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AN INEQUALITY FOR SUMS OF INDEPENDENT RANDOM
VARIABLES INDEXED BY FINITE DIMENSIONAL
FILTERING SETS AND ITS APPLICATIONS
TO THE CONVERGENCE OF SERIES!

By JEAN-PIERRE GABRIEL
Courant Institute of Mathematical Sciences

R. Pyke raised the question of the convergence of series indexed by
filtering sets. This paper contains a generalization of an inequality of
Marcinkiewicz-Zygmund for a certain class of filtering sets, which gives
rise to the theory of series for this type of set.

1. Notation. We first recall some definitions. A set I with a partial order £
is filtering to the right if for each a, 8 in I, there exists y in I such that a £ 7
and 8 £ 7; 7 is called an upper bound of « and 8. The notation a £ f (respec-
tively @ > f8) means that « is less than or equal to B (respectively greater than
or equal to 8). If @ £ B (resp. @ 2> B) and a +f, then we write a € 8 (resp.
a > B). Let (a,),e; be a family of real numbers indexed by a set I filtering to
the right. The limit superior and inferior of (a,),., are defined in the following
way (=4 oo included):

lim,_, sup a, = inf,.; sup,,,a,, lim, , inf a, = sup,.,inf,,, a, .

If these two numbers are equal and finite then we say that (a,),.;, or more
simply, a, converges. The number

lim, a, = lim, sup q, = lim,, infa,

a— a

is called the limit of a,. In a set I filtering to the right, the symbol 7, designates
the subset I, = {8 e I|B £ a}, and |a| is the cardinality of 1,. A set I filtering to
the right is said to be locally finite if |a| is finite for each « in I. For locally
finite sets, one can introduce the notions of convergence of series and of pro-
ducts. Let (a,),e; be a family of real numbers indexed by such a set. We say
that the series },,.; a, converges if S, = },., a, (partial sums) converges. In
this case we write S = 3, ,.; a,, where § = lim,_, S,. In the same way, we say
that the product [],.; a, converges, if there exists y in I, such that a, = 0 for
each a belonging to I.°, and if [],. 111, 95 CONVerges to a nonzero real number.
In this case we write P = [],.; a,, where P = Hﬁ“r a,-lim, Hﬁela\l, a,. The
number P does not depend on 7.

Received June 17, 1976.

1 Research supported by the Fonds National Suisse de la Recherche Scientifique. The results
are parts of the author’s doctoral dissertation, directed by Professor R. Cairoli at the EPF-
Lausanne.

AMS 1970 subject classifications. Primary 60G50; Secondary 60G45.

Key words and phrases. Filtering sets, isomorphism, independent random variables, character-
istic functions, almost everywhere convergence.

779

[ (€
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% /2

8

)

The Annals of Probability. RIKOIN

WWWw.jstor.org



780 JEAN-PIERRE GABRIEL

We now give some examples of filtering sets we will use in the following.
EXAMPLES.

(1) The symbol K, for each d in the set of positive integers N, designates the
set of d-tuples of positive integers with the partial order induced by the co-
ordinates. This relation is defined as follows:

= (Fply ooy l) LB =(Sp Sy + 5 8y) iff rn<s,r<s,- --,r<s,.

(2) The symbol K, designates the set of sequences of positive integers with
only finitely many elements different from 1, and partially ordered with the
relation induced by the coordinates.

3) Z, designates the set of pairs of integers (m, n), with the partial order in-
duced by the coordinates, and such that m 4+ n > 0.

All these sets are countable, filtering to the right and locally finite.

2. Partially ordered sets and filtering sets. This section is concerned with a
tentative classification of the filtering sets which could give rise to a theory of
the summation of series. R. Smythe in [12] introduced the notion of local lat-
tice in connection with the law of large numbers. We now define a dimension
for filtering sets which are very close to local lattices.

LemMA 1. Every partially ordered set containing d = 4 elements is isomorphic to
a subset of K;_,.

