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CONDITIONS FOR SAMPLE-CONTINUITY AND
THE CENTRAL LIMIT THEOREM

By MARJORIE G. HAHN

University of California, Berkeley

Let {X(¢): t [0, 1]} be a stochastic process. For any function f such
that E(X(¢) — X(s))2 < f(}t — s]), a condition is found which implies that
X is sample-continuous and satisfies the central limit theorem in C[0, 1].
Counterexamples are constructed to verify a conjecture of Garsia and
Rodemich and to improve a result of Dudley.

1. Introduction. Among the most striking features of the classical central
limit theory for real-valued independent identically distributed random variables
is the wide class of distributions for which weak convergence occurs. The central
limit theorem asserts that there is weak convergence to the normal law if and
only if the random variables have finite second moments. Because of the fun-
damental role of this theorem in probability and statistics, it is only natural to
seek an analogue for stochastic processes. Since each stochastic process is a
random variable in an appropriate function space, the natural setting for the
problem is in terms of function space-valued random variables.

Let M be a complete, separable metric space of real-valued functions on [0, 1].
Let {X,, n = 1} be independent M-valued random variables with the same dis-
tribution ~“(X). Assume that they are defined on the same probability space
(Q, &, Pr). Suppose that for re[0, 1], EX({) = 0, EX*f) < 0. Let Z, =
(X; + -+ + X,)/nt. The sequence {X} is said to satisfy the central limit theorem
(CLT) in M if there exists a Gaussian process Z with sample paths in M such
that #(Z,) —» £(Z) weakly in M; i.e., for every bounded continuous real
function g on M

: Eg(Z,) — E9(Z) -
Z is called the limiting Gaussian process. By considering finite-dimensional dis-
tributions it is easy to see that if the CLT holds for one such sequence then it
holds for all sequences with the same properties. Thus, we can unambiguously
say that the CLT holds for X, or (X)), if a sequence {X,} as above satisfies
the CLT.

Two function spaces in which many stochastic processes take their sample
paths are C = C[0, 1] and D = D[0, 1]. C(S) denotes the space of real-valued
continuous functions on a compact metric space § with the supremum norm.
D is the space of real-valued functions on [0, 1] which are right continuous
with left limits and which is endowed with the Skorohod topology.

Received September 29, 1975; revised August 13, 1976.

AMS 1970 subject classifications. Primary 60G17; Secondary 60F05.

Key words and phrases. Sample-continuity, central limit theorems in C[0, 1] and D[0, 1],
second-order processes.

351

o

oYQ

50 o
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [P
The Annals of Probability. BIXOIY
www.jstor.org




352 MARJORIE G. HAHN

Examples of Dudley (1974) show that the CLT may fail in C even for a process
possessing uniformly bounded sample paths and satisfying E(X(r) — X(5))* <
|t — 5%, @ < 4. In Section 4 these examples are extended to any a« < 1. Such
examples emphasize the need for additional assumptions in order to show that
a process has central limiting behavior.

The bulk of recent attention has been directed towards Banach spaces and in
particular C[0, 1], where new techniques have been developed by Strassen and
Dudley (1969), Le Cam (1970), de Acosta (1970), Giné (1974), Dudley (1974),
Jain and Marcus (1975), Araujo (1975), Hoffmann-Jgrgensen and Pisier (1976),
and Pisier (1975). A direct investigation of sufficient conditions for D appears
in Hahn (1975). However, an alternative approach is to establish conditions
which imply that a D-valued random variable is actually C-valued and then
prove a CLT in C which applies to it. This is the approach we take here.

In order to show that a process X satisfies the CLT in C it suffices to show that:

(1) There exists a Gaussian process with sample paths in C and the same
covariance as X.
(2) The normalized sums {Z,} are uniformly equicontinuous in probability.

This follows from Billingsley ((1968), pages 54, 55, 126) and the finite-dimensional
CLT. :
In Section 2 of this paper we find a condition on f so that

(1.1) E|X(t) — X(s)|" < f(Jt — s|) for some r =1

implies X is sample-continuous. In the case r = 2 such a condition is shown to
imply conditions (1) and (2), and hence that the CLT holds in C for X.

