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THE EXACT HAUSDORFF MEASURE OF THE ZERO SET OF
CERTAIN STATIONARY GAUSSIAN PROCESSES

By P. LAURIE DAVIES
Westfilische Wilhelms-Universitit Miinster

It is shown that the exact measure function W(k) of a stationary
Gaussian process with spectral density function f(2) proportional to (22 +
a?)~te+h), 0 < a < 4, is given by W(k) = h-=(log |log A)=.

1. Introduction and result.

1.1. Let X(¢, ) be a separable stationary Gaussian process defined on the
probability space (Q, &, P). We assume that X(¢) has zero mean and spectral
density function f{2) given by _

M) fy =ae DEED oy gy oo <1< oo,
F@)I(e)

where a > 0 and a, 0 < a < 4, are constants. The normalizing factor in (1)

ensures E(X(?)*) = 1.

The standard deviation ¢(k) of the increment X(¢ + k) — X(r) is given by
2) o’(h) = E((X(t + k) — X())*) = 4 §=,, sin® (JAR)f(2) dA .

It follows from results of Berman [1, 2, 3, 4, 5], valid for a wider class of pro-
cesses, that there exists a stochastic process ¢(x, #, ®), the local time of X(?),
which is jointly continuous in x and ¢ and for which

©) 16 x5(X(5)) ds = [ xs(x)p(x, 1, @) dx
holds for every Borel set B and every ¢. yx, denotes the indicator function of
the set B.

1.2. In [6] the following iterated logarithm law for ¢(x, r) was proved:
i P(X(1), 1 + k) — o(X(®), 1)
“4) 0< ¢ < lim, ,sup hl)-“(log (ZTog B <6 < o

almost surely where ¢, and c, are fixed constants depending only on g and a. It
was further shown in [6] that (4) holds for certain stopping times ¢. This allowed
a direct application of the method of Taylor and Wendel [16] to obtain a lower
bound for the Hausdorff measure of the zero set of X(¢). To be more precise
let ‘

%) o) ={s: X(5,0) = 0,0 < s < ¢},
(6) 7, = inf {s: ¢(0, 5) = t, s = 0}
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and let ¥ — m(E) denote the Hausdorff ¥-measure of the set E. Theorem 3 of
[6] states that with W(k) = A'~*(log (—log k))*and ¢ > 0, ¥ — m(Q(z,)) is almost
surely strictly positive, perhaps infinite. The conjecture was made that (k) =
h-2(log (—log h))" is the exact measure function for Q(z,) and it is the purpose
of the present paper to prove this conjecture. We prove

THEOREM 1. For the process X(t) described above
7 0< ¥ — mQ(r))) < o0
for all t > 0 almost surely where W(h) = h'-"(log (—log h))*.

1.3. The result of Taylor and Wendel goes further than the statement of
Theorem 1. They showed that the stochastic process Z(f) = ¥ — m(Q(?)) is a
constant multiple of the local time ¢(0, ). Their proof of this cannot be
immediately carried over to the present situation and we make no attempt to
identify the process Z(r). \

2. Notation and outline of proof.

© 2.1. As far as possible we will use the notation of [6]; any divergences will
be explicitly mentioned. Constants, either absolute constants or ones whose
value depends only on a and a will be denoted by ¢, - -+, ¢;;. They will not in
general be the same as the constants ¢, - - -, ¢;, of [6].

At this point we note the asymptotic equality
®) o(hy = L0 =9 (gl

al'(a)

which holds for small . This follows from (1) and (2) by a theorem of Pitman
[14].

2.2. The method of proof is the same as that of Taylor and Wendel, the
problem beiﬁg to obtain sufficiently accurate bounds for the relevant proba-
bilities for the process X(f). As the technical details tend to obscure the main

idea we now give a brief outline of the proof.
We denote the collection of intervals [(j — 1)27%, (j + 1)27%),j =0, =41,

+2,..-byA,,»=0,1,2,.... Foragivene¢, > 0 and a given integer n, > 1
we choose an integer m, such that 2= < min (}¢,, A, ) where

9) , h, = exp(—n'*%), n=12,...
as in [6].

