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SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS!

By LArs HoLsT
University of Wisconsin, Madison

Suppose n balls are placed into N cells with arbitrary probabilities.
Limit distributions for the number of empty cells are considered when
N— o and n— oo in such a way that n/N — co. Limit distributions for
the number of balls to achieve exactly b empty cells are obtained for
N — oo with b fixed and for b — oo with /N — 0.

1. Introduction. Suppose that balls are thrown independently of each other
into N cells so that each ball has probability p, of falling into the kth cell,
pi+ -+ + py=1. Let Y, denote the number of empty cells after n throws
and let T, denote the throw on which for the first time exactly & cells remain
empty, 0 < b < N. The symmetrical case p, = --. = p, = 1/N is discussed
for example, in Feller (1968) under occupancy or waiting time problems. For
an expository paper on these and related problems, see Kolchin and Chistyakov
(1974).

Depending on how b, n, N — co, different asymptotic distributions for Y, and
T, can be obtained; see, for example, Holst (1971) and, for the symmetric case,
Samuel-Cahn (1974). In this paper some remaining problems are investigated
for the nonsymmetrical case.

To give precise meanings for the limits obtained, double sequences (p;y)y>
(Y,x)x are considered. But in order to simplify the notation the extra index N
will usually be omitted.

2. A bounded number of empty cells. The following limit theorem for Y,
the number of empty cells after n throws, was proved by Sevastyanov (1972).

THEOREM 1. If the p’s are such that

(2.1 max, <y (1 — p)* — 0

and

(2.2) EY)=2l,(1—-p)—->m< oo,
then

(2.3) PY,=y)—>m'.e ™y,

or equivalently

(2.4) Y,=Po(m), when N — oo .
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REMARK. When the p’s are equal an expression for P(Y, = y) can be obtained
from which (2.3) can be derived by elementary methods; see Feller (1968). In
this case (2.1) and (2.2) are replaced by

(2.5) N .exp(—n/N)—->m < oo .
For T,, the number of balls until b empty cells remain, we have:

THEOREM 2. If b is a fixed integer and for some fixed numbers C and D

(2.6) 0<KCZNp,£D< 0, forall k and N,
then, when N — oo,
(2.7) L (= )™ = $0°(2(6 + 1)),
and
(2-8) 2= Xp(—=Typi) = $x°(2(6 + 1)) .
Before we prove the theorem let us consider the functions
(2.9) JO) = () = XL (1 — p)', t>0,
and
(2.10) 9(1) = gy(t) = i exp(—1tp,) .

LEMMA 1. If condition (2.6) is satisfied, y > 0 is a fixed number, and t = t, =
K(y) is defined by the equation

(2.11) 0=y,

then

(2.12) 0 < C < liminf,__, N(log N)/ty < limsup,_., N(log N)/t
=D< o,

7 and when N — oo

(2.13) A -y,
(2.14) max, <y (1 — P —0,
(2.15) 9ty and  g([1) -y,

where [t] denotes the integer part of t.

LeEMMA 2. If f is replaced by g and g by f in Lemma 1, then the same conclusions
hold.

Proor or LEMMA 1. From condition (2.6), it follows that
(2.16) y=Si(l = p) 2 N- (1 — DINY.
Hence for ¢ > 0 and N sufficiently large,

(2.17) logy = logN —t- (D + ¢)/N,
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and therefore
(2.18) D + ¢ = (D + ¢)lim,_, (1/(1 — log y/log N))
= lim sup,_., Nlog N/t ,

which proves the right inequality of (2.12).
To prove the left inequality of (2.12), note that by (2.6)

(2.19) logy < log N — tlog(1 — C/N) < log N — tC/N.
From this it follows that

(2.20) C = Clim,_, (1 — logy/log N)~! < lim inf,,
Using (2.6) and (2.11) we get

(2.21) (I—=DINyzf(h =z,

which proves (2.13).
Combining (2.6) and (2.12) shows that, for some K > 0 and N sufficiently
large,

(2.22)  max(l — p) < (1 — C/N) < (1 — C/N)ENI6¥ .0, N oo,

Nlog Njt, .

—00

proving (2.14).
From (2.6) and (2.12) it follows that for some constant K

(2.23) [1 — e x/(1 — p)¥| < K - log N/N,
and therefore

(2249 () -9 = TV (1 —po)' - [1 — e7%/(1 — pu)|
< K Y¥ (1 — p)i(log N)/N = Ky(log N)/N - 0,

which proves (2.15).
ProoF oF LEMMA 2. The proof is essentially the same as that for Lemma 1.
Proor oF THEOREM 2. From the definitions it follows that

(2.25) Y, <b=T,<n,

and therefore

(2.26) P(Y, £ b) = P(T, < n) = P(f(T}) = f(n)) .