Dobrushin (see Lodve (1963), page 515) established the following criterion
for a separable stochastic process not to have jump discontinuities:

sup P[|X(t + h) — X(t)| = €] = o.(h)

where the supremum is taken over all intervals [¢, ¢ + /] in [0, 1]. An applica-
tion of Chebyshev’s inequality now shows that if E|X(¢t + k) — X(1)|" = o(h)
for some r > 0, then X cannot have jump discontinuities. In particular, if X
satisfies such a moment condition and also has sample paths in D a.s., then X
must be sample-continuous.

Kolmogorov (see Loéve (1963), page 519) showed that if X(r) is any process
for which there exist ¢ > 0and r > 0 such that E|X(r) — X(s)|" < C|t — s|*** for
some constant C and |¢ — s| small, then X(r) is sample-continuous. Loéve was
apparently the first to weaken Kolmogorov’s theorem to

jt —

ElX(y— X(s)'<=C—L "L
X() = Xl = C ot

where @ = 1 + r and ¢ > 0. Delporte (1964) showed that it suffices for « =
1 v r. However, Dudley (1973) showed that @ = —1 — ¢ is not sufficient to
guarantee sample-continuity and he posed the problem of finding the best
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exponent «. Inresponse, Garsia and Rodemich (1974) conjectured thata > 1 v r
gives the best possible condition. The eounterexamples of Section 3 verify their
conjecture when r = 2. A modification of these examples shows that a = 2 is
also the smallest exponent which is sufficient to guarantee that X satisfies the
CLT in C.

2. Continuity and the central limit theorem. The sufficient condition for
sample-continuity which we derive in Theorem 2.3 can be obtained as a corol-
lary of either a theorem of Garsia ((1976), page 86) or a theorem of Delporte
((1964), pages 179-80). Our derivation here will utilize a slight modification
of Delporte’s theorem.

Let A,(w) = sUPygycge-1 | X((s + 1)/297%, ) — X(5/297), w)|, se Z. Weuse||+||,
to denote the usual norm on L7(Q, Pr). Throughout this section X(7) will denote
a separable version of X{(7).

THEOREM 2.1. Let ¢(h) be a nonnegative function on [0, 1] which is nondecreas-
ing in h for h sufficiently small and such that $(h) — 0 ash —0. If X(t, w)isa
stochastically continuous process satisfying

Z7alp@ O] A4,y < o0, rz1l,
then there exists a random variable A ¢ L"(Q, Pr) such that
[ X(t, ) — X(s, 0)] < A(@)p(|t — s) a.s.
for |t — s| sufficiently small.

This theorem is precisely Delporte’s result if the hypothesis of stochastic
continuity is replaced by separability. Without the hypothesis of separability,
his proof shows that the process X is uniformly continuous on the dyadic ra-
tionals. If X is also stochastically continuous, it will have a unique continuous
version. Furthermore, A(w) = 3 37, ($(2777))*4,(w).

DerINITION. A function # from [0, 1] into [0, co] is called a modulus (of
continuity) if and only if both the following hold:

(i) & is continuous and 4(0) = 0;
(if) A(x) < A(x + y) < A(x) 4 A(y) for all x,y = > 0 with x +y< 1

DErINITION. Let X(7), t€[0, 1] be a stochastic process. % is called a sample
modulus for X if and only if

‘

(i) & is a modulus;
(ii) for almost all w there exist finite constants k, such that for all s, ¢ € [0, 1]

| X(1, w) — X(s, )| < k, At — 5]) .

If ¢, in Delporte’s theorem, is a nondecreasing function on [0, 1] then
| X(r) — X(s)| < Aé(|t — s|) a.s. for all 5, . If in addition, ¢ is continuous and
$(x 4+ y) < ¢(x) + ¢(y) for all x, y = 0, then ¢ is a sample modulus for X(7).
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COROLLARY 2.2. Let X(t) be a stochastic process with E|X(f) — X(s)|" =
f(|t — s|) for some r = 1 and all s,tec[0, 1]. If there exists a nonnegative, non-
decreasing function ¢ on [0, 1] such that ¢(h) — 0 as h — 0 and such that

(2.1) Lea (8@ )] 27 (f27 ) < oo

then X(t) is sample-continuous and there exists a random variable A € L(Q, Pr) with
1£(t, @) — X(s, 0)] < A@)p(|t — 5) as.

Furthermore, ||A||, is bounded by a constant times the series in (2.1).