Given 9, > 0 (to be specified later) and m > m,, let N,, be the largest integer
n such that

(10) §O, g 2 270

We assume that m is sufficiently large to ensure that {N,, > n,.
For fixed m the interval [(j — 1)2-™, j2-™) will be denoted by I, ,,. An inter-
val I, , will be called bad for the sample point w if (i) X(#, ) = 0 for some ¢
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in I;,,, and (ii) there is no interval [a, b) of U;-,, A, containing I; , N O(1, ®)
for which

(11) (0, ) — ¢(0, a) = $9,(b — a)*~*(log (—1log (b ~ a)))* .
All other intervals are said to be good.

If I; ,, is good then either I; , N Q(1, w) is empty or it can be covered by an
interval [a, b) of U, A, satisfying (11). The covering of Q(1, w) is then
completed by taking I, , itself to cover I;, N Q(1, ) when I, ,, is bad. Note
that all the intervals of the covering have length less than e,.

Following Taylor and Wendel the problem is to show that the contribution
to the covering from the bad intervals is small for suitable ¢, in (9) and 4, in
(10). To do this we proceed as follows. Using a refinement of the techniques
of [6] we show that P(B{") | & ;_,-) is small for large n where

(12) By, ={o:o(X((j — 1)27™), (j — 1)27" + k) — o(X((j — 1)27™),
(j — 1)2-™) < 6,h,-(log (—log ,))% n < v < 2n}.

It turns out that the conditional probability P(B{"), | & ,_,,-=), depending as it
does only on the increments of the process X(7), is largely independent of
X((j — 1)2=™). This is expressed by Lemma 3. The continuity of the paths of
X(#) implies that X((j — 1)2-™) and the event I, . N Q(1, w) # @ are highly
mutually dependent. It follows that P(B{"), | & ;_;),-m) is largely independent of
whether the process X(7) has a zero in /; ,, or not. The continuity of the local
time process ¢(x, ) allows the event

(13) Afn = {01 o(X(z)), 75 + h) — p(X(z) 75)

< 40,k (log (—log h,))*, n < v < 2n}
to be closely approximated by the event B{",. Here z; denotes the time of the
first zero of X(t, ») in the interval I, ,. Putting all this together we conclude
that the conditional probability of A, given r; is small for large n.

To finish the proof we require an upper bound for the probability of the
event I; , N Q(1, w) #+ @. This is given by Lemma 9.

3. Preliminary results.

3.1. Apart from Lemma 3, the lemmas in this section contain certain
technical results whose proofs are not particularly interesting. The first three
lemmas are general whilst the last three give a more precise lower bound for
P(C% | & j—1s-m) than that given in [6], where

Cim = {0 oX((j — 1)27"), j — 127" + 4,)
(14) — o(X((G — D27, ( — 1)277)
= 0,h,'~*(log (—log h,))*} .

3.2. The following lemma is required at several stages of the proof of
Theorem 1.
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LemMMA 1. Let §(t, w) be a zero mean separable Gaussian process which satisfies

(15) SUposi< E(E(2)") < ¢ h™
and
(16) E(E(t) — E0)) < el — s, 0O<s t<h.

Then there exist positive constants ¢, and ¢, such that for all h, 0 < h < e7?,

1€l a2 _
(17) P<sup0<t<h o, hog i 1) < ¢, exp(—c, 4* log (—log k)

forall 2> 0.

Proor. The proof is a straightforward application of Fernique’s lemma (see
[7] and [11]) and is consequently omitted.

LEMMA 2. There exist positive constants ¢, and c, such that

X6 =9l - 2> = cgexp(—c, A

4 1A A
(18) (Supogt«o 1 + log* e =

forall 2> 0.

Proor. The process X(s — #)/(1 + log* 1)}, 0 < ¢ < oo, is bounded with prob-
ability one ([12], page 522). It therefore follows from a theorem of Marcus and
Shepp and others ([13]) that '

lim,_, A% log <P <supo§t<m (J_f(__s.l_;g_?# > 2)) = —36?
where 6* = sup,., .., E(X(s — t)*/(1 + log* #)) < 1. The lemma follows from this
and the stationarity of the process.

