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THE ORDER OF THE NORMAL APPROXIMATION FOR
LINEAR COMBINATIONS OF ORDER STATISTICS
WITH SMOOTH WEIGHT FUNCTIONS

By R. HELMERS
Mathematisch Centrum, Amsterdam

A Berry-Esseen bound of order n-# is established for linear combina-
tions of order statistics. The theorem requiresa ‘‘smooth’’ weight function,
and the underlying distribution function must not have ‘‘too much weight
in the tails.”” The distribution function need not be continuous.

1. Introduction and main result. Linear combinations of order statistics play
an important role in the theory of estimation. Many authors (see, e.g., Stigler
(1974) and Shorack (1972)) have established their asymptotic normality under
different sets of conditions. However, though usual statistical practice ignores
this fact, such limit theorems are useless for applications, unless one is willing
to believe that these asymptotic assertions provide a good approximation for
finite sample sizes. Recently attention has been paid to this problem of the
accuracy of the normal approximation. Bjerve (1977) has obtained a Berry-
Esseen type bound of order n~! (n being the sample size) for trimmed linear
combinations of order statistics. His result admits quite general weights on
observations between the ath and sth sample percentile (0 < @ < 8 < 1), but
he does not allow weights to be put on the remaining observations. In addition
the distribution function (df) must satisfy a quite severe smoothness condition.
The purpose of this paper is to establish a Berry-Esseen type bound of order
n-% for linear combinations of order statistics, which allows weights to be put
on all the observations. From the standpoint of probability theory our result
can be viewed as a contribution to the problem of extending the Berry-Esseen
theorem to certain sums of dependent random variables.

Before we state our main result let us first introduce some notation. Let for
eachn>=1,T,=n"1Yr J@i/(n+ 1))X,,, where X,,, i = 1, ..., n denotes the
ith order statistic of a random sample X, - .-, X, of size n from a distribution
with df F and J is a bounded measurable weight function on (0, 1). The inverse
of a df will always be the left-continuous one. Let F, *(x) = P(T,* < x) for
—oco < x < oo, Where

(1.1) T,* = (T, — &(T,)/o(T,) .

In Theorem 2 of Stigler (1974), it is shown that T, * is asymptotically N(0, 1)-
distributed as n — oo, if J is bounded and continuous a.e. F-!, &X,> < oo and
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LINEAR COMBINATIONS OF ORDER STATISTICS 941

a*(J, F) > 0, where
(1.2) o, F) = {2, {20 JFQ))(F(y))(F(min (x, y)) — F(x)F(y)) dx dy .
In addition these assumptions imply that lim, ., ne*(T,) = ¢*(J, F) (see Theorem
1 of Stigler (1974)).
In the following theorem we establish a Berry—-Esseen bound of order n~# for

the normal approximation of F,*. Let @ denote the df of the standard normal
distribution.

THEOREM 1. Suppose

(1) J isbounded and continuous on (0, 1). The derivative J' exists, except possibly
at a finite number of points; J' satisfies a Lipschitz condition of order > % on the
open intervals where it exists. The inverse F~' satisfies a Lipschitz condition of order
> 4 on neighbourhoods of the points where J' does not exist.

(2) &lX,* < oo and §§|/(s)| dF~(s) < oo.

Then o°(J, F) > O implies that there exists a constant C, depending on J and F
but not on n, such that for alln = 1

sup, |F,*(x) — ®(x)| < Cn~* .

Theorem 1 is the first general theorem establishing a Berry-Esseen bound of
order n~* for linear combinations of order statistics, which allows weights to be
put on all the observations. The theorem requires a “smooth” weight function,
and the underlying df must not have “too much weight in the tails.” The df
need not be continuous.

In Section 2 we shall approximate T,* by a random variable (rv) S, * such
that T,* — S, * is of negligible order for our purposes. A Berry-Esseen bound
of order n~t for S,* is established in Section 3 using a technique based on char-
acteristic functions due to Bickel (1974) (see also Bjerve (1977)).

