SOME L_p VERSIONS FOR THE CENTRAL LIMIT THEOREM

Ву Макото Маеліма

Keio University

Let $\bar{F}_n(x)$ denote the distribution of the normalized partial sum of independent, identically distributed random variables with finite second moment, and write $\Delta_n(x)=|\bar{F}_n(x)-\Phi(x)|$, where $\Phi(x)$ is the standard normal distribution. In this paper, the necessary and sufficient conditions for the validity of $||(1+|x|)^{2-1/p}\Delta_n(x)||_p=O(n^{-\delta/2})$ and of $\sum n^{-1+\delta/2}||(1+|x|)^{2-1/p}\Delta_n(x)||_p<\infty,\ 0<\delta<1,\ 1\leq p\leq\infty$, are given. Furthermore, in the case where the underlying random variables $\{X_k\}$ are independent but not necessarily identically distributed, it is shown that $E|X_k|^{2+\delta}<\infty$ implies $||(1+|x|)^{2+\delta-1/p}\Delta_n(x)||_p\leq Cs_n^{-(2+\delta)}\sum_{k=1}^n E|X_k|^{2+\delta},\ 0<\delta<1,\ 1\leq p\leq\infty.$

1. Let $\{X_k, k=1,2,\cdots\}$ be a sequence of independent, identically distributed random variables with $EX_1=0$, $EX_1^2=1$, and distribution function F(x). Write $S_n=\sum_{k=1}^n X_k$, $\bar{F}_n(x)=P(S_n\leq n^{\frac{1}{2}}x)$ and let $\Phi(x)$ denote the standard normal distribution. Furthermore, for any function a(x), write $\|a(x)\|_p=(\int |a(x)|^p dx)^{1/p}$, $1\leq p<\infty$, and $\|a(x)\|_\infty=\sup_x |a(x)|$.

Ibragimov [4] and Heyde [3] have studied the necessary and sufficient conditions for the convergence rates of $||\bar{F}_n(x) - \Phi(x)||_p \to 0$ as $n \to \infty$. In this paper we shall introduce other L_p versions for the central limit theorem which include the ordinary L_p version and the nonuniform estimate, and we shall study the convergence rates in them.

Put $\Delta_n(x) = |\bar{F}_n(x) - \Phi(x)|$. We first prove the following theorems.

THEOREM 1. Let $0 < \delta < 1$ and $1 \le p \le \infty$. Then, the following statements are equivalent:

- (a) $\int_{|x|>z} x^2 dF(x) = O(z^{-\delta}) \text{ as } z \to \infty,$
- (b) $||(1+|x|)^{2-1/p}\Delta_n(x)||_p = O(n^{-\delta/2}) \text{ as } n \to \infty.$

THEOREM 2. Let $0 < \delta < 1$ and $1 \le p \le \infty$. Then, the following statements are equivalent:

- (c) $E|X_1|^{2+\delta} < \infty$,
- (d) $\sum n^{-1+\delta/2} ||(1+|x|)^{2-1/p} \Delta_n(x)||_p < \infty$.

Ibragimov [4] proved that (a) in Theorem 1 is equivalent to

(1)
$$||\Delta_n(x)||_p = O(n^{-\delta/2}), \qquad 0 < \delta < 1,$$

Received March 29, 1977.

AMS 1970 subject classifications. Primary 60F05; Secondary 60F10.

Key words and phrases. Central limit theorem, nonuniform estimate, L_p version, convergence rate, Berry-Esseen inequality, independent random variables.

and recently Heyde [3] showed that (c) in Theorem 2 is equivalent to

$$\sum n^{-1+\delta/2} ||\Delta_n(x)||_p < \infty , \qquad 0 < \delta < 1 .$$

Incidentally we have that the statement (b) and (1) are equivalent to each other for independent, identically distributed random variables with $EX_1 = 0$ and $0 < EX_1^2 < \infty$, and also the statement (d) and (2) are equivalent. Now for proofs of Theorems 1 and 2, it suffices only to prove (a) \Rightarrow (b) and (c) \Rightarrow (d) in each theorem, since $||\Delta_n(x)||_p \le ||(1+|x|)^{2-1/p}\Delta_n(x)||_p$. Furthermore, we remark here that our theorems with $p = \infty$ are the results of Heyde ([3], Theorem 1 (ii), (iii)).