The next lemma expresses the fact mentioned in 2.2 that the increments
X(t) — X(s5), 0 < 5 < t, are largely independent of X(0). Now and in future
we shall denote the g-algebra generated by the random variable X(t) by & ,.

The definitions of &, X, () = X,(¢]|0) and X,(f) = X,(t|0) which appear in
the statement and proof of the next lemma are given in 2.1 of [6].

LeMMA 3. For t > 0 let the random variables Y (t) and Y (t) be given by

(19) Y(t) = X(—1) — (1 — $o(1))X(0)
and '
(20) Y,(0) = X,(1) — (1 — $o()X(0).

Then Y (t) and Y (t) are & -measurable and independent of % ,. Furthermore we
have

(21) E(Y(1) = E(Y,(1)) =0, ]
(22) Y(0) = ¥,(0) = 0
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and
(23) E((Y,(1) — Yy())") = E((Y(1) — Y(5)))) < ¢t — s
for0 <t s <2

Proor. The proof is a simple application of the fact that in the Gaussian
case orthogonality implies independence. The last inequality of (23) follows
from (8).

3.3. The next section is concerned with improving Lemma 12 of [6]. We
require

LEMMA 4. Suppose that 0 < & < e*. Then there exists a constant ¢, and an
n, = ny(,) such that

d
(24 SUPLsmia | Xo(sha [ By )| S By (log (—log (A, + A,,)

where A, , is an . -measurable random variable which is independent of & .
Further, there exist constants ¢,y and ¢, > 0 such that for all 2 > 0

(25) P, 2 ) < con-eu?
and
(26) P, , = 2) < ¢ exp(—c, n2?) .

PROOF. As in [6] we may write
Xp(shy| b)) — X(0)
— B b e+ (= EXP(—a(sh, — hyy + p))X(R,., — p) — X(0) d
Ci(sh,, )2 (5 P sk, — hyy + p) 'p

and on differentiating we obtain after calculations similar to those in the proof
of Lemma 8 of [6]

d X(h, . — p) — X(0
N gl s et g7 Mle D) = SOl 1 cura,
where

(28) A; . = SUPygpcon M .

(I +logp)t~
Again following the proof of Lemma 8 of [6] we have

o [X(hy — p) — X(0)] dp < c¢..(h.—¥(log A ))A
80 Pa+’)(h,” +P) P = clﬁ( n (Og n)) 1,n
+ hg_élX(O)I + hn_(a+i)/2A3,n

+ h'ét*-l hn_l(log (—log hn))&ALn)

|X(t) — X(0)|
**1 1%(log (—log 1))}

where

A, . = supogics
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and
5 A —sup YO
( 9) 1, SUPosts<ns t“(lOg(-—lOg t))i

with Y(7) as defined in Lemma 3.
On substituting into (27) we obtain (24) with

B, = |X(O)] + B, 420y, + (hy0/h,)H(log (—log h,))HA, .

It follows from Lemma 2 that A, , is independent of &, and (25) follows from
(9), (23) and Lemma 1. The inequality (26) follows, on using crude inequalities,
from the definition of the sequence (4,),, the tail of the normal distribution,
Lemma 2, (8) and Lemma 1.

LEMMA 5. Forall 6,0 < 0 < e~?, there exists an n, = ny(e,, 0) such that for all
n=nandalls,1 —0 <s< 1,

(30) X, (sh, | hypy) — X(0) — Y, (h,)| < €,0h,(log (—10g A,))}(A, + Bsa)
where Y () is as in Lemma 3, A, , as in Lemma 4 and where A, satisfies
(31) P(A;, = 4) < ¢y, exp(—cyn'd?)
for all 2 > 0.
Proor. We have
| Xo(5h | Boir) — X(0) — Yy (h,)]
(32) < ¢,0h,%(log (—log 2,1) (A, + 4s.,)
+ 30’ (R)IXO)| + | XAy | Byra) — Xy(h)|

by Lemma 4 where X, (4,) is X,(4,|0).
Now

Xy (b | Byys) — Xp(hy) = ir+1g(h, — u) di(u, ©)

where &(u, w) is Brownian motion and g(x) = (2a)*x*~te~**/(I'(2a))* for x > 0
(see [6]). This yields