2. Approximation by S,*. Let, for each n > 1, U,, ---, U, be independent
uniform (0, 1) rv’sand let U,,(1 < i < n) denote the ith order statistic of U,, - - -,
U,. Itis well known that the joint distribution of X, ..., X, is the same as
that of (F~'(U,), - - -, F~}(U,)) for any df F. Therefore we shall identify X, with
F-}(U;) and also X,, with F-*(U,,). Throughout we shall assume that all rv’s
are defined on the same probability space (Q, %, &7). For any rv X with 0 <
0(X) < oo we denote by X* the rv (X — &(X))/a(X). xz(+)denotes the indicator
of a set E.

Define, for each n > 1, the rv S, by

(2'1) S’n = Il'n + Iz'n

where

(2.2) Ly = =1 Dty 3O (o,a(U) — 5) dF-Y(s)
and

(2.3) Ly = —n? 20, 20550 oS () (X0,a(Us) — 8)(X0,a(U;) — 5) dF7(s) .
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In this section we shall prove that under appropriate conditions T,* — S * is
of negligible order for our purposes:
(2.4) P(T,* — 8,*| = n~%) = 7(n~}) as n-—oo.
For the purpose of our proofs we start by stating a very simple but useful lemma.
LemMmaA 2.1, Let {X,} and {Y,} be two sequences of rv’s (defined on the same
probability space (Q, .57, P)), such that
1) X, —-7Y,)=T(n ¥ asn— oo, and
(2) either 0 < lim,,_,, ne*(X,) < oo or 0 < lim,__ no*(Y,) < oo holds.
Then for any a > 0 P(|X,* — Y, *| Z an™}) = O(n"}) as n — oo.

Proor. To start with the proof we note that

* — Xn - Yn - g(Xn _ Yn) (O‘(Y,") - G(X'n))
2.5) XX — Y, *= Y, — #(v,) %) — o(Xy))
&2 o(X,) B A

and hence that
- Y,) — o(X,)\’
2.6)  F(X,* — Y,*) < 207 (X)X, — Y,) + 20%(Y, <"("__">
@26 o ) S 207 (X)X, — V) o+ 200 (78
Obviously we may assume that 0 < lim,_, no*X,) < co. Hence we know that
07 %(X,) = (n) as n — oo. Because also ¢ (X, — Y,) = &(n~?) as n — oo, we
have shown that the first term on the right-hand side of (2.6) is Z(n~¥) as n — co.
To proceed with the second term on the right-hand side of (2.6) we note that
it follows from our assumptions that 0 < lim,_, n¢*Y,) < co. Now
20y, (70 = AN (0H0) = L)
o(X,)o(Y.) I Xa)(0(X,) + a(Y,))?
< 2 Qe(X)o(Y, — X,) + o(¥, — X,))’
X, (o(X,) + o(Y,))
and we can use the preceding results to find that
5 Qo(X)o(Y, — X,) + o(Y, — X,))’
P(Xa)(0(Xy) + o(Y,))?

= O(n)O(n~HT(nY) + T(n~1)) = 7(n~}) as n— co.
Hence we have shown that ¢*(X,* — Y,*) = &(n~%) as n — co. An application
of Chebyshev’s inequality completes the proof. []

In order to prove that (2.4) holds under appropriate conditions we need two
more lemmas. In our second lemma we approximate T, by a rv V, given by

2.7) V= GJ(O)F, 7 (s) ds = X1y §i2yym J(5) ds - X,

where F, denotes the empirical df based on X, ..., X,. "We shall show that
T,* — V,* is of negligible order for our purposes. Let ||f|| = sup,,., | f(?)| for
any function fon (0, 1). In certain cases the function f is defined on (0, 1) except
at a finite number of points. Then ||f|| will denote the supremum of | f| on the
domain of f.
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LEMMA 2.2. Let £X;* < oo and suppose that condition (1) of Theorem 1 is
satisfied. Then o*(J, F) > 0 implies that for any a > 0 P(|T,* — V,*| = an~%) =
(n~*) asn — oo. The assumption that J' satisfies a Lipschitz condition of order
> § can be replaced by the boundedness of J' on the open intervals where it exists.
The Lipschitz condition for F~* may be of order = }.