Proor. It is clear that every 4-element partially ordered set is isomorphic to
a subset of K,. Let us now suppose that the proposition is true for d, and let us
consider a partially ordered set E = {a,, a,, - - -, a4, a,,,}. This set contains a
maximal element which we suppose to be a,,,. According to our hypothesis,
F = {a,, a, ---, a,} is isomorphic to a subset of K, ,. Let (r/ r}t, ..., ri_,),
i=1,2,...,d, be the image of a, through this isomorphism, and let us write
F, ={a,e F|a, £ a,,}, and F, = F\F,. The mapping for which q; is taken into
(rh oty ooy rig, 1) or (rf, ryf -+, ri_y, 3) according as g, is in F, or in F,, and
g4, 10t0 (MaX, g, 1YY, MAX g2y 1y, « « -, MAX 4 75y, 2) is an isomorphism from
E to a subset of K,_,.

To each « in a set 1, ﬁltering to the right, locally finite, we can now associate
the number

r(a) = inf{de N|I, is isomorphic to a subset of K,}.
Itis clear that @, < a,impliesr(a;) < r(a,). We call the dimension of I the number
dim I = sup,.; r(a),

and we say that [ has infinite dimension if dim7 = co. It is obvious that
dim Kd =d.

An increasing sequence (a,,),. in a partially ordered set / (i.e., a, € a,,, for
each n in N) is called a generating sequence (of I) if I = |Jz_, L, .
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PROPOSITION 2. In a partially ordered countable set I, the two following proposi-
tions are equivalent:

(a) [ is filtering to the right,
(b) I contains a generating sequence.

Proor. The nonobvious implication is (a) = (b). Let 7 = {B;, B + -+, B> - -+ }
be an enumeration of 7, and let us define a, = B,. The set {a;, 8,} has an upper
bound a, in I; the set {a,, 8;} has an upper bound «; in I; by indefinitely follow-
ing this procedure, a sequence (a,),., can be obtained and it is easy to see that
it is a generating sequence.

We note that a set, filtering to the right and locally finite, contains a generating
sequence iff it is countable. One might think that such a set is always countable,
but this is not so. Let us choose an arbitrary noncountable set, and let I be the
family of its finite subsets, ordered by inclusion. The set 7 is filtering to the right,
locally finite but noncountable. This example shows that a noncountable filter-
ing set does not always contain a generating sequence. The dimension of a set
is completely determined by a generating sequence (a,),.y because of the fact
that dim 7 = lim,_,, r(a,), the limit being independent of the particular sequence.

The purpose of the next theorem is to give a geometric characterization of the
sets which are filtering to the right, locally finite and countable. We first give
some lemmas.

LEMMA 3. Let T be a totally ordered set and (A,);cr> (B;);er two increasing fami-
lies of sets. Let us suppose that A = J,er A, and B = J,.r B, are both ordered
and that for each t in T, A, and B, are ordered by the respective relative order of A
and B, and are isomorphic. If the following condition is satisfied then A and B are
isomorphic.

If ¢, designates the isomorphism between A, and B,, then for each s in T with
§ = t, the restriction of ¢, to A, coincides with ¢,.

Proor. Let ¢ be the application from A4 into B defined by ¢(a) = ¢,,,(a),
where #(a) is chosen in such a way that « is in 4,,,. According to our hypoth-
esis, this application is well defined and is unique. It is easy to show that ¢ is
an isomorphism.

LeMMA 4. Let E, and E, be two finite subsets of a partially ordered set, both con-
taining an upper bound denoted respectively by a, and a,, and such that a, £ a,,
{a e E,|a £ a,} = E,. If ¢, is an isomorphism between E, and A, C K, then there
exists a subset A, of K, and an isomorphism ¢, between E, and A,, such that the
restriction of ¢, to E, coincides with ¢,.

Proor. The proof will be done with an induction on the number of elements
of E\E,. The lemma is certainly true when card (E;\E,) = 1. Let us now sup-
pose that it is true for card (E,\E,) = n, and let us choose a maximal element ¢
in the set E,\(E, U {a,}). According to the hypothesis of induction there exists
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an isomorphism ¢, between E,\[6} and 4, c K, such that the restriction to E,
is identical to ¢,. Let us denote by B,, 8,, - - -, 8, the elements of E,. The set

E,\{d} being finite, there exists an integer m such that BuBs) = (1 1y -+ -y 18
L1,...),i=1,2,...,p — 1. Let us define ¢, in the following way:
() = (rs 1y -5t 1L 1L - ‘) if B=p8¢ekE U {aeE|a €0},

=rhrth 3,11, 000 if B=pg,eE\E, U{acE,|ak o} ;
= (MaXy5,c we myiacon T ** MAaX ;15 (ae gylacon Tm's 25 1y 1, + o 2)

if g=20.