PROOF.
1 44ll, = (E(SUPosscan— [X((s + 1)277%1) — X(s2707)["))"

< (DS EIX((s + D27 — X(szmeny
< (D) = 200 R

Since 317, [¢(27971)] 120 V/(f(27+!))" < oo, Theorem 2.1 implies X is sample-
continuous and furthermore

1X(1) — X(s)] < Ag(|t — s])
where A(w) = 3 317, [6(277 )] 14 (@) € L". 0
Here is the main sample-continuity result.

THEOREM 2.3.! Let f be a nonnegative function on [0, 1] which is nondecreasing
in a neighborhood of 0. Let X(t) be a stochastic process such that for some r = 1,

E|X(1) — X()I" < f(Jt — ). If
§oy=rtvrfir(y)dy < oo

then there exist a nondecreasing continuous function ¢ on [0, 1] with $(0) = 0, which
depends only on f, and a random variable A e L"(Q, Pr) such that

|X(s) — X(1)] = 4¢(|t — s0) -
Moreover, ||A||, is bounded above by a constant depending only on f and .

Proor. Since f is nondecreasing near 0, the integral condition is equivalent
to the condition

T 29(fR) < o0

This in turn implies that there exists a sequence ¢, /" co as g /" oo such that
D 2 (f(2 ) < oo

Define ¢ by setting ¢(2-?"!) = ¢,~*, and linearly in between. An application of

Corollary 2.2 finishes the proof. []

1 This theorem is used in Hahn and Klass (1977) to obtain a best possible sufficient condition
for sample-continuity when the only known information about a process X(#) is of the form
E(X(1) — X(9)* = fUlt — s)).
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Define log, |x| inductively by log, |x| = |x|, log, |x| = log |x|, the usual natural
logarithm, and log, |x| = log |log,_, |x||. Define e,(x) inductively by e,(x) = e*
and e,(u) = exp(e,_,(#)). Let E, = exp(—e,_,(¥)). We will suppress the 1 if
u=1.

Fork =1,2,...ande > 0 let

fux) = |x|/(log |x|* - - - |log,, |x||"[log, |x[|**) .

Note that f, (x) decreases to 0 as x — 0 for x < E,. We now consider the special
case of Theorem 2.3 when r = 2 and f(x) = O(f, .(x)) as x — 0.

COROLLARY 2.4. Given k € N and ¢ > 0, let X(t) be a stochastic process with
E(X(?) — X(5))* = O(fr..(It — s])) as |t — 5| — 0. Then X(t) is sample-continuous.
Furthermore if ¢ is a nonnegative, nondecreasing function on [0, 1] with ¢(u) =
|log, . |#||=*7* for |u| < E, and ¢ < ¢, then there exist 6 > 0 with 6 < E, and a
random variable A ¢ LX(Q, &, Pr) such that for |t — s| < 4,

£(t) — X(s)| < Ad(lt — s)) as.

Proor. Let y < E, be such that |t — 5| <y implies E(X(f) — X(5))* <
Cf..(|t — s]). Sample-continuity follows from Theorem 2.3 by setting f(|x|) =
Cfi.(|x]) for |x| < r. A routine computation shows that f and ¢ satisfy the
hypotheses of Corollary 2.2; hence, the Lipschitz condition holds. []

This result is best possible, in the sense that for each k € N there is a process
satisfying

E(X(t) — X(5))) = O(fe |t — s[))  as |t —s—0

which has no continuous version. One class of examples is constructed in Sec-
tion 3 and another class is constructed in Hahn and Klass (1977). For both
classes of examples the processes fail to have versions with finite right and left
limits at all points. This is unavoidable due to the theorem of Dobrushin which
was mentioned in the introduction.

THEOREM 2.5. Let f be a nonnegative function on [0, 1] which is nondecreasing
near 0. Let X(f) be a stochastic process with mean 0, finite second moments, and
sample paths in D, satisfying

EX(ty — X(s)) = f(lt —s|)  for |t—s| small
and )
oy ifi(y)dy < oo
Then X is sample-continuous and satisfies the CLT in C.

