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AN IMPROVED UPPER BOUND FOR
STANDARD p-FUNCTIONS

By V. M. JosHI

The University of Michigan, Ann Arbor

For standard p-functions, an upper bound for M = p(l), for a given
value m of m(p) = min {p(t),0 < ¢t < 1}, was proved in a previous paper
by the author. The bound implied that vo < .590, vo being the constant
defined by

Iy = inf {m(p) | p(1) = M},  vo=inf{M|Iy >0},

in which p varies over the class of standard p-functions. In the present
paper both of these upper bounds are sharpened by a refinement of the
argument, the limit for vy being reduced to .560.

1. Introduction. An upper bound for M = p(l), for a given value m of
m(p) = min {p(r), 0 < ¢t < 1} for p e &, where Fdenotes the class of standard
p-functions, was obtained in [2]. The new bound implied that v, < .590, v,
being the constant defined by

I, = infpeg{m([’)lp(l) = M} >
v = inf {M|I, > 0} .

Thus, the range within which v, was known to lie was reduced to .368 = e~ <
v, < .590, where = denotes approximate equality.

In this note, by a refinement of the argument in [2], sharper. upper bounds
are obtained for M and y,, the latter being .560. In the course of the argument
an upper bound for p(7) for any given value of ¢ is obtained which appears to
be of intrinsic interest.

2. Main result. In [2], we consider an increasing sequence t; < #, < £, < - - -
< t, in which ¢, = 1, and 1, satisfies the restrictions p(t,) = @, p(1 — t,) < aor
p(ty) = a, p(1 — t;) = a (cf. (14)*). (N.B.: Here and throughout the follow-
ing, an asterisk means that the relation referred to is the relation with that
number in [2].) In modification of the argument in [2], consider a sequence
t, < t, < --- < t,in which ¢, has any positive value ¢ and there are no restric-
tions on ¢, apart from ¢, < ¢ and, as in (15)*,

1) plt, —t,)=pt,—1t) >0, r=2,3,...,(n—1).

The whole argument in [2] continues to hold if M is taken to be the value of
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p(t) instead of p(1). In place of (29)* we obtain

(2 1 —p(t) 2 aByy — ap(t — 1) + Bus {(1 —B) + 2:;?(1 — %ﬂ)}

where @ = p(t)) and 8, = p(t, — t,_,), r=1,2, ..., (n — 2).
As shown in [2], for a given value of ¢, the right-hand side of (2) is maximized
when

(3) b= Bt k=12, (= 2).
f=1- 1 (1—a).
n—1

Hence it follows from (2) that (cf. (32)*)

@ L—p0z —ppt— )+ {1 = L —pa ]
Letting n — oo in (4), we obtain
®) L= pl) Z —p(t)p(t — 1) + exp{—1 + p(t)}

Kingman’s second order inequality 0 < g(#,) (cf. (9ii)*.) gives for the sequence

{t,, 1}

(6) 1 —p(t) = —p(t)p(t — 1) + p(t) -
As
(7) exp[—1 + p(1)] = p(1) ,

(5) provides a sharper bound than (6). The improvement over the upper bound
in [2] is effected by using the lower bound in (5) in place of that in (6).

Next let 7, =1 as in [2]. Then p(z,) = p(1) = M. Consider the sequence
{v,, v,} where v, =, —t,_,, v, = t,. Substituting in (5)¢, —¢,_, for #, and ¢,
for ¢, we obtain

' =1+ p(t, — t,0)} 1-M
(8) plt,) = <P - .
' P(t'n - tn—l) p(t," - tn—l)
Similarly, substitution in (5) of ¢, — ¢,_,_, for ¢, and ¢, for ¢ yields
=1 4 p(ts — taj)} 1-M
9 Plt-s) = P (el ) -
~ P(t'n - tn—j—l) p(tn - tn—j—l)

The whole of the inductive argument in [2] remains valid on substituting the
lower bounds in (8) and (9) for those in (18)* and (23)* respectively. Thus,
we obtain (cf. (26)*)

1— M _ p(t, — 1)
(19) p—ty =" () [1 p(t, — t2>]

n—2 exp{_l + P(t'n — tn—k)} — P(tu - tn—k)
N Zk:l P(t" - tn—k) Iil p(tn - tn—k+l)]

in which p(0) = 1.
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For any ¢, € (0, 1), either (a) p(1,) = p(1 — 1,) or (b) p(t,) < p(1 — ). If (b)
holds, we replace 1, by (1 — ;). Thus ¢, can always be so chosen that

(11) p(t) =z p(l —1).
Using (11) and substituting 8, for p(t, — t,_,), we obtain from (10),

(12) 1= Mzap,,—a + .,z SRELTA) (1 A )
ABk lBk—l
in which g, = 1.