Let y > 0 be fixed and define n = [¢] with ¢ = #(y) as in Lemma 1. According
to Lemma 1 the assumptions of Theorem 1 are satisfied. Hence

(2.27) P(AT)) Z y) = P(Y, < b) - P(Y < b),
where Y is Po(y). Furthermore it is well-known that

(2.28) P(Y < b) = P26 + 1)) 2 )3

(2.27) and (2.28) prove (2.7). From Lemma 2 the assertion (2.8) follows.
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REMARK. When the p’s are equal the theorem can be written

(2.29) N (1= 1NYTs = 32/2(b + 1)),
and therefore
(2.30) T,/N — log N = log (3x*(2(b + 1))) .

This result was found by Baum and Billingsley (1965) using complicated calcu-
lations. From the result in Feller (1968) and the method of proof of Theorem
2, (2.29) and (2.30) follow. A consequence of (2.30) is

(2.31) T,/Nlog N — 1 in probability as N — oo .
Now (2.31) will be generalized. First introduce the distribution function
(2.32) Hy(x) = #(P; Np = %)/N .
LeMMA 3. If t = t,, = t(y) is defined by
(2.33) 9(t) = gu(ty) =y > 0,
and there exists a distribution function H(x) on [C, D] such that
(2.34) Hy(x) — H(x) , N— oo,
and
(2.35) 0 < C =inf {x; H(x) > 0},
then for 1/C > ¢ > 0,
(2.36) dy((e + 1/C)(Nlog N)) - 0,
and
(2.37) gy((—¢ + 1/O)(Nlog N)) — +co

- as N — co.

Proor. From the definitions it follows that
(2-38) 0 <y =9gx(ty) = N - (g exp(—tyX/N) dH ()

= (G exp((1 — tyx/Nlog N) log N) dH ,(x) .

Consider
(2.39) gy((c + 1/C)Nlog N) = {2 exp((1 — x(1 + ¢C)/C) log N) dH ,(x) .
Now, for C < x < D it is true that 1 — x(1 4 ¢C)/C < 0 and therefore the
exponent in (2.39) is negative, so the integral tends to 0 when N — oo, which
proves (2.36).

In a similar way (2.38) can be proved.

CoOROLLARY (to Theorem 2). If the conditions (2.34) and (2.35) are satisfied,
then

(2.40) T,/NlogN — 1/C in probability as N — oo .
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ProoF. Lete¢ > 0ande, > 0 be given. Take a 6 > 0 so that

(2.41) P(3x%(2(6 + 1)) < 0) < &f2.
For N sufficiently large it follows from Theorem 2 that
(2.42) P(g,(T,) < 0) < &2

and from Lemma 3 that

(2.43) gy((e: + 1/C)Y(Nlog N)) < 4.
Hence

(2.44)  P(Ty[Nlog N > ¢, + 1/C) = P(gy(Ty) < gu((e2 + 1/C)(Vlog N)))
< P(gy(Ty) < 0) < &f2.

In a similar way we prove

(2.45) P(T,/Nlog N < —¢, 4+ 1/C) < ¢,/2.

By (2.44) and (2.45) the assertion follows.

3. A small fraction of empty cells. As above, Y, denotes the number of
empty cells after n throws.

THEOREM 3. [f

3.1 0<KCZENp£D<L oo forall k and N,
(3.2) n/N — oo,
(3.3) fln) = E(Y,) = Zil (1 — p)* —> + o0,
then when n — o ,
(34 (Yo — f(m)/(f(n))} = N(O, 1),
and
(3.5) (Y. — g(m)/(g(n))} = N(O, 1),
where
(3.6) g(n) = 1., exp(—np,) .
Proor. From (3.1) and (3.3) it follows that
(3.7) SV = p) S N- (1 = CN)* - +o0;
hence
(3.8) n/Nlog N = O(1) .
By (3.1), (3.2), and (3.8) there exists a constant K such that
(3.9) |f(n) — g(m)| < K - (n]N) - exp(—Cn/N) —0.

Hence it is sufficient to prove (3.5). This will be done using a technique similar
to that of Karlin (1967).
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Let {X{(#)} be a Poisson process with unit parameter and assume that at each
event of the Poisson process we independently choose one of the N cells ac-
cording to {p,}i_, and place a ball in it. For 1 < k < N let

(3.10) W,(t) = number of balls in cell k at time .