Proor. It follows from #X,;* < oo that £X}, < oo forany 1 < i < n. Fur-
thermore it is well known (see Esary, Proschan and Walkup (1967)) that for any
X,y i, j, n and F we have P(X,, < x, X;, < y) = P(X,, < x)P(X,, < y). Using
a representation of the covariance of two random variables given in Lehmann
(1966), page 1139, this result implies directly that the covariance between X,
and X, is finite and nonnegative forall 1 < i =+ j < n. Obviously this implies
that

(2-8) O (Lt 01 Xi) S 0 (L1 b XG)

holds, provided a;a; < b,b; forall 1 < i, j < n. This inequality is due to W. R.
van Zwet and will be very useful in what follows.

Since the assumptions of this lemma imply those of Theorem 1 of Stigler (1974)
(see our introduction) we know that lim,_, ne*(T,) = ¢*(J, F). By assumption
we have also that ¢(J, F) > 0, whereas a simple application of (2.8) yields
o’(T,) < n7Y|J||*e*(X,). Because ||J|| < oo and ¢*(X;) < oo by the assumptions
of the lemma these results imply that 0 < lim,_, ne¥(T,) = o*(J, F ) < co. Ap-
plication of Lemma 2.1 shows that it suffices now to prove that

(2.9) (T, — V,) = O(n7¥) as n-—oo.

To prove (2.9) we distinguish two cases: (i) J is everywhere differentiable on
(0, 1), and (ii) J' fails to exist at a finite number of points.
We first prove (2.9) in case (i). Using (2.7) and (2.8) we see that

@10 T, V) 5o ‘M i J(s)ds]>.

(i~1)/n

Applying (2.8) again and using the condition for J we find that
(2.11) (T, — V,) < n~3||J"|Pe¥(X,) .

Because ||/'|| < oo and ¢’(X;) < oo by the assumptions of the lemma the proof
of case (i) of the lemma is now complete.

Suppose now that we are in case (ii). Without any loss of generality we assume
that J' does not exist at only one point, say s =s,. Let j = [ns] + 1. Using
inequality (2.8) twice we see that

+ D) e ds) ds

)-

(2.12)  oXT, ——V)<2a< Pories Xon

+ 2¢* <XJ"» !J(_]/(nn—i-—l)) — §{j%m J(s) ds




944 R. HELMERS

Using condition (1) of Theorem 1 and applying (2.8) once more we obtain that
(2.13) (T, — V,) < 2n73|'||P0%(X;) + 8n~?||J||*e*(X;,) -

Hence it remains to prove that ¢*(X;,) = &7(n"t) as n — co. Let g, denote the
beta-density of the uniform order statistic U;, (with j = [ns;] + 1) and let E, be
the set

(2.14) E, = {u:

— [ A < (mntog mp, 0 1}
u n 1 < (mn'logn)t, 0 < u <
for some fixed m > 0. The complement of E, in (0, 1) will be denoted by E,°.
Then we have that

L)) 0.0)

n

(2.15) = §s, (F0) — F—1<
+ Vo (F0) — F7 (ﬁ))z g.() du .

Because ZX,® < oo we can use Lemma 4 of Stigler (1969) to see that the second
integral on the right-hand side of (2.15) is &7(n~*) as n — oo, provided we choose
m sufficiently large. The Lipschitz condition of F-! in a neighbourhood of s,
can be used to treat the first integral on the right-hand side of (2.15). Since
(j — 1)/n £ 5, < j/n we have for sufficiently large n and some constant B > 0
that :

@16) S, (Fw — F <_f->>2 gu(u)du < B - &

U, —
n+1 m

n+ 10

It follows directly from this and the well-known fact that, as lim,__, j/n = s,
for 0 < 5, < 1, &|U;, — jl(n + 1)] = (n~t), that also the first integral on the
right-hand side of (2.15) is @(n~*) as n — co. Hence we can conclude that
0%(X,,) = O(n*) as n — co. This and (2.13) implies that 6T, — V,) = 7(n~})
as n — oo, in case (ii). This completes the proof of the lemma. ]

Define for 0 < u < 1 the function
(2.17) o(u) = §LJ(s)ds — (1 — u) 3 J(s) ds

and let ¢ = {}J(s) ds. Then it is easy to check (see Shorack (1972) for a similar
approach) that

