EQUILIBRIUM MEASURES FOR SEMI-MARKOV PROCESSES¹

BY DAVID R. McDonald

University of Ottawa

This paper simplifies and extends previous results on the existence of an equilibrium or stationary measure for the age process associated with a semi-Markov chain:

 $(I_{(t)}, Z_{(t)}) = (\text{last state enterered before time } t,$ duration of this last sojourn up to t).

Introduction and definitions. As in [3] we maintain a dichotomy between semi-Markov chains which have sojourn times concentrated on a lattice (for simplicity the integers) and those which do not. In the former case R, (R_+) represents the integers (the nonnegative integers); B, (B_+) is the σ -field of subsets of R, (R_+) and m is counting measure. In the latter case R, (R_+) is $(-\infty, \infty)$, $([0, \infty))$; B, (B_+) is the σ -field of Borel sets on R, (R_+) and m is Lebesgue measure.

Let (Π, \mathcal{S}) be a measure space. Let $(E, \mathcal{E}) = (\Pi \times R, \mathcal{S} \otimes B)$. A transition kernel Π on (E, \mathcal{E}) is called semi-Markovian if

$$\mathbf{\Pi}(\pi, x; d\pi', dx') = \mathbf{\Pi}(\pi, 0; d\pi', dx'),$$

that is the transition is independent of $x((\pi, x) \in E)$. Given an initial probability measure α on (E, \mathcal{E}) we may construct a probability space $(\Lambda, \mathcal{A}, \Pi^{\alpha})$ on which a (semi-)Markov chain $(I_n, X_n)_{n=0}^{\infty}$ is defined having initial distribution α and probability transition kernel Π . Moreover, $(I_n)_{n=0}^{\infty}$ is a Markov chain whose transition kernel is denoted by \mathscr{R} — \mathscr{R} is a transition kernel on (Π, \mathcal{E}) . Throughout we denote by the same symbol (e.g. Π^{α}) both the probability measure and the expectation derived from a transition kernel. Also if $\alpha = \delta_{(\pi,x)}$ for $(\pi,x) \in E$ then denote Π^{α} by $\Pi^{(\pi,x)}$. The semi-Markov chain is lattice if the $(X_n)_{n=0}^{\infty}$ take only integer values. Otherwise it is continuous.

Henceforth for any probability measure α on (E_+, \mathcal{E}_+) we assume:

Condition (I). $\alpha \Pi(\Pi \times (0, \infty)) = 1$.

Condition (II). $\Pi^{\alpha}\{\lim_{n\to\infty} S_n = \infty\} = 1$ where $S_n = \sum_{i=0}^n X_i$.

The first means the sojourn times are strictly positive. The second eliminates "explosions."

With initial measure $\delta_{(\pi,0)}$ we may define a semi-Markov chain $(I_n, X_n)_{n=0}^{\infty}$ defined on $(\Lambda, \mathcal{A}, \Pi^{(\pi,0)})$ taking values in (E_+, \mathcal{E}_+) . For $t \in R_+$ we may also define the age process:

$$(I_{(t)}, Z_{(t)}) = (I_{n-1}, t - S_{n-1})$$
 where $S_{n-1} \le t < S_n$.

Received July 2, 1976.

¹ This work was done at Cornell University under a postdoctoral scholarship from the Govt. of Quebec.

AMS 1970 subject classifications. Primary 60K05, 60K15; Secondary 60J10, 60B99. Key words and phrases. Semi-Markov equilibrium measure.

With this we may define (as in [3]) the transition kernel on (E_+, \mathcal{E}_+) —for $F \in \mathcal{E}_+$:

$$\begin{split} H_t(\pi,\,x;\,F) &= \Pi^{(\pi,\,0)}\{(I_{(t+x)},\,Z_{(t+x)}) \in F\,|\,X_1>x\} \\ &\quad\text{if}\quad \Pi^{(\pi,\,0)}\{X_1>x\}>0\;; \end{split}$$

(1)
$$= \chi_F(\pi, x) \quad \text{if} \quad \Pi^{(\pi,0)}\{X_1 > x\} = 0 \quad \text{and} \quad t + x - [x] < 1;$$

(2)
$$= \mathbf{\Pi}^{(\pi,0)}\{(I_{(t-(1-x+[x]))}, Z_{(t-(1-x+[x]))}) \in F\}$$
 if $\mathbf{\Pi}^{(\pi,0)}\{X_1 > x\} = 0$ and $t + x - [x] \ge 1$.
$$([x] \text{ is the greatest integer in } x.)$$

 H_t is the transition kernel for the age process. If the age process starts out at $(\pi, x) \in E_+$ it is as though the process has already sojourned in the initial state π for a time x. That is, the process really started in π at time -x and has not made a transition by time 0. We say the process has been delayed for a time x. The delay could in practice never exceed the longest sojourn time but if $\tilde{\Pi}^{(\pi,0)}(X_1>x)=0$, (1) and (2) are added—the age process stays in π until the next integer time and then jumps to $(\pi,0)$.