E(X,(hy| Bprr) — Xy())") = Crohy?(Rusafh)
which implies
(33) P(Aq, = A) < ¢y eXp(—cyn*d’)
for all n = n,(¢)) where
Do = (B las )1 X (| Bosr) — X(R)| /(R (log (—log A,))E) .
On substituting this into (32) we obtain (30) with
b5 = Ay, + 0,710%(R,)|X(0)]/(h,*(log (—log A,))*)
+ 0y (s 1) B, -
The inequality (31) follows from (26), (33) and the tail of the normal distribution.
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The reader is referred to [6] for the definitions of the matrix g = (g,,.) with
inverse g~! = ((#7%),,) ([6], 3.1), the random variables Z, ([6], Lemma 5), the
row vector s,, = (8, - -+, 5,,,) ([6], 2.2) and the set _#,,(d) ([6], 2.2) which
appear in the statement and proof of the next lemma.

LEMMA 6. For all ¢ > 0 there exists a 0, = J,(¢y, €), 0 < 9, < e~?%, and an n; =
ny(&, €) such that for all n = ny there exist exceptional sets Q, , and Q, , in F with
the following properties:

(@) for all e Q\(Q,,VQ,,), all 3, 0 <0< 0,, and all s,, € _#,,(0) the
inequality
el Y (1) — € 10g (—10g h) < Tigsvrzam Z, Zy(f71),,.(2m)
< cphy Y (B)? + elog (—log ky,)
holds for all m > 1 and k = n where c,, = 2al'(2a)/(2a)*, ‘

(b) Q,,e F, and is independent of F ,
(C) P(Ql,'n) é n-* and P(Qz.n) é exp(_”z)'

PRrOOF. As in the proof of Lemma 10 of [6] we can apply Lemma 4 of the
present paper to obtain the following. For alle, > 0 there exists a d, = 9,(¢y, &)
and an ny = ny(ey, ¢,) such that forallm > 1, n > n,, all 6, 0 < 6 < 9, and for
all s,,, € #,,(0) we have

(1 — &y)cp(sy B,) 2222
(34) = Dhisvvgm £, 2, (7Y, (2m)
S (1 + e)en(sih,) 2 Z? + dey(log (—log k)AL, + A,) .
Elementary inequalities yield
(35) [(Xp(s: 0| Bpya) — X(0))" — Y (B, )Y
< €05k, (log (—log k,))(47,, + A7)

Ar = Bin + [V, (R)]/(Ry(log (—log A,))Y) .

It follows from Lemmas 3 and 4 that A, , is & -measurable and independent of
- Further, on applying (23), Lemma 1 and finally (25) we conclude that

(36) P(B,,, 2 7) < con-n®

where

for n = n,(¢) and 2 > 0.
The inequalities (34) and (35) together with the fact that 5,2 < 1 4 ¢,,0 yield
czzhn—za p(hn)2 - Czs(log (—log hn))(Ag,n + Ag,n)(ez + 53)
(37) = Disvwsin £, Z,(#7Y),,.(2m)
= euh, 7Y (h,)" + cx(log (—log h,))(A7, + A7.)(e + 05)
where A; , = A;, + A, ,. From (26) and (31) we conclude that

. P(Ay,, = 2) < ¢y eXp(—Cyynta?
for all 2 > 0. > ) n SXp(=Cunt)
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From this it is clear that with

Q3,n = {(0: A7,n g 20}
and
Q, ={o:d, = 4},

&5 03 = 04(¢y, €,) and 4, can be so chosen that (a) and (c) of the lemma hold where
Ql,n = Ul?:n Qs,k and Qz,n = U;::u S24,14: .

To prove (b) we note that A, , is & -measurable and independent of &, which
implies that Q, , belongs to & and is independent of & . This completes the
proof of the lemma.

To ease the notation we shall from now on denote ¢(X(0), f) by ¢(?).