(2.18) w = S0 P(L.(8) dFY(s) + en™t Zr, FTY(UY) ,
holds with probability 1. We use the fact that, almost surely, none of the rv’s
U, ---, U, take values corresponding to the discontinuities of F-'. Here I,

denotes the empirical df based on U, .- ., U,. This representation of V, will
be very useful.
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In our third lemma we use representation (2.18) to show that V,* — S, * is of
negligible order for our purposes. This will be achieved by Taylor expanding
¢ so that the remainder term is negligible order for our purposes and by noting
that certain quadratic terms in our Taylor expansion are also of sufficiently small
order of magnitude.

LEMMA 2.3. Let &|X||** < oo for some ¢ > 0 and suppose that condition (1) of
Theorem 1 is satisfied. Then o*(J, F) > Oimplies that foranya > O P(|V * — S, *| =
an~t)y = F(n~%) as n — co.

Proor. It follows directly from the proof of Lemma 2.2 that 0 <
lim,_, ne*(V,) = o*/J, F) < co. Application of Lemma 2.1 shows that it suffices
now to prove that

(2.19) oV, —S,) =) as n—oo.
For the purpose of this proof we define, for each n > 1, the rv W, given by
@20 Wo=3(90) + T — 99'0) + L=V gr()) aps)

+en™ 2L FT(UY) -

Note that the assumptions of the lemma guarantee that W, is well defined. It
will be convenient to prove

(2.21) oV, — W,) = () as n— oo
and
(2.22) (W, — S,) = T(n7) as n-— oo

rather than (2.19). We first prove (2.22). Using (2.17) we find that
W= §g(s) dF(5) — BIE)(To(s) — $) dF-X(s)
(2.23) — B0 Q»(_s)?‘_sf_ dF-1(s)

+ ¢ W (Ta6) — 8) dFX(s) + en T F(U)) .
Because I',(s) = n7* 217, x,0.4(U,) forall 0 < s < 1 and n = 1 we have
2.24)  B(T.() — 5) dF-1(s)

=17 2k (Soup (=) dF7(S) + Sy (1 — ) dF7Y(s)) -

Now integration by parts, the finiteness of | X,| and the fact that, almost surely,
none of the rv’s U,, - .-, U, take values corresponding to the discontinuities of

F-! shows that
(225) () — ) dFX(s) = —n T, FYU) + 13 F-Y(s) ds

=1

holds with probability 1.
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Thus
W,—&W.,)
(2.26) Zas. =07 i 569 X0,n(Ui) — 5) dF7(s)
— 27 By B B .U — ) (on(Us) — ) dF-(s)
+ 27in7t G I (s)s(1 — 5) dFY(s) .
Combining (2.26) with (2.1), (2.2) and (2.3) and using the assumptions of the
lemma together with Fubini’s theorem to verify that &S, = 0 we find that
(2.27) W,—S,—&W,—3S,)
=as. =277 T S () ((eaUs) — 9)* — s(1 — ) dF7(s)
and hence that
(2.28) W = 8,) = 27170 (5 J' () (Xo,n(U) — 8)* dF(3)) -
To see that the variance on the right-hand side of (2.28) is finite note that

o*(5 /' () (t0,0(Vs) — )" dF~(s))
= Z (' O (ton(Uy) — 9" dF(s))?
(2.29) =& 5 WSOtV — 9 (V) — v)* dF(s) dF(v)
= §o S ) (200U — 9)'(o,n(Uy) — )" dF7(s) dF(1)
= 5 GV ONE (onU) = )*E (x0,0(Ur) — v)*)t dF(s) dF(v)
= 2B G — )t dF()?,

where the interchange of the expectation and the integrals is a consequence of
Fubini’s theorem. The validity of this application of Fubini’s theorem can be
inferred from the moment condition of the lemma, the boundedness of J’ on its
domain and the continuity of F-' at the points where J' is undefined. These
conditions also imply that §§ [J/(s)|(s(1 — s))t dF~(s) is finite.

Thus we have shown that ¢¥(W, — S,) = &(n%) as n — co. This completes
the proof of (2.22).