Because of (7), (12) provides a sharper lower bound for (I — M) than (29)*.
The argument is continued in [2], by maximizing the right-hand side of (29)*
in 8,8, -+, B,_, for fixed «. The maximum of the right-hand side of (12)
cannot be derived explicitly. But since (12) holds for all 3; subject to (1), we
can assign to §, the same values as in [2], i.e., the values in (3), and obtain

(13) 1 — M= —a* + [1 _ M:\nq

} exp{—l + l:l _(d-a a)]"}

. n—1
1

at+ L9 3

n— (1 n l —a )"
n—1
Now take limits as # — co. In the right-hand side of (13) put
k=@m-—-1)z.

For fixed zas n — oo,

(1 _ 1= T)k—-wxp[—(l — a)7],

n —_—
and

exp{—1 + [1 — %_:_‘l‘l]k} — exp{—1 + exp[—(1 — a)z]} .

As k varies over the sequence 1, 2, - .-, (n — 2), zassumes the values 1/(n — 1),
2/(n — 1), «--, (n — 2)/(n — 1) which have a common difference of 1/(n — 1).
Hence the second term within the braces in (13) becomes in the limit

= (1 —a)f exp{—1 + exp[—(1 — a)z]} dz
exp[— (1 — a)7]

=1 —a)fjexp{—1 + (1 — a)z 4+ exp[—(1 — a)z]}dz.
Thus on taking limits, (13) yields
(14) 1 — M= —a® + exp(—1 + a){fa + (1 — a) {jexp{—1

+ (I — a)z 4 exp[(—1 + a)z]} dz} .

Set u(a) = integral in the right-hand side of (14). Then (14) reduces to
(15) : 1 — M= h(a),
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where

h(a) = —a® + exp(—1 4 a)[a 4+ (1 — a)u(a)].
It can be shown that A(«) is maximized for a unique value @, of @ and A'(a) <
0 for @ > @;. An upper bound for M can thus be obtained in terms of the
function u. But the upper bound so obtained is not numerically computable.

A numerically computable bound is obtained by expanding exp{—(1 — a)z}
in powers of (1 — a)z. We have

(16) exp{—(1 —a)z} =1 — (1 —a)z+ ¢ ;! a)’ 72 a ;! “)323_

Hence in the right-hand side of (15),
exp{—1 4+ (I — &)z 4+ exp[— (1 — a)z]}
(l—ap ., d=—af;,
17) = exp{ 3 z ¢ z }

=1 +(1 _261)222—(1 _6a)323.

Substituting by (17) in (14) and integrating,
(18) 1— Mz ga),

where

1 —a)p (11— a)‘}

= g —1 14 — .

g9(a) a® 4 exp( + a) { + ¢ 24

It is easily verified that g"(a) < 0 for @ € (0, 1). Hence g'(«) = 0 for a unique
value K; of a and ¢’(a) < 0 for « > K,. Hence g(a) is maximized for a = K,
if m < K, and for « = m if m > K,. This gives the upper bounds

if m<K,
(19) M< 1+ KPP — exp(—1+ Kl){l + (G S ¢ Kl)‘};
6 24
if m>K,,
1 — m)y (1 — m)
M<1 4+ m — exp(—1 ( _ )
<1m—exp(—1+m {1+ 0= s

In (19), K, is the value of « for which
(20) 0= g'(a)

= —2a + exp(_l + @) {1 _ (1 —Za)2+ (1 —3 Ct')3_ (1 ;4“)4} '

It follows that

3 —_ 4
(21) Y = 1 -+ K12 — exp(—l + Kl){l + (1 _6K1) _ (1 24K1) } .

It is found from (20) that K, = .1834 and hence by (21)
v, < .560.
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ReMARK. In (16), the expansion in powers of (1 — a)z can be continued to
higher powers. Secondly, the refinement of the computation can be carried to
a second stage. In (5), an upper bound for p(¢) is obtained by a slight modifi-
cation in the argument in [2], viz., by keeping ¢, = ¢ and removing the restriction
ont,. The same modifications in the argument from (6) to (21), yield the follow-
ing sharper bound for p(?):

(22) 1 —p() 2 —p(t)p(l < 1)

+ exp[—1 + p(1)] {1 + L —p@pP _ I1— P(’1)]4} ,
6 24
which is slightly lower than the upper bound in (5). Hence (22) can be used
in place of (5). However, calculations (the details of which are not given here)
show that together these refinements improve the upper limit for v, by less than
.001, so that to the 3rd decimal place the upper limit remains .560.
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