Proor. According to Theorem 2.3, X is sample-continuous. Let {X;} be a
sequence of independent, identically distributed C-valued random variables with
law LA(X). Let Z, = (X, + - -+ + X,)/nt. E(Z,(t) — Z,(9)) = E(X(¢t) — X(s))?
for all n; so Theorem 2.3 implies that there exist a nondecreasing continuous
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function ¢ on [0, 1] with ¢(0) = 0, which depends only on f, and random vari-
ables A e L¥Q, Pr) such that

|Z.(1) — Z,(3)] = A™¢(|t — 5]) -

Since ||A™||, £ M < oo with M depending only on f'and ¢, a simple application
of Chebyshev’s inequality will show that the {Z,} are uniformly equicontinuous
in probability.

Let Z be a Gaussian process with the same covariance as X. Since
E(Z(t) — Z(s))* = E(X(t) — X(5))*, Z satisfies the hypotheses of Theorem 2.3;
hence, Z is sample-continuous. Therefore, X satisfies the CLT in C. []

3. Counterexamples. We now provide examples to show that the exponents
of the logarithms appearing in Corollary 2.4 are best possible with respect to
sample-continuity, thus confirming the conjecture of Garsia and Rodemich
(1974).

PRrOPOSITION 3.1. For any k € N there is a process X(t, w), 0 < t < 1, which
satisfies

E(X(1) — X(5))* = Cfullt — sl)
but which is not sample-continuous.
Proor. Let the definitions of log, |x| and E,(x) be as in Section 2. Define
X(1, w) = X (t, ) = log,,, |(1 + 2)/4 — o]
if |(1420)4—0|<E, o*(+2)4
=0 otherwise
where t € [0, 1] and o € ([0, 1], Lebesque). For each v, } < 0 < 4, X(4, 0) is
discontinuous at + = 2w — } and is unbounded in a neighborhood of that point.

Estimation of the mean-square differences involves only calculus type facts,
hence we omit the computations. []

A slight modification of the above processes, X, (¢, ), yields sample-continuous,
mean zero processes which satisfy the same moment conditions; hence, showing
that the exponents of the logarithms appearing in Corollary 2.4 are also best
possible with respect to the CLT in C.

ProrosITION 3.2. For any ke N, there exists a continuous stochastic process
Y(¢t, w) which does not satisfy the CLT in C[0, 1] but such that

E(Y(r) — Y(5)) = Cfiollt — sl) -
Proor. For X(t, w) = X,(t, ») as in the proof of Proposition 3.1, let

Y(t, ) = X(t, v) if |14+2)/4—0=9d,, 0+32
= log,,,0,7! if [(1+2)4—0<0,, o+3
=0 if o=32

where 6, = E,,,(8/(3 — 4w)).
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Let
Y(t, 0) = Y(t, 0 X J) = X(¢, 0) if j=0
— Xt o) if j=1

where o e ([0, 1] X {0, 1}, Lebesgue x (40, + 40,)). Let Y'(¢), i=1,2, ---
denote i.i.d. copies of Y(¢) and Z,(¢) = (1/n?) 3 7_, Y'”(¢). In order to show that
Y(¢) does not satisfy the CLT it suffices to show that {Z,} is not uniformly
bounded in probability; i.e., there exists ¢ > 0 such that for @ > 0 there is an
n(a) for which P{sup, |Z,.,,(f)] = a} > ¢. This can be verified by first showing
that for any b ¢ R*, there exists N, such that n > N, implies that

P{max, g, sup, (1/n9)|YO()] = 26} > £,

and then applying the Lévy inequality for processes (see Dudley (1967), Lemma
4.4, page 300; or Kahane (1968), Lemma 1, page 12). [].

The above examples strongly suggest that Lipschitz conditions on second
moments of the increments alone imply that the CLT holds in C only if they
also imply sample-continuity. This is indeed the case as verified independently
by Hahn (1976) and Pisier (1976). Neither approach, however, gives examples
of the Strassen-Dudley type with uniformly bounded sample paths.

4. Counterexamples with uniformly bounded sample paths. The examples
in the previous section show that certain Lipschitz conditions on the second
moments of increments do not imply that X satisfies the CLT in C. Thus, it is
necessary to place additional assumptions on X.

We say X is uniformly sample-bounded if there exists C = 0 such that
sup, , |X(t, w)| = C.

Below we show that even under the strong assumption of X being uniformly
sample-bounded, the condition E(X(f) — X(s))* < |t — s|* for @ < 1 does not
imply that X satisfies the CLT in C. If a > 1, X satisfies the hypotheses of
Theorem 2.5 and hence the CLT in C. The case of @ = 1, which includes those
processes for which Brownian motion is the limiting Gaussian process, remains
unsolved. In fact, we do not know of a single process with the covariance of
Brownian motion for which the CLT fails.