Next we prove (2.21). As in the second part of the proof of Lemma 2.2 we
distinguish two cases. First we assume (case (i)) that J is everywhere differen-
tiable on (0, 1). Using (2.18), (2.20) and Taylor’s theorem, together with the
Lipschitz condition for J' on (0, 1), we see that for all n > 1 and some constant
A>0V, —W,| £ A4§|T,(s) — s|* dF-1(s) and hence that

2.30)  o¥V, — W,) S E(V, — W) < AE(5T,(s) — sl dF(5))*

Applying Fubini’s theorem, the Cauchy-Schwarz inequality, and making some
simple moment calculations it follows that for some constant B > 0

(2.31) SV, — W,) < Br¥(§3 (s(1 — 5))} dF-(s)).

The moment assumption of the lemma ensures that the integral on the right-
hand side of (2.31) is finite. This completes the proof of (2.21) for case (i).
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Suppose now that J' fails to exist at a finite number of points (case (ii)). To
prove (2.21) in this case is somewhat more delicate. It seems convenient to
introduce at this point the well-known Kolmogorov-Smirnov statistic D, =
ntupy.,., [['.(s) — s|. It was shown by Dvoretzky, Kiefer and Wolfowitz (1956)
that P(D, = 4,) < cexp(—24,%), foralln > 1, 2, = 0 and a positive constant ¢
independent of n and 2,. Obviously this implies that P(D, = (27'm log n)t) =
J(n~™) as n — co, for any fixed m > 0. Let us denote by y, the indicator of
the set {D, = (27'mlogn)t}. Define y,° = 1 — y,. Without loss of generality
we assume that J' does not exist at only one point s, ¢ (0, 1).

We first show that £(V, — W, — &(V, — W,))*, = O(n~?) as n — co holds
for an appropriate value of m. Since ¢*(W, — S,) = &(n~*) asn — oo, and hence
that (W, — S, — E(W, — S,))%. = (n7%) as n — oo for any m > 0, was
obtained earlier in this proof, it suffices to show that

(2.32) EV,—8, =&V, — 8,) . = T(n7H) as n— oo,
To prove (2.32) we apply Holder’s inequality to obtain for any 0 < 7 < 1

EWV, =S, —~ &8V, — S)
é (g(V” _ S” _ E(V,,, _ S,.))“z”)’/‘””’(gx,,l‘”/”)”/“”) ,

and hence, using the c,-inequality (see, e.g., Loéve (1955), page 155), that

(2.33) &V, — S, —EV. — S)
< 16(25[ V,.P“” + glsnlzw;;)l/m-m(])(xn — 1))71/(1-:-:7) .

Since P(y, = 1) = &(n~™) as n — co, it follows that (P(y, = 1))¥*7 = J(n~})
as n — oo, provided we choose m > 5/7. Now using (2.1), (2.2), (2.3) and (2.7)
and applying integration by parts we see that

Val = a7V 2 [F7(U)]
and
[Sa] = n (WY + V71D 257 ((FX (UL + §6 [F74(s)] ds)

holds foralln > 1 with probability one. Combining this result with the finiteness
of Z|X,*** for any 0 < » < ¢/2 and some ¢ > 0 satisfying the moment condi-
tion of the lemma and applying the c,-inequality we find that the expectations
on the right of (2.33) are uniformly bounded in n for any 7 e (0, ¢/2). Hence
we have shown that (2.32) holds for any fixed m > (10/¢).

To complete the proof of (2.21) in case (ii) it remains to show that &(V, —
W, — &V, — W) 1. = d(nt)asn — oo for some fixed m > (10/¢). It follows
from (2.18) and (2.20) that V, — W, = {] g,(s) dF~(s) where

@:34) 0.0 = T — 9) — Tu0) — 9¢'() — TP gy,

for all 0 < s < 1, except s = 5, and any n > 1. Note that the fact that g,
remains undefined in s = s, causes no problem because F~! puts no mass at s,.
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Taking the set E, as in (2.14) we write

(2.35) V, — W, = SE” 9.(s) dF~(s) + SE”G 9.(5) dF~(s) ,
and hence that
(236) g( V’n - Wn)2x'nc = 2g(SE,,, g»(s) dF_l(S) : ch)z

