass



MARKOV ADDITIVE SHOCK PROCESSES 423

to the limit as n — co in the inequality
H,(x, 1) Z E*[H,_y(x, t + 5)| A4],

and obtain the supermartingale inequality. By Lemma (3.12), H(x, ¢) is right-
continuous if ¢ — g(X,) = lim,_,, g,(X,) is right-continuous since ¢t — e=** is
right-continuous. The sequence {g,; n € N} is increasing, so g exists. By Lemma
(3.11), t — g,(X,) is lower semicontinuous, and therefore, t — g(X;) is also. Since
t — g,(x,) is decreasing, t — g(X,) is decreasing and right-continuity follows. []

(3.14) THEOREM. Foreacht = 0 and xe E, V,(x) = e= " yy(X,).

Proor. As above, let g = limg,. Using Lemmas (3.13) and (3.12), we have
V(x) = e-*®g(X,). By setting + = 0 and taking expectations on both sides,
we obtain v, = g since E7[Vy(x)] = vy(x). 0

(3.15) THEOREM. The optimal function v, defined by equation (3.7) is the mini-
mal 2-excessive function majorizing the payoff function f.

Proor. Using (3.1) and (3.14), we have Q,'v,(x) = E*[V,(x)] and since
(Vi(X))ezo is @ supermartingale, v, is 2-excessive. To show v, is the minimal 2-
excessive function majorizing f, let u € b&", be any A-excessive function such that
u = f. Define the process (U,),, by

U, =e®wyX,) for t20.

Clearly ¢t — U, is right-continuous and U, > W,. By using the Markov property
of a Markov additive process (Cinlar (1972), Proposition 3.15), it is easily seen
that (U,, .#,),5, is a supermartingale. By the minimality of (V,),,,, we have
V(x) £ U, for t 2 0, and in particular, Vy(x) < U,. Thus E’[V(x)] < E°[U],
which implies v,(x) < u(x). [

Theorem (3.14) gives a characterization of the supermartingale (V,(x)),zo-
This will be combined in the next theorem with Fakeev’s results to obtain the
optimal stopping time. Theorem (3.15) characterizes the optimal function v,.
The properties of v, will be used to further characterize the optimal stopping time.

(3.16) THEOREM. Let f be continuous on E (with possibly a jump at A). Let
{ =inf{t = 0: X, = A}. Define the random variable T by

T =inf{t = 0: f(X,) = vy(X,)} .
Then T is the optimal stopping time; that is
v(x) = Ef[e” " Of(Xp)] -

Proor. This is almost proved in Fakeev ((1970), Theorem 4). Fakeev uses
continuity of W, but in fact only needs quasi left-continuity. In order to see
this define, for each ¢ > 0, the random variable S(¢) by

(3.17) S(e) = inf{s = 0: e~ Wpy(X,) < eAVf(X,) + ¢} .
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Then by Fakeev ((1970), Theorem 4a) and using Theorem (3.14), we have
(3.18) Vo(x) — & < E[em O (X)) -

As ¢ — 0, S(¢) increases and thus, limits to a stopping time, call it S. On the
set {§ = {}, there must exist some ¢ > 0 (possibly depending on w and excluding
a null set) such that S(¢) = { since { cannot be predictable for a Hunt process.
Therefore,

lim,_,, eSO f( X)) = e~ Of(A) on {S=1¢(}.

On the set {§ < (}, the above limit is combined with the quasi left-continuous
property of a standard Markov process, the fact that f is continuous on E, and
the fact that the predictable part of Y is zero (see the remark after (2.10)) to
obtain

(3.19) lim,_, e SOf( Xg,)) = e T Of(X,)  as.

With this limit, the remainder of Fakeev’s proof follows. We repeat it here for
completeness.
Applying (3.19) to (3.18) and using Fatou’s lemma,

vy < lim,_, sup E*[e" " SOf( X ,))]
é Ez[e—RY(S)f‘(XS)] .

Thus S is the optimal stopping time. From (3.17), S(¢) < T for each e > 0 and
thus, S < 7. Since S is the optimal stopping time, we also have

(3.20) f(Xs) = v(X5) a.s.
Since T is the first time (3.20) holds, we have T < S, and thus, S = 7. [J

4. The optimal replacement problem. A stopping time of the form T, =
inf{r = 0: X, = a}, where a e E, is called a control limit policy. The main
result of this section will be to show that a control limit policy (under suitable
assumptions) is an optimal solution to Problem (2.16).

The notation of this section will be as before. Let (X, Y) be a Markov addi-
tive process; let { = inf{r = 0: X, = A}; and let 5 ={T < {: T is an (_#)
stopping time}. The optimal function is given by
4.1) V(x) = supg. - Ef[e " Df(X,)] for xeE,.

The function given by (4.1) and the function v, given by (3.7) are equivalent
since for T e 7, Y(T A §) = Y(T) and f(X;,,) = f(Xy).