The following examples are based on the same scheme as those in Strassen
and Dudley (1969) and Dudley (1974).

PRrOPOSITION 4.1. For any a < 1 there is a process X(t, ), 0 < t < 1, with
continuous sample paths, |X(t, w)| < 1 fbr all t and w, and E(X(s) — X(1))* <
|s — t| for all s, t € [0, 1] such that the CLT does not hold for X.

Proor. The following definition of a process X depending on a choice of con-
stants {k,, n = 1, 2, ...} is taken verbatim from Dudley ((1974), pages 56-57).
For each n = 1,2, ..., (we) shall decompose [0, 1] into a set I, of N, equal
subintervals, where N, = []r, 6k,, k, integers. Thus each interval in 7,_, is
decomposed into 6k, equal subintervals to form I,, where I, = {[0, 1]}.
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For each n and each j = 0, ---, k, — 1, (we) define a piecewise linear con-
tinuous function g,; as follows. Let
9,5(x) =0 if N,x/3 is an integer
=1 if 6i+1 <N, x=Z6i+2
= —1 if 6i+4<N,x=Z6i+5
where
i:j—|~rkn, r:O,l,~~~,Nn_1—l,

and let g,; be continuous and linear on those closed intervals for which it was
previously defined only at the endpoints, namely 6/ + # < N,x < 6i + u + 1,
©u=0,2,3,5.

Note that for each j, inside every interval in 7,_, is an interval in I, on which
g.; = 1 and another on which g,; = —1.

Let p, = cn™# where 1 < <2 and ¢ =1/Y 7 ,n?. To be definite, (we)
take 8 = 3.

Now (we) define a probability measure # on C[0, 1] by setting x({g.;}) =
t({—9.;}) = p.j2k, for n=1,2, ... and eachj=0, ---, k, — 1. Let X bea
random variable with distribution x. Then clearly |X(¢)] < 1. Also for each
t, EX(t) = 0 since X is symmetric and bounded.

Dudley proves that the CLT never holds for X with the given p,, for any
k, = 2. What remains is for us to choose an appropriate sequence {k,,
n=1,2, ...} and then estimate the mean-square differences. Define k, in-
ductively by:

k=2 N, = 6k; = 12
k,=N¢/t-® for n=2 and a fixed <1.
Note that
(4.1) N, = 6k,N,_, = 6NY4= n=2.

Now we estimate the mean-square differences. Given s, ¢ € [0, 1], take n such
that
I/N,,, <|s— ¢t Z1/N,, where N, =1.

As Dudley has shown (page 58),
E(X($S) — X)) £ Tnen 2Pmkn (6Nt — 5|’ + 2p,k,7N,2s — ff
+ 8(Tmon Pukn™) -
For n = 0, we have by (4.1)
E(X(s) — X(1))) < 4 = 48N, ' < 48|s — 1] < 48|s — ¢]*.
Forn=1,

(1) The first term is vacuous,
(2) 2pk,INPs — 1P < NfJs — o < 144|s — ¢ < 144]s — ¢|*

-
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(3) 8p..ikil, < 8N,~*/1-0 < 48Nz, < 48|s — f|*,

(4) 8 ZmaniaPrkn™ =8 Lo n 2 Pu N7 < 8N S nia P
< BNz < 8s — fa/i- < 8|s — £]

Therefore E(X(s) — X(?))* < 200|s — ¢|.
For n = 2,

(1) 2p k™Y (6N,|s — t])* < (36 - 144)|t — s|* < 5184|t — 5|7,
(1) Dicmen 2Pmkn 36N, — 1! = Ticmen 72Pm NaZO-ON, s — 1]
<15 — 1 Ticmen 432pp Ny ~2ls — 1=
S s — 1432 Dicman P = 432]5 — 1|7,
@) 2p,k, "N, — f < N35O-oN,s — 1 < 6N,*N,|s — ¢f
= 6N, s — ¢* < 6|s — ¢|*,
(3) and (4) areasforthecase n =1 above.

Therefore E(X(s) — X(t)) < 5678|s — ¢|*.
Replace X by X/76 to get rid of the constant. []
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