It is easy to see that ¢, is an isomorphism between E, and a subset of K., such
that the restriction to E, is ¢,.

THEOREM 5. Every set I, filtering to the right, locally finite and countable is iso-
morphic to a subset of K,,.

ProoF. Let (@,),.y be a generating sequence of 1. According to Lemma 1,
there exists an isomorphism ¢, between I, and 4, C K,,. The sets I, and I,
satisfy the conditions given in Lemma 4, and therefore there exists an isomor-
phism ¢, between 1, and 4, C K, whose restriction to 1, is identical to ¢,.
By indefinitely following this procedure we get two increasing families of sets,
(Za,)ney and (A4,),cy, which verify the conditions of Lemma 3. The latter as-
sures that [ = |J=_, 1, is isomorphic to J_, 4, C K.

3. Sums of independent variables. In the following, the random variables
will always be real and are supposed to be defined on a probability space
(@, &, P). We will say that a set is of finite type if it is filtering to the right,
locally finite, countable and its dimension is finite. The set Z, given in the ex-
ample (3) is of finite type but is not a local lattice. In this section, I will always
denote a set of finite type. Let (Y,),., be a family of independent random vari-
ables. Let us denote by S, = X per, Y, the family of partial sums associated
with the series },.,Y,. The following theorem generalizes an inequality of
Marcinkiewicz-Zygmund [6], [8]. The method of the proof is inspired by [6],
[9]-

THEOREM 6. Let (Y,),c, be a family of independent and integrable random vari-
ables, centered on their means and indexed by a set I of finite type. For each p > 1
we have

”Sllpael lSa“Ip = Ad,p SUPge ”Sa”zz ’
where d = dim I and A, , is a number depending on d and p only.

PrOOF. Let us first suppose that the inequality is true for random variables
indexed by K, and let us consider a set 7 with dim 7 — 4 and a generating se-
quence of / denoted by (a,),.,. For each nin N, the set 1, is isomorphic to a
subset of K,. By extending (if necessary) the family (Y,),c,, with zero random
variables, one can obtain a family indexed by a subset 7, of K;, and then for
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each p > 1 and each n in N, we have

Hsupaela,ﬂ lsa”lr é Ad,p Supael ”Sa”r ¢

Using the monotone convergence theorem, we get

limn—m ”Sllpaelan ,Sa”lzz = ”S‘Jpael lSa”Ip
= Ad,p SUPqer ”Sa”p :

Let us prove now the inequality for the case / = K,. If the random variables
are symmetric and indexed by K,, then the following inequality holds [9]:

P{sup,e. S, = 4} < 2°P{S, = 1},
for every 2 > 0 and for every a in K,. From this inequality one can prove that:

[5upse 1S;1ll, < (24471

alls

is verified for every a in K, and every p > 1 [5]. The general case is obtained
by the standard procedure of “desymmetrization” [6]. One finally gets:

[ISUPss [Selll, = (2447 + 227)2[|S,], »

which is true for every a in K, and every p > 1. The proof is now complete if
we define A4, , = (27+¢ 4 2¢-1)Vr,

COROLLARY 7. The partial sums (S,)q.; associated with a family of independent
centered random variables indexed by a set of finite type converge almost everywhere

If sUPger ||Sall < oo

Proor. The family (S,),c; is @ uniformly integrable martingale and the in-
equality of Theorem 6 implies its almost everywhere convergence [2], [11].

The central point for the almost eveywhere convergence of sums of independ-
ent random variables is the theorem which assures that quadratic mean conver-
gence implies almost everywhere convergence. The latter is an easy consequence
of Corollary 7 for the case of finite type index sets. If this theorem is true for
a given filtering set, then all the theorems of the following list are also true.
The most general index sets for which we can prove this theorem are the sets
of finite type. We do not know if it is only a consequence of the fact that the
preceding inequality is related to the finite dimensionality of the index set or if
there are deeper reasons. We are not giving the proofs of the following theo-
rems, because they are quite analogous to those given for the case I = N [3].
The three series theorem is the only exception and we will do it later.

Let (Y,)q; be a family of independent random variables indexed by a set 7 of
finite type, and ¢, be the characterisic function of Y,.

(a) If (Y,)e; is uniformly bounded, then the almost everywhere convergence
of 3l,c; Y, implies its quadratic mean convergence.