To insure the optimality of a control limit policy, two additional assumptions
are needed. ’

4.2) AssUMPTION. Let (X, Y) be a standard Markov additive process and
let fe b&, be the payoff function satisfying Assumption (3.3). In addition let

(a) f be concave in E,;
(b) x - P*{X, — x =2 r, Y, < y} be nondecreasing for re Eand ¢, y = 0.



MARKOV ADDITIVE SHOCK PROCESSES 425

REMARK. A concave function must be continuous in the interior of its domain;
therefore, f is continuous in E but not necessarily at A. Condition (b) is similar
to condition (3.3d) except that it involves the incremental damage instead of the
absolute damage.

Theorem (3.16) actually reduces the Markov additive stopping problem to a
Markov stopping problem. To see this, let (%;),,, be the canonical family of
o-algebras formed from X. Define M,? by

(4.3) M3 = Ef[e™®| %] for t=0.

By Cinlar ((1972), Proposition (2.11)), there exists a version of the conditional
expectation such that M,*e 2% and M, is independent of x. Also, by Cinlar
((1972), page 104), the process (M,?),, forms a strong multiplicative functionai
of the Markov process X. Therefore, (Q,?),,, defined by (3.11) can be viewed as
the semigroup generated by (M,?),,. As in Blumenthal and Getoor ((1968), page
106), let X denote the Markov process formed by killing X with (M,%),.,. Thus,
for xc E,

(4.4) Eqf(X)] = E*[e " Of(X,)] + fA)ET L — e ¥ 0],
(It should be remembered that contrary to the usual convention we let
f8) #0.)

We now prove the main result of this section.

(4.5) THEOREM. Let A = {xecE: f(x) = v(x)} and assume A is not empty.
Then there exists a € E such that A = [a, o).

Proor. Let a = inf 4. By the right-continuity of f and v, we have a ¢ A4.
Let u ¢ E be such that u > «. We need to show that u e 4. Let X be the killed
process defined above. Let x, u € E such that x < u. Since f is concave and
x < u, we have for eachd > 0

fu + d) < flx + d) + f(u) — f(x).
Thus, . . i
EfiX)] = E*[flu + (X, — w))]

< Ef(x + (X — w)] + fln) — f(x)
combining Assumption (4.2b) and Lemma (3.4),
< Bf(x + (R — 0)] + f(u) — fix) .
Rearranging terms and using equation (4.4),
EXeiTOf(X)] — f() < E[e (X)) — f(x) + [A)E[e @] — Efeiv o]}
Since f(A) < 0 and, by Lemma (3.4), f(A}{E*[e-***"] — E*[e~**"]} < 0, thus,
(4.6) QM) —fu) S QHf(x) — flx) for 120, uxx.
Since f(a) = v(a) = Q v(a) = Q,*f(a), equation (4.6) gives us
4.7) fw) = Q. f(u) for u=za.
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Define the function % by
h(x) = v(x) for x<a,
= f(x) for x> a.

Clearly, f < h < v; so if his 2-excessive, & = v and we would be finished. In
Theorem (3.14), we proved v = g and in the proof of Lemma (3.13), g was
shown to be right-continuous; therefore, v is right-continuous and thus, # is
right-continuous. Since f is bounded by assumption, so is v and 4. Using these
facts,

lim,_, Q,*h(x) = E°[lim,_, e~ Ph(X,)] = h(x) .

For x < a,
h(x) = v(x) = E*[e~*Pv(X,)]

> E"[e‘”‘”h(Xt)] — Qtzh(X) .

For x = a, h(x) = f(x) = Q/f(x) = Q,*h(x) by equation (4.7). Thus, & is A-
excessive. []

(4.8) COROLLARY. There exists an a € E, such that the optimal stopping time
T for Problem (2.16) is defined by A

T=inf{t=0: X%, = a}.
Proor. Obvious from Theorems (3.16) and (4.5). [

Define the semi-Markov process Z = (Z,),,, using the Markov additive process
(X, Y) of equations (2.11)—(2.13). The following corollary gives the optimal
replacement policy for Z.

4.9) CoOROLLAY. There exists an a € E, such that the optimal stopping time S
for Problem (2.15) is defined by

S=inf{tr=0:Z, = a}.