+ 28 (§,e 9u(8) dFT(S) - 207)" -

On the set where y,° = 1, we have that |g,(s)| = Z((I',(s) — $)?) = &(n~*logn)
asn — oo, uniformly forall 0 < s < 1 except s = s,. Using the Lipschitz condi-
tion for F~* we find that the first right-hand term of (2.36) is of order &(n~%)
as n — co. On the set E,” we have that, because y,° = 1, s, is not contained in
the closed interval between s and I',(s) for all sufficiently large n. Together with
(2.34) and the Lipschitz condition for J this implies for s € E,° and some constant
A > Othat |g,(s)] < A|I',(s) — s|! for all sufficiently large n. Now we can simply
repeat the argument given in (2.30), (2.31) and the remark following it. Hence
we can conclude that £ (V, — W, )%,° = &(n~%) as n — co. From this we find
easily thatalso&(V, — W, — &V, — W) = &(n"t)asn — co. This com-
pletes the proof of the lemma. []

To conclude this section we remark that to show that P(|T,* — S,*| = n~%) =
O(n~*) as n — oo, first use Lemma 2.2 to see that P(|T,* — V, *| = 2-'n"%) =
O(n~%)asn— co. Nextapply Lemma 2.3 tofind that P(|V, * — S,*| = 2-'n~¥) =
J(n=%) as n — co. Hence, since the conditions of Lemma 2.3 imply those of
Lemma 2.2, P(|T,* — S,*| = n"%) = &(nt) as n — oo, is shown to hold under
the conditions of Lemma 2.3.

3. The order of normal approximation for S,*. In this section we shall show
that the conditions of Theorem 1 ensure that the normal approximation for S,*
is of order n=%. As we have already shown in Section 2 that, under the condi-
tions of Lemma 2.3, we may approximate 7,* by S,*, the proof of Theorem 1
will then be completed.

The rv S,* is given by S,* = _Z,, + _#%,,, where 2, =1, ./0(S,) for m =
1,2 and all n > 1. For convenience we shall write ¢, = o(S,). Since our proof
will depend on characteristic functions (ch.f.) let us denote by p,* and p,, the
ch.f. of §,* and _#,,. The ch.f. of a summand of ng, ~#,,, that is of

(3.1) — 56 J) (0.a(Vy) — 5) dF(s)

will be denoted by p. Clearly we have p,,(f) = p"(t/no,) for all tand n > 1.
Following Bickel (1974) we shall first show that there exist ¢, > 0, D, and a

natural number n,, depending on J and F but not on n, such that for all n = n,

(3.2) S]t|<eln5 loia(t) — €2 - |t|"" dt < Dyn~t .

Secondly we show that there exist ¢, > 0, D, and a natural number n,, depending
on J and F but not on n, such that for all n > n,

(3.3) S|t|<s2n* l0,*(1) — p1a(D)] - |t]71dt < Dyt .
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The Berry-Esseen bound of order n~* for S * then follows directly from (3.2),
(3.3) and the usual argument based on Esseen’s smoothing lemma (see, e.g.,
Feller (1966)).

We first prove (3.2):

LemMma 3.1. Let &£|X,|* < oo and suppose that condition (1) of Theorem 1 is
satisfied. Then c*(J, F) > 0 implies (3.2).

Proor. To start with the proof we note that the conditions of Lemma 2.3
are satisfied. Since it was already shown in the proof of Lemma 2.3 that 0 <
lim,_ no*(V,) = ¢*(J, F) < oo and that ¢*(V, — S,) = &(n~%) as n — oo it fol-
lows that 0 < lim,_, ne,’ = ¢*(J, F) < co. However, to prove the lemma we

shall need the more precise result that

(3.4) HE) 14 om) s nooo.
nho

n

To see that (3.4) holds, note first that, using the boundedness of J and-J’ (on its
domain), the continuity of F-!at the points where J’ does not exist, the finiteness
of &|X,|** for some ¢ > 0, and applying Fubini’s theorem, we find that &7, =
&l,, = 0and &1,,1,, = 0. Hence the covariance between I, and I,, is zero.
This implies that

(3.5) 0,0 = o¥(L,) + o*(L,,) -
Note also that ¢’(1,,) = n~'0*(J, F) and ¢*(,,) = /(n~?) as n — co. Combining
this with (3.5) we have proved (3.4). Hence

(3'6) ﬁn = Tnlikn

where I, = I,,/o(],,)and 7, = 1 4+ &(n"")asn — co. Remark that I}, is a prop-
erly standardized sum of independent, identically distributed, random variables.