(b) XacrY, converges with probability 1 when centered if and only if
[Tacz [$a(?)| converges for each ¢ in a set of positive measure.
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(€) X aerY, converges almost everywhere if and only if J],.; $.(¢) converges
for each ¢ in a set of positive measure.

(d) X.e;Y, converges almost everywhere if and only if TTaer @a(f) converges
in a neighborhood of + = 0 to a function which is continuous at # = 0.

(e) The convergence of },,.,Y,, almost everywhere, in probability and in
distribution are equivalent.

Let us consider now the three series theorem. Let (Y,;;i>=3,j=1) be a
family of independent random variables such that },.; 3,.,Y;; converges al-
most everywhere, and let us define Y,; = (—1)/, ¥,; = (—1)?** for j = 1. The
family (Y;;),5cx, is still independent and 3 jex, Y“ converges almost every-
where. But Z(w)e x, P{|Y:;] > 3} = oo which is in contradiction with one of
the conclusions of the classical three series theorem. The latter can be modified
in the following way:

THEOREM 8 (three series theorem). Let (Y,),.; be a family of independent vari-
ables indexed by a finite type set I, and let us define

Y,=Y, if |Y,—m]<C,
=m, lf [Ya_mal>ca

where C is a positive number and m, a median of Y,. The series },,.;Y, converges
almost everywhere iff the three series Y oo, P{Y, # Y.}, Yaer E(Ya)s Daer Var (¥,)
converge.

Proor. The proof of the sufficiency is easy. To prove the necessity, we will
use the inequalities of Doob-Wintner [3, page 41]. The almost everywhere
convergence of },,., Y, implies the existence of a set 4 C [0, a], with positive
measure p, such that

ZaeIP{Ya 7‘: Ya} é —4L1(C’ Ao’ a) SA log HaeI |¢a(t)| dt < o,
Saer Var (¥,) £ —2L(C, p, a) § 108 [Taer [9a(f)] dt < oo,

where ¢, is the characteristic function of Y, and L,(C, p, a), L(C, p, a) are the
constants involved in the Doob-Wintner inequalities. From this follows the
almost everywhere convergence of Y ,.;(Y, — E(Y,)), and consequently of
Zael E( Ya)‘ ‘

We will now show that the L,-bounded condition implies more than the almost
everywhere convergence of the series. Let (a,),., be a family of real numbers
and y — «a, an [ to I bijection. We will call (aa,)re ; a rearrangement Of (@,)qe;-
Let (Y,),.; be a family of random variables. We will say that the series 3 ,.; Y
converges unconditionally almost everywhere if for each rearrangement (Yar)re :
of the family (Y,)e;» the series 3} ., Y, converges almost everywhere.

THEOREM 9. Let (Y,),.; be a family of independent centered random variables
indexed by a finite type set I. If SUp,e; || 2 5er, ¥olli < o0, then the series 31, Y,
converges unconditionally almost everywhere.
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Proor. According to Corollary 7, it is enough to prove that

SUDge s ||Zﬂelu Yﬁ”l = SUP;e; ||Zrela Yarlll ’

for each rearrangement (Yar)TEI of (Y,)ees- It is easy to do it by using a gener-
ating sequence and the inequality E|X| < E|X + Y|, which is valid for each pair
of independent and centered random variables [7, page 263].

In fact, it is possible to connect this kind of convergence with the theory of
Burkholder’s transforms [5].

THEOREM 10. Let (Y,),., be a family of independent random variables indexed
by a finite type set I. Let us define

Y,=Y, if |r/=C,
=0 if |¥|>C,

where C is a positive number. The series },,., Y, converges unconditionally almost
everywhere iff the three series Y, P{Y,+# Y,}, Daer |E(YL)|s Daer Var (¥,)
converge.

ProoF. According to the three series theorem, }},.,Y, converges uncon-
ditionally almost everywhere iff the three series Y ,.; P{Y, # Y.}, Jaes |E(Y,)|
Y aes Var (¥,) converge. This is equivalent to saying that Y5, P(Y, # ¥, },
e |E(Y,)l, X, Var (Y%) converge, where {a;, a;, - -+, a,, -+ -} is an arbi-
trary enumeration of /. But now the series are ordered by N and we can use
the classical three series theorem. The proof is now complete [13].
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