Proor. By Corollary (2.18), we need only show that § = Y/, but this is true
since t — Y, is strictly increasing. []

By Corollary (4.9), the solution to the optimal replacement problem defined
by (2.15) is a control limit policy. The problem becomes one of maximizing
the function a — E*[e"*""«)f(X, )] where for each acE, T, =inf{t = 0:
X, = a}. For E discrete, some computational considerations are given in the
next section. '

5. Some computational aspects. Consider a cumulative damage process Z,
where Z is a standard semi-Markov process with state space N. Let (X, Y) be
the imbedded Markov additive process and, in order for replacement to make
sense, assume that the lifetime { of X is finite almost surely. As before, let
2 > 0 be a discount rate and f bounded and negative be the payoff function.
Since X is a standard Markov process with a countable state space, it is a regular



MARKOV ADDITIVE SHOCK PROCESSES 427

step process. Let {S,; n e N} be random variables with S, =0 and S, S,, - - -
denoting the first, second, ... jump times of X. Let X denote the imbedded
chain, P denote the matrix of transition probabilities, and () denote the sojourn
rates with @ < p(i) < b for some a, b > 0 and all i ¢ N; that is,

Y,,,:XS” for neN,
(5.1) P(i, j) = Pi{X; = j} for i,jeN,

PSS, > s} = e~#¥e for ieN.

For notational convenience let P(i, A) = 1 — 3} ,. P(i, j) and let the expression
2121 m(j) denote the infinite sum m(k) + m(k + 1) + .. + m(A).

Assume that the process (X, Y) and the payoff function f satisfy Assumption
(4.2). Also assume that the function i — P{X(S)) — i = j, Y(S,) < y} is increas-
ing. (Actually, (4.2) should imply this but we were unable to prove it.)

(5.2) T,=inf{t = 0: X, = a},
h (i) = Ef[e ™" f(X,)] for ieN.
It will also be convenient to define the following:
(5.3) P(i, j) = P(i, )E[e ™0 | X, = j],
R(i’ ) = Zazo P”(i’ E
And thus,
(5-4) 04, f(1) = Tazins Pli; )f(K) -
(For the Markov chain X, P(i, i) = 0.)
(5.5) PROPOSITION. Let a € N be fixed. For each i < a, we have
ho()) = Tj<a RO, J) Diza PUs Of(K) -
Proor. Using the usual renewal theoretic argument,
ho(i) = Yuna P(i, K)f(K)E{e= YV | X, = k]
+ Zi<a P DETe 0| Xy = jlho(j) 5
thus the result follows using (5.3). [J
(5.6) THEOREM. Consider the replacement problem defined by (2.16) where the

initial state i ¢ N is fixed. The optimal replacement time is given by equation (5.2),
where a is the minimal value greater than or equal to i such that

f(@) Z Tizar Pla; K)f(k) .
If no such « exists, then it is optimal to replace only at the failure time (namely,
T =9). .
Proor. The proof involves maximizing the function a — #,(i). Consider the

difference Ak, (i) = h,,,(i) — h,(i). We first find an « such that the difference is
nonpositive and then show that if the difference is nonpositive for some a, it
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will remain nonpositive for all values larger than «. Because the Markov ¢hain
X is increasing, P(i, j) = O for i > j; furthermore, P(i, /) = 0 since X was im-
bedded in a standard Markov process. Therefore, we have

(5.7) Ri,i)y=1,

(5.8) i<a R(is )Py @) = R, @) — 1, @) -
Using (5.2), (5.5) and (5.7), it is easy to see that

k(i) = ues B0, K)f(K) — f(0) -

For @ > i, after simplifying and using (5.8), we obtain

Bhy(i) = R(is @) Dz Plas )f (k) — f(@)R(, @) -
Solving the expression A#,(i) < 0, the equation of the theoremis obtained. For the
local maximum to be the global maximum, it is sufficient to show that & — A#,(i)
is deci’easing. Using (5.4) it is seen that we need show that a« — Qf f(a) — f(@)
is decreasing. Using the additional assumption that i— P{X(S,) —i =},
Y(S,) < y}is increasing the desired result follows by Lemma (3.4) and using the
derivation of (4.6).

Computationally, the difficult part of Theorem (5.6) is calculating the expres-
sion E{{e~*v | X, = j]. To put this in a manageable form the decomposition
of Y as given in Proposition (2.9) is used. The notation of Cinlar (1974) is
followed.

From (2.10) we write (remembering that Y? = 0)

Y= A4 Y? 4 Y?,
For each i e N, there is a positive real number a, such that
A = a;t on {X,=1i5, >1}.

For each i, je N, there exists a distribution function F(i, j, «) with support in

R, such that )
Pi{Ytq é}’le :j, Sl = t} = F(l,],y) .

And finally for each i e N, there exists a Lévy measure v, such that
Efe- {8, > 1}] = exp{t § o, (1 — e*)ry(dy)} .
For notational convenience, let

ANA = 20, + § g (1 — e )uy(dy)
FA(i, j) = \ e F(i, j, dy) .

Then .
Eie~*r @ IX,1 =j]= Ei[e-xmc(sl)ydmln] + Efe~(S) | X, = j]
=__ P 4Ry
g TG
Thus

(3-9) P(i, j) = PG, IF's J) + ml (AN + p)] -
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Equation (5.9) can now be used in Theorem (5.6) to obtain a closed form
expression for the optimal replacement level using known distribution functions.
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