In [1], [2], and [3] conditions are given to ensure that

$$\lim_{t\to\infty} ||\alpha H_t(\bullet) - \beta H_t(\bullet)|| = 0$$

where α and β are probability measures on (E_+,\mathscr{E}_+) and $||\cdot||$ is the total variation on (E_+,\mathscr{E}_+) . The existence of an equilibrium measure e on (E_+,\mathscr{E}_+) (that is $eH_t=e$) has been studied in [6], [1], and [2]. If e exists and if $e(E_+)<\infty$ (by normalization take $e(E_+)=1$) then for any initial measure α

$$\lim_{t\to\infty}||\alpha H_t(\bullet)-e(\bullet)||=0.$$

We now turn to the existence of equilibrium measures.

Main section. Henceforce we assume:

CONDITION (III). There exists a measure Δ on (Π, \mathcal{G}) such that $\Delta \mathcal{R} = \Delta$.

Denoting the distribution of the sojourn time in $\pi \in \Pi$ by F^{π} we define

$$e(d\pi, dx) = \Delta(d\pi) \cdot (1 - F^{\pi}(x)) m(dx) .$$

LEMMA 1.

$$eH_t(F) = \int \Delta(d\pi) \Pi^{(\pi,0)} \int_0^{X_1} \chi_F(I_{(t+y)}, Z_{(t+y)}) m(dy)$$

where $F \in \mathcal{C}_+$. Henceforth denote

$$\chi_F(I_{(y)}, Z_{(y)})$$
 by $f_F(y)$.

Proof.

$$\begin{split} eH_t(F) &= \int \Delta(d\pi) \int_0^\infty H_t(\pi, s; F) \cdot (1 - F^{\pi}(s)) m(ds) \\ &= \int \Delta(d\pi) \int_0^\infty \mathbf{\Pi}^{(\pi,0)} \{ f_F(t+s) | X_1 > s \} \cdot (1 - F^{\pi}(s)) m(ds) \\ &= \int \Delta(d\pi) \int_0^\infty \mathbf{\Pi}^{(\pi,0)} \{ f_F(t+s) \cdot \chi_{\{X_1 > s\}}(s) \} m(ds) \\ &= \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{X_1} f_F(t+y) m(dy) \,. \end{split}$$

To show $eH_t = e$ we need only show $A \equiv \int \Delta(d\pi) \Pi^{(\pi,0)} \int_0^{X_1} f_F(y) \cdot m(dy)$ is the same as $B \equiv \int \Delta(d\pi) \Pi^{(\pi,0)} \int_0^{X_1} f_F(t+y) \cdot m(dy)$.

Proposition 1. If

$$\int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^t f_F(y) m(dy) < \infty$$

then A = B.

· Proof.

$$\int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{t+X_1} f_F(y) m(dy)
= \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^t f_F(y) m(dy) + \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_t^{t+X_1} f_F(y) m(dy)
= \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^t f_F(y) m(dy) + B. Also$$

$$\int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{t+X_1} f_F(y) m(dy)
= \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{X_1} f_F(y) m(dy) + \int \Delta \mathcal{R}(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^t f_F(y) m(dy)
= A + \int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^t f_F(y) m(dy).$$

Hence A = B. \square

Note that if $\Delta(\Pi) < \infty$ then (3) holds.

Example 1 shows that (3) may fail even if the chain $(I_n)_{n=0}^{\infty}$ is recurrent. The following proposition shows that e always exists for recurrent chains.

PROPOSITION 2. If ϕ is a σ -finite measure on (Π, \mathcal{G}) and if \mathcal{R} generates a ϕ -recurrent chain on (Π, \mathcal{G}) then A = B.

PROOF. Let $\phi(G) > 0$ where $G \in \mathcal{G}$. Also let

$$_{G}\mathscr{R}_{m}(\pi,A) = \mathscr{R}^{(\pi)}\{I_{m} \in A, I_{i} \notin G \mid 1 \leq i \leq m\}$$
 $_{G}\mathscr{R}_{m}(\pi,A) = \mathscr{R}^{(\pi)}\{I_{m} \in A, I_{i} \notin G \mid 1 \leq i < m\}$ and $\mathscr{R}_{G}(\pi,A) = \sum_{m=1}^{\infty} {}_{G}\mathscr{R}_{m}(\pi,A)$.