LEMMA 7. Foralle > 0 there exists a d, = 0,(s,, €), 0 < 0, < e~?%, and an n,, =
nyy(ees €) Such that for all n = ny, there exist exceptional sets Q, , and Q, , with the
following properties;

(a) forall we Q\(Q,, U Q,,)andall k = n = ny,

P(p(hy) = oh=*(log (—log h))*| 55, )
z exp(_%cnhk-myp(hk)z — ¢ 108 (_log hk))
forall 3,0 < 6 < 0. R

(b) Q,,e . F, and is independent of F .

(€) P(Q,) < n~* and P(Q,,) < exp(—r).

Proor. This follows from Lemma 6 using the methods of [6].

4. Proof of main lemmas.

4.1. We consider first the problem of obtaining an upper bound for the
conditional probability P(B(™), | & ;_y-m,,) Where h < h,,.,. Because of the
stationarity of the process it is sufficient to consider the conditional probability
P(B™|.5,) where |

B™ = B™(9) = {w: ¢(h,) < 0h,'~*(log (—logh))*, n < v < 2n}.
We denote the indicator function of a set F in & by y(F).

LEMMA 8. Forall e > 0 there exists a 0; = 04(¢y, €), 0 < 05 < e7?, and an n,, =
ny (&g, €) such that for alln = ny and all b, 0 < h < hy, 4,

E(y(B™)| F ;) < exp(— Liv.exp(—V,* — elog (—log 4,)))
+ nE(x(Q,)|F7)

where
() Q,=9,,UQ,, withQ, , and Q, , as in Lemma 7, and
(i) V2 = (dew)h, =Y, (h,).
Proor. Let
B = {: g(h,) < dh*-(log (—log h,))"}
so that B* ¢ F,, .



748 P. LAURIE DAVIES

Ash, > h,yy > +o+ > hyyy > k> 0it follows that &7, D .5, D ... D
F, D F, The random variables V, are & - measurable and hence ﬂ‘hu-
measurable, v = n, - - -, 2n, and also . ,-measurable.

We have

E(y(B™)| &) = E(IL% 1(B) |-7) = E(E(IT}%, 1(B) |
as &, . %, . Thus
E(x(B™)|%3) = E(IT i x(B)E(X(B™) | F 4, , )| F 1)
as B*+1, ..., B™ are ff -measurable If n = n, and 0 < 0 < §, Lemma 7
yields
E(x(B™)| ) = E(ID %nsr x(B )1 (QQ)EQ(B™) | F 4, )| 4)
+ E(II s 2B 0 () EQ(B™) | F 4, )| F4)
S E(ID%a x(B)2(Q\Q,) exp(—V,? — elog (—log £,)) | F7)
+ E(x(Q,)|F )

)F )

bpt

where we have used the inequality 1 — x < exp(—x). This yields
E((B™)|-573)
(38) =< E(JT0%ss0 2(BY) exp(—exp(—V,’ — e log (—log &,))) | )
+ EQ(Q,)]F) -
On repeating this process n times we obtain
E((B™)|F3) = E(exp(— X, exp(—V,” — elog (log 4,))) | 773)
+ nE(X(Qn) | ‘?h)
= exp(—2 it exp(—V,? — elog (—logA,)))
+ nE(x(Q,)|Z,)
which proves the lemma.
4.2. The next lemma gives an upper bound for the probability that the

process X(7) has at least one zero in the small time interval [¢, ¢ + k). We
require the following notation: ‘

(39) D, ={w: X(t, ») = 0 for some ¢ in [0,2-™)},

(40) M, (m) = sup,gico-m |Y,(7)|

and

(41) E, . ={o:vM,(m) < }X(0)| < (v + YM (m)}, v=20,1,2....

LEMMA 9. For all m = m,
(42)  E(Dw)|F o) S 2(Bom) + 1 D71 A(E,,m) €XP(—Ciav — 1)) M (m)2%m) .