It is well known that for each ¢, {W (¢)} are independent random variables with
W, () distributed as Po(p, t). Let

(3.11) I(y) =1 if y=0
=0 otherwise.

Define

(3.12) Y(©) = DI (W) .

Then Y(t) is the number of empty cells at time ¢, and by (3.3) and (3.9)
(3.13) E(Y(m) = g(n) = S, e ™ —co.

Thus, by the central limit theorem and the independence of the {W (1)},
(3.14) (Y(n) — g(m)/9(m)* = N(O, 1) .

We now need to show for all x
(315 [P(Y(n) — g(n)/g(n)* < x) — P((Y, — g(m))/g(n)}* < x)| — O
as n — oco. But
(3.16)  P((Y(n) — g(m)/9(n)* < x) = X7 P((Y; — 9(n))/g(n)* < x)e="-n3] j!.
Let 0 > 0. Then by the central limit theorem there existsa 4 > 0 such that for
all x and n sufficiently large,
(3.17)  [P(Y(n) — g(m)o(n)t < x)

— Zii-nsant P(Y; — g(m)/9(n)} < x)e - ni[jl] < 5.
. Let ¢ > 0 and suppose we can prove that
(3.18) SUP,j_eant P(IYs — Y| > s(g(m)}) = o(1).
It then will follow from (3.17) and (3.18) that

P((Y(n) — g(m)/g(n)* < x — €) — & + o(1)
(3.19) = P((Y, — g(n))/9(n)* < x)
= P((Y(n) — 9(m)/9(n)* < x + ¢) + 6 + o(1),

which in turn will establish the theorem by the continuity of the normal distri-

bution. So it remains only to prove (3.18).

Markov’s inequality yields
(3:20) P(Y, — Y, > e(9(m)}) < E|Y, — Y|/e(g(n))* .
Assume first that j > n,s0j=n 4+ i, 0 < i < Ant. Since Y, > Y;,

(3.21)  E|Y, — Y| = E(Y,) — E(Y,,) = DY, (€ — e~n+0r)
= Lt e k(1 — exp(—dnip,)).
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Since max, p, < D/N and n/Nlog N = O(1), n* max p, — 0 and so for some
constant D,,

(3-22) SUPicisant E|Ys — Yoii < Dyg(m)nt/N .
Similarly

(3.23) SUPygisunt E|Y, — Y.yl = Dyg(n)nt/N .

Thus

(3.24) SUP_ni<ant P([Yn — Yi| > e(g(n))}) < Dy(g(n)n)t/eN .

But g(n) < Ne=°¥ and n/N — oo, so the right-hand side of (3.24) converges
to 0.

This proves (3.18) and completes the proof of the theorem.

4. The waiting time for a small fraction. As above let T, denote the number
of balls thrown until exactly b = b, cells remain empty. Let #, be the unique
solution of the equation

(4.1) b =g(t) = LiieXp(—1ps) -
THEOREM 4. If
(4.2) by — +oo,
4.3) by/[N—-0,
as N — oo and
4.4) 0<C=ENp, =D 0, forall k and N,
then
(4.5) by Ty — 1) T pr€Xp(—t, pi) = N(O, 1) .
ProoF. From (4.1) and (4.4) it follows that
(4.6) Cb/N < A = XV p.exp(—1t,p,) < Db/N .
Thus for N sufficiently large
4.7) 0<KCZA.-Nb<D<co.
As in the proof of Theorem 2 the relation
(4.8) P((T, — t)AJb < x) = P(Y, < b),
holds, where
(4.9) n = [t, + xbt/A].
We have
g(m)(1 + o(1)) = g(t, + xbi/A)
(4.10) = L exp(—=typi) - (1 — xp,b}/A + O(1/b))

=b—x-b 4 0(1),
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and thus

(4.11) g(n) —» 4o,

and from (3.9)

(4.12) f(n) = +oo .
Furthermore,

(4.13) b = g(t;) = Nexp(—Dt/N),

so by (4.3) we have
(4.14) t,/N— +oo,
and therefore
(4.15) n/N — + oo .
Hence the assumptions of Theorem 3 are satisfied. Now (4.8) and (4.10) give
P(T, — t,)A/bt < X)
(4.16) = P(Y, = b) = ®((b — g(m)/(9(n)*) + o(1)
= O((xbt 4 O(1))/(b(1 + o(1)))}) + o(1) = D(x) ,

where ®(x) is the standardized normal distribution function. This proves the
theorem.
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