PROOF OF THEOREM 1. As was remarked above, the statement that $(a) \Rightarrow (b)$ with $p = \infty$ has been shown by Heyde [3]. Therefore, if we can show

(3)
$$||(1+|x|)\Delta_n(x)||_1 = O(n^{-\delta/2}),$$

then we see that for 1 ,

$$\begin{aligned} ||(1+|x|)^{2-1/p}\Delta_n(x)||_p \\ &\leq ||(1+|x|)^2\Delta_n(x)||_{\omega}^{(p-1)/p}||(1+|x|)\Delta_n(x)||_1^{1/p} = O(n^{-\delta/2}). \end{aligned}$$

Hence, it is sufficient to show (3) for our purpose. We need here the following estimate due to Bikyalis ([1], Theorem 4).

(4)
$$\Delta_n(x) \leq C n^{-\frac{1}{2}} (1+|x|)^{-3} \int_0^{n^{\frac{1}{2}}(1+|x|)} L(z) dz,$$

where $L(z) = \int_{|z|>z} x^2 dF(x)$. Here and in what follows C denotes a positive constant which may differ from one inequality to another. From (4), we have

(5)
$$\begin{aligned} ||(1+|x|)\Delta_{n}(x)||_{1} &\leq Cn^{-\frac{1}{2}} \int_{-\infty}^{\infty} (1+|x|)^{-2} dx \int_{0}^{\frac{n^{\frac{1}{2}}(1+|x|)}{2}} L(z) dz \\ &= Cn^{-\frac{1}{2}} \int_{0}^{\frac{n^{\frac{1}{2}}}{2}} L(z) dz \int_{-\infty}^{\infty} (1+|x|)^{-2} dx \\ &+ Cn^{-\frac{1}{2}} \int_{\frac{n^{\frac{1}{2}}}{2}}^{\infty} L(z) dz \int_{|x| \geq 2n^{-\frac{1}{2}-1}} (1+|x|)^{-2} dx \\ &= Cn^{-\frac{1}{2}} \int_{0}^{\frac{n^{\frac{1}{2}}}{2}} L(z) dz + C \int_{\frac{n^{\frac{1}{2}}}{2}}^{\infty} z^{-1} L(z) dz = O(n^{-\delta/2}) \end{aligned}$$

because of the condition (a). This completes the proof of Theorem 1.

PROOF OF THEOREM 2. When $p = \infty$, it follows from Theorem 1 (ii) of Heyde [3] that

(6)
$$\sum n^{-1+\delta/2} ||(1+|x|)^2 \Delta_n(x)||_{\infty} < \infty.$$

Suppose that

(7)
$$\sum n^{-1+\delta/2} ||(1+|x|)\Delta_n(x)||_1 < \infty.$$

Then we find that for 1 ,

$$\begin{split} & \sum n^{-1+\delta/2} ||(1+|x|)^{2-1/p} \Delta_n(x)||_p \\ & \leq \sum n^{-1+\delta/2} ||(1+|x|)^2 \Delta_n(x)||_{\omega}^{(p-1)/p} ||(1+|x|) \Delta_n(x)||_1^{1/p} \\ & = \sum (n^{-1+\delta/2} ||(1+|x|)^2 \Delta_n(x)||_{\omega})^{(p-1)/p} (n^{-1+\delta/2} ||(1+|x|) \Delta_n(x)||_1)^{1/p} \\ & \leq (\sum n^{-1+\delta/2} ||(1+|x|)^2 \Delta_n(x)||_{\omega})^{(p-1)/p} (\sum n^{-1+\delta/2} ||(1+|x|) \Delta_n(x)||_1)^{1/p} \end{split}$$

by Hölder's inequality. Therefore, (6) and (