Proor. Suppose that X(¢, o) = 0 for some 7 in [0, 2-™). For this 7 we have
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X, (1) + X,(9) = 0 which implies

X (D] = |X,(1)]
51X - M, (m)

v,

for m = m, on using (8).
This yields
M(m) =z 3]XQO)] M, (m)

where
M, (m) = SUPyg;co-m | X,(5)] -
Thus if
Fym={0:(v— 1)M,(m) < M,(m)}
we have

X(Dm) é X(Eo,m) + Z?:l X(Eu,m)X(Fy,m) ¢
The random variablé X,(¢) is independent of .5 and hence so is M,(m).
Furthermore, E, ,, € 5, as Y (1) is &/ -measurable. This implies

(43)  E(x(Dn)|F0) = E(x(Eom) | 0) + Lo EQUE, m)(Fom) | 0)

= W(Eom) + Lo X(Em) EQUE, m) [F o) -
It remains to obtain an upper bound for E(y(F,,)|-,). As E(X/() =0,
E(X,(1)") < o%(t) = O(|t**) and E((X(f) — X,(5))") < o*(t — 5) = O(|r — s|) for
0 < 5, t < 2 we conclude from Fernique’s lemma that
E(y({w: M (m) = 127*™})) < ¢ eXp(—Cgpd?)

for all 2 > 0. The random variable M,(m) is .& -measurable and as X,(#) (and
hence M, (m)) is independent of ., this implies

EUF, ) |57 < € eXp(—culv — 1M, (m)2%m) .
The lemma follows on substituting this into (43).

4.3. 1In the next lemmas we combine Lemmas 8 and 9 to obtain an upper
bound for P(B™ n D,).

LEmMMA 10. For all ¢ > 0 there exists a 0y = 04(¢p €), 0 < 05 < €72, and an
Ny, = Ny(e,, €) such that for all 6, 0 < 0 < dg all n = ny, and all m = m, with
2-™ < h,,., we have
(44)  E(B™)(D,)) = nexp(—n’) + ¢ 27 “"(E(exp(—2 XL, exp(—V.’

— clog (—~log A))* + 1~ .

ProOF. We have

E(x(B™)x(Dn)) = E(EQU(B™)2(Dn)|F 1-m))
= E(U(Dn)E((B™)|-F 4-))
as D, €., m. As2™™ < hy,,, we may apply Lemma 8 to obtain

E(u(B™)x(Dn)) = EQDm)W, + n(Du)E((R) | Fo-m)
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where W, = exp(— Y2, exp(—V,? — e¢log (—logh,))). We note that W, is
7 -measurable and independent of .5 ,. Thus
E(x(B™)x(Dn)) = E(E(UDm)W.|-F )
+ nE(E((Dn)E((Q,)|F 2-m)) |- 0)
= E(W,E(uD,)|-5)
+ nE(E(x(Dn)1(2.) ]|+ ))

and on applying Lemma 9 we obtain

E(x(B™)x(Dn))
< EW,(x(Ey.n) + €1 D01 1(Ey m) €XP(—Cop(v — 1)2M(m)?2%°™)))
+ nE(((Q, ) EQ(D,) | o) + nE(x(Q4.))
as Q,,e ., Thus

E(x(B™)x(Dw))
= E(W, + ny(Q.))((Eo,m)
+ ¢y N5mi A(E,,n) eXp(—Can(v — 1)*M,(m)'2%*™))) 4 n exp (—n?)
by Lemma 9.

The random variables W,, 3(%,,) and M,(m) are independent of & ,. We
denote by .7 the g-algebra which is generated by W,, x(Q,,,) and M, (m). It
follows that .& ) is independent of & ,. Thus

B(W, + my(@)t(Eon) + €5 D5ms 1(Es ) €XP(—Calv — 1)°M, (m)2")

= EW, + (@0 ) E(Eom)| )
e S EGUE, ) |5 ) €Xp(—Calv — 1M (m)2"))
so that
EGuB™)(D.)) < E(W + my(@ ) EG(Eo )| -7
(45) + e 20 E(UE, m) | 7 )
X exp(—cgu(v — 1)!M,(m*)2%*™))) + nexp(—n’).
We now obtain an upper bound for E(y(E, )| % w). As X(0) is independent of
% and M,(m) is & j-measurable we have
E(U(E, n) |- %) = (2[7)t S yim?™ eXp(—3x7) dx
< e M (m) .
On substituting this into (45) we obtain