Note that \mathcal{R}_G defines a transition kernel on G. The resulting chain is called the process on G(see [4], pages 28-29). Let $\tilde{\Delta}_G$ be the invariant probability measure of the process on G. Then

$$ilde{\Delta}(d\pi) \equiv \int_G ilde{\Delta}_G(d
ho) \, \sum_{k=0}^\infty {}_G ar{\mathscr{R}}_k(
ho,\,d\pi)$$

is an equilibrium measure for \mathscr{R} (see equation 7.2 in [4]). By Theorem 7.2 in [4] $\tilde{\Delta}$ is proportional and we shall assume equal to Δ (and so $\tilde{\Delta}_G$ is Δ restricted to G). Now

$$\int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{X_1} f_F(y) m(dy)
= \int_G \Delta(d\rho) \sum_{k=0}^{\infty} \int_{\pi} G \overline{\mathcal{R}}_k(\rho, d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{X_1} f_F(y) \cdot m(dy)
= \int_G \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_0^{\tau} f_F(y) m(dy)$$

where τ is the time of first return to G. Similarly

$$\int \Delta(d\pi) \mathbf{\Pi}^{(\pi,0)} \int_0^{X_1} f_F(y+t) m(dy)
= \int_G \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{\tau}^{\tau+t} f_F(y) \cdot m(dy) . \quad \text{Now}$$

$$\begin{split}
(4) \qquad & \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{\bar{0}}^{z+t} f_{F}(y) m(dy) \\
&= \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{\bar{0}}^{z} f_{F}(y) m(dy) + \int_{G} \Delta \mathscr{R}_{G}(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{\bar{0}}^{t} f_{F}(y) m(dy) \\
&= A + \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{\bar{0}}^{t} f_{F}(y) m(dy) .
\end{split}$$

Also

$$(4) = \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{0}^{t} f_{F}(y) m(dy) + \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{t}^{t+\tau} f_{F}(y) m(dy)$$
$$= \int_{G} \Delta(d\rho) \mathbf{\Pi}^{(\rho,0)} \int_{0}^{t} f_{F}(y) m(dy) + B.$$

Hence A = B. \square

Example 2 gives a semi-Markov chain where e does not exist even when Δ does.

As the referee remarked, condition (II), which eliminates explosions, is not essential. If we assume the existence of an age process $(I_{(t)}, Z_{(t)})$ (denoted by (Z_t, U_t) in [6]) satisfying condition A in [5] we may define \mathscr{R} and H_t from this age process and all proofs go through as before.

Examples.

Example 1. Let $\Pi = \{0, 1, 2, \dots\}$. Define

$$\mathcal{R}(n, n-1) = 1$$
 if $n \in \{1, 2, 3, \dots\}$

and

$$\mathscr{R}(0, n) = p_n$$
 where $\sum_{n=0}^{\infty} n p_n = \infty$.

Let the sojourn time in state $n \neq 0$ have a uniform distribution on $[0, 1/2^n]$. Let the sojourn time in 0 be exactly 10 units. Here $\Delta(\{n\}) = \sum_{k=n}^{\infty} p_k$. If we let t = 5 and $F = \{0\} \times R_+$ in (1) we see (1) fails. Nevertheless, by Proposition 2, e is the equilibrium measure.

EXAMPLE 2. Let Π be the integers. Define $\mathcal{R}(n, n+1) = 1$ for all $n \in \Pi$. Let the sojourn time at $m \in I^-$ (a negative integer) be uniformly distributed on $[0, 2^m]$. Let the sojourn time for nonnegative integers be uniformly distributed on [0, 1]. Here $\Delta(\{n\}) = 1 \,\forall n$ and there are no explosions. Nevertheless, letting $F = \{0\} \times R_+$, we see (1) fails. Also $e(I^- \times R_+) < \infty$. However, every unit of time a mass $1 \cdot \int_0^1 (1-x) dx = \frac{1}{2}$ flows into state $\{0\}$. Hence e is not an equilibrium measure.

I thank the Cornell University Mathematics Department for its hospitality and Professor Kesten for several useful comments.

REFERENCES

- [1] JACOD, J. (1971). Théorème de renouvellement et classification pour les chaînes semi-Markoviennes. Ann. Inst. Henri Poincaré, Sect. B 7 83-129.
- [2] Kesten, H. (1974). Renewal theory for functionals of a Markov chain with general state space. *Ann. Probability* 2 355-385.
- [3] McDonald, D. (1977). On semi-Markov and semi-regenerative processes. To appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.
- [4] OREY, S. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand, Princeton.

- [5] PYKE, R. and SCHAUFELE, R. (1964). Limit theorems for Markov renewal processes. Ann. Math. Statist. 35 1746-1764.
- [6] Pyke, R. and Schaufele, R. (1966). The existence and uniqueness of stationary measures for Markov renewal processes. *Ann. Math. Statist.* 37 1439-1462.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND ENGINEERING
UNIVERSITY OF OTTAWA
OTTAWA, ONTARIO
CANADA K1N 6N5