Secondly we will show that the summands of no, 7, I}, (that is of (3.1)) have
finite absolute third moment. Note that

G759l — ) dF7(s)|
= V1 (o.0p S GFTHS) + Stoy (1 — 5) dF7(9))

Using integration by parts, the finiteness of &|X,* < oo, and applying the c,-
inequality (see Loéve (1955)), we find that

(w0 SAFT(S)° = E|UFI(U,) — (71 Fi(s) dsf?
(3.8) S AENLEU)F + S5 [F(9)] ds)?)
S 4EL + (@A) < oo
Now (3.7), (3.8) and a symmetry argument ensure that the summands of no, 7, I},

have finite absolute third moment.
We are now in a position to prove (3.2). Remark first that using (3.6) and
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applying a change of variables we get

(-9 Vo [oaa(D) — €17 dl < §ycipate, [E € in — 7|17 dt
+ Sl‘|<51“ |e_z2/2 o=ty ZI Itl—l dr .

Since I}, is a properly standardized sum of independent, identically distributed,
random variables with finite absolute third moment and z, = Z(1) as n — oo,
we can simply follow the argument leading to the Berry-Esseen theorem (Feller
(1966)) to see that the first integral on the right-hand side of (3.9) is (n~%), as
n — oo.

To treat the second integral on the right-hand side of (3.9) we note that be-
cause 7, = 1 4 £7(n~*) as n — oo we have from an application of the mean value
theorem that for all sufficiently large n

Siticepnte, €72 — €| [t dt < An™ {2, |tle=™* dt
holds for some constant 4 > 0. This completes the proof of the lemma. [
Next we shall be concerned with the problem of showing that (3.3) holds
under appropriate conditions. To estimate |p,*(f) — p,,()| is a rather delicate

matter. We start with the very simple remark that since |p,*(f) — p,,(¢f)] =
|£e* (e #m — 1)| we have (see Bickel (1974)) for all + and any m and n > 1

t
(310 o) = ) 5 | Sier Gr e A+ S A
Estimates for |Ze*~“1(_J7,,)!| and |&( /72,,)2"‘] which are adequate for our purposes
will be given in the following lemma. The basic idea of this lemma is similar

to that of Lemmas 6.2 and 6.3 of Bickel (1974) (see also Bjerve (1977) where
the same idea is exploited).

LeMMA 3.2. Suppose the conditions (1) and (2) of Theorem 1 are satisfied. Then
o*(J, F) > 0 implies that there exists a constant A > 0, depending on J and F but
not on I, m and n, such that for all t and any n = 1

(i) [Ee S 7| < Atn=Yo(tjna,)|"~
(il) [Fetrm(_7,)| < Am|o(t/ne,)|"* for 1 < 21 < n,
(ili) &( )™ < A™n~mm™ for 1 < m < n.

Proor. For convenience we shall write
Gl g(U) =" = WIO(taaU) — 5)dF(s)  for 1<i<n
and
(3-12) AU, Uj) = =G ()(0,0(Us) — )(toa(U;) — 5) dF(s)
for 1gj<i<sn.

It follows from this, (2.1)—(2.3) and the definitions of _#,, and _%,, given
earlier in this section that

(G13) L =@o) Ty, L= (o) D Lini kUL U)) .
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To prove statement (i) we follow Bickel’s idea (see Bickel (1974)) and remark
that

|Eet S 2| = |(n*e,)™t T, N5t Eet S mh(U;, Uy)|
(3.14) < 0,71 - |o(t/na,)|"?
X o [($)] - [Ee (g o(Us) — 5)|" dF(s)

where the interchange of expectation and integral follows from an application
of Fubini’s theorem. The validity of this application follows from the finiteness
of | X,[*** < oo for some ¢ > 0 (as implied by condition (2)), the boundedness of
J' on its domain and the continuity of F~! at the points where J’ is undefined.
Thus we have for0 < s < land n = 1

(3.15)  [Eettmows @ (y o y(Uy) — 9)* < t¥(no,) (& |g(U)] - |10,a(V1) — sI)*
< (n0,)*E gV - s(1 — 5) .

Because as in the proof of Lemma 3.1 the conditions of Lemma 2.3 are satisfied
we can repeat the argument given in the first part of that proof to find that
0 < lim,_, no,? = o*(J, F) < oo, o*(I,) = n~'¢*(J, F) and hence that ¢*(g(U,)) =
o6%J, F). We can conclude that for some constant 4 > 0 the left-hand side of
(3.15) is bounded by Ar*n='s(1 — s) for 0 < s < 1, all rand n = 1. In view of
(3.14) we have obtained statement (i).

To prove statement (ii) we note that for / > 1

(%n)l = (nzo.”)—z Z(i,,,j,);v=1,-~~,l H£=1 h(Uiy’ ij) ’
where the summation is over all pairs (i,,/,), 1 <j, <i, <n,v=1,...,L
Following again Bickel’s idea (see Bickel (1974)) we note that this implies

(3.16)  [EFetrm( )| < (no,)~p(t/na,)[*" - E( L Z52h AU Uy
Applying the c,-inequality (see Loéve (1955)) and using (3.12) we find

(3.17) E( D Z55 [h(UL Up))' = nE kU, Uy)|'
Finally note that it follows from (3.12) that
(3.18) EIU,, U< (55 10/(5)| dFY(5))" -

Combining this with condition (2) of Theorem 1 and using (3.16) and (3.17) we
have proved statement (ii).

The proof of statement (iii) is essentially that of Lemma 6.2 of Bickel (1974).
We use (3.18) and condition (2) of Theorem 1 to guarantee the existence of some
constant B > 0 such that &|h(U,, U,)|" < B*™ (because in Bickel (1974) & is
bounded at the outset, Bickel does not encounter this problem). This completes
the proof of lemma. []

We are now in a position to prove (3.3).

LeMMA 3.3. Suppose the conditions (1) and (2) of Theorem 1 are satisfied. Then
o’(J, F) > 0 implies (3.3).
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ProoF. The proof is essentially Bickel’s proof. See Bickel (1974), pages 17
and 18. Remark first that it follows directly from Lemma 3.2 and the condi-
tions of this lemma that the statements (i), (ii) and (iii) of Lemma 3.2 hold.

It follows from statement (iii) of Lemma 3.2 that for |f| < ¢,nt

t2m

(zm)' g(%”)Zm é ezzmnm(zm)—Zmez'mAZmn—mmZm g (ZSZA)zm A

Following Bickel (1974) we take ¢, = p/(24) for some 0 < p < 1 and m =
([log n] + 1)/2|log p| A n to obtain that

2m
(3.19) (%m)_'g(/%)m <pm<nt o for |f < eynt .

Because p is the ch.f. of a rv with expectation zero and variance 0 <
o%(J, F) < oo and lim,_, no,’ = ¢*J, F) (see the proof of Lemma 3.1), there
exists, for p sufficiently small, a = > 0 such that for 7] < ¢,nt

(3.20) log |o(t/na,) < —ZL.
n

From (3.10) with m = 1, and Lemma 3.2 (i) and (iii) we have forall randn > 1

i r
l027(0) — pnl0)] S 1]+ [Fe ) + = EA)
< Altf'n~|o(t/ne,) "2 + Ant,
Combining this with (3.20) we find that
(3.21) §ti<at [02%(8) — p1u(2)] - 1|71 dt = O(n~H) as n-— oo .
We also have, using(3.20) and statement (ii) of Lemma 3.2, that for nt < |1] < ¢,n?
and [ < 2m
|E et F1n(_F,) | £ A'n'? exp{—rtni(l — 4m/n)) .

But then we obtain for nt < |f| < ¢,n?
(3.22) rmt (_"If!)_’zfe"fla(/@)t — O as n—oo.

Now combine (3.19), (3.21) and (3.22) with (3.10). This completes the proof
of the lemma. []
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