E(1(B™)1(Dn)) = euB(W, + my(@s,))(Mi(m)
+ 1=, M,(m) exp(—cp(v — 1)2M,(m?)2%™)))
+ nexp(—n?).
The inequality

oL dexp(— ) £ N, 15 exp(—4x) dx = (2!
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for all 2 > 0 yields

E(x(B™)x(Dn))
(46) < €27 EW,)E 4 nEQ(Q,))(1 + 2°mE(M,(m)?)?)
+ nexp(—n?.

Let H, denote the distribution function of M,(m). It follows from Fernique’s
lemma that 1 — H,(2) £ ¢ exp(—c54”2%*™) and hence

E(M,(m))) = \§ x* dH,(x) = 2 {7 x(1 — H,(x)) dx
< 2¢4 §5 x eXp(—Cgex?2%™) dx
< a2
On applying this inequality in (46) and using Lemma 7 (c) we obtain (44) and
the proof of the Lemma 10 is complete.

LemMA 11. Let (Z,);7 be a sequence of normally distributed random variables
with zero means and variances (0,%);, and let (4,)7 be a sequence of positive numbers
satisfying lim,__, nA, = oo where A, = min,_,_, 2,. Thenifsup,., ., 0,° < 2* <
oo there exists a constant K depending on X such that

E(exp(— X1 4, exp(—2.,%)) < K(nA,)~Ve
foralln = 1.
Proor. Holder’s inequality and elementary considerations yield
E(TT;-1exp(—4, exp(—Z.,%))) < E(exp(—nA, exp(—2’Z?))
where Z is normally distributed with zero mean and unit variance. This
implies
(nA )—1/(222) wh exp(_x)x_1+1/(2>:2)

E(H,7,L=1 exp(—zy CXP(_sz))) = (271')%2 0 (_log (X/(nAn)))%

§ K(nAn)—l/(zzﬁ)

after elementary calculations, which proves the lemma.

LEMMA 12. If 0 < ¢, < 1 then there exists a 6, = 0,(s,), 0 < 9, < e~?, and an
ny, = ny(e,) such that for all 6, 0 < 6 < d,, all n = nyy and all m with 2™ < hy,4y
we have
(46) E(U(B™)1(Dn)) = ca(27m)n= M40’ + nexp(—n’)
where ¢, > 0.

Proor. It follows from (8), Lemma 6 (a) and Lemma 8 (ii) that

E(V.") = genh,E(Y ,(h.)")
~ al'2a) <2I‘(1 — )@ (2a) >
T (2a)" al'(a)2* 2al'(2a)

D )y

3 .
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An application of Lemmas 10 and 11 yields
E(U(B™)1(Dy)) = €u(27°m(n(2n) 7 Fe0))V ') 4 n exp(—n?)
< (27 (n(2n) %) ) + nexp(—n?)
where ¢, > 0. We now choose ¢, 0 < ¢ < }, so small that (1 — 2¢)(1 4 ¢,,) >
1 + %c,. With this choice of ¢ we have
E(x(B™)(Dy)) < €27 mn=1+40)  nexp(—n?)
where ¢,; > 0. This proves the lemma.

5. Proof of theorem.

5.1. In order to prove the theorem we must first show that we can approxi-
mate the events 4¢", of (13) by the events B{), of (12). To this end we require
the following lemma.

LeMMA 13. Given ¢ > O there exists an exceptional set Q, e F with P(Q,) < e,
an integer M, and a positive number 1, such that the following holds. For all
we Q\Q,

(47) P(X(1), t + k) — @(X(1), 1)
= 9(X(5), s + B) — @(X(5), 5) + 277
for all s, t, h and m satisfying
05,1, t+h<2, t<ss<st 2", 0<h<y, and
m=M,.

Proor. The proof of this lemma is a straightforward application of the Holder

condition
lo(x + 3> 1+ k) — (x + 3, 1) — ¢(x, t + k) + o(x, O] < [hy|*="

given by Berman in [4] (proof of Theorem 3.1) and of the (crude) Holder

condition
|X(5) — X(0)| < |5 — 1|*”

for X(s) which follows from (1) (see [10], Theorem 4).

5.2. We are now in a position to obtain an upper bound for the probability
that the interval I, , is bad in the sense described in 2.2. We set the 4, in (10),
(11), (12) and (13) equal to 40, where 9, is as in Lemma 12. We set the n, of
2.2 equal to ny(s,) where n,, is as in Lemma 12 and ¢, is chosen so that

I +c)/(l+e)>1+cy2=14¢cx> 1
where c,; is as in (46).
We denote the event that the interval I; ,, is bad by G, .

LeEMMA 14. For all ¢ > O there exists an exceptional set Q, of probability less
than ¢ and an integer M,, such that for allm = M,, and allj, 1 < j < 2",

E((G;,m)1(Q\Q,)) S cg27emm=Fem,
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Proor. Let D;, denote the event that the process X(¢) has a zero in the
interval I, ,. With N,, as defined by (10).it follows from Lemma 13 that for
allm = M,

A; N D;,, Nn(AQ)C B;,,NnD,;,n (Q\Q,)

where we have written 4, and B,, for A{, and B{) respectively with

n = iN,. o :
As 10 iy, = 27000 and 0 < a < % it follows that for m > M,, 2-™ <
hy, .- We may therefore apply Lemma 12 to obtain

E((A4;, m)1(D;,m)2(Q\R)) < E(x(B;,m)2(D;,m)) ,
=< ¢y(27*"N,,~ 1) 4 N, exp(—N,*/4))

where we have used the stationarity of the process. It is easily seen that N,, >
c;om¥+e0 and hence

EQu(A;,mx(D m)2(QQ,) < ey 27 mm=trer)

Suppose now that ® € Q\(4;,, N D, ,). Then either X(#, ) has no zero in the
interval I; ,, or there exists an n, {N,, < n < N,, such that

P(X(7;); 75 + ha) — @(X(z;), 7;) > 30,h,'~*(log (—log h,))* .

The number #, lies in the interval [4,- ~ya-wu/-a- am/d, 2-m0) C [2-™, 27™) and

hence there exists an interval [a, b) of Ul A Wthh covers [T:’ t; + h,) and
is such that b — a < 4h, (see [16]). For this interval we have

00.8) —9(0,a) 907 + k) — 00, 7))
(b — a)=*(log (—log (b — a)))* — (4 h,)~*(log (—log 4h,))"
‘ - =44,

The interval I, ,, is therefore good. This implies

E((G;,mx(QNL)) = E(u(4;,m)x(D;,m)1(R\.))

é c51 2—amm—1(1+047)
which cornpletes the proof of the lemma.

5.3. The final step in the proof of the theorem consists of showing that the
contribution of the bad intervals to the covering is small. We denote by T, the

nurnber of bad intervals 7, ,, 1 g j £ 2™ We have

E(Ty(@\Q) = B(T3% 1(G;,m)1(R\R.)
= 271 E((G m)2(A\2,))

< j=1 calz—amm—(1+c47)

— c.':l 2(1—a)mm—(1+c47) .

This implies that the contribution };; of the bad interval to the covering
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satisfies , :
E(Xn x(Q\Q,) = E(T, x(Q\Q,)2-"="(log (log 2™))*)

< cp(log m)yxm— 1o

from which follows that
P({ 2 (log m)~} n (Q\Q,)) < cyy(log m)rrem—tesn) |

As ¢,; > 0 we have Z:mo (log m)"*t*m-1+47 < oo and the Borel-Cantelli lemma
implies that for almost all & in Q\Q,

2im < (logm)™
for all sufficiently large m.
Arguing now as in [16], page 179, we obtain

¥ — m(Q(1)) < ¢5¢(0, 1)
for almost all w in Q\Q,. As P(Q,) < ¢ and we may take ¢ arbitrarily small this
implies

11( - m(Q(l)) = 053‘/’(0’ 1)
for almost all . Theorem 1 is a trivial consequence of this last inequality and
Theorem 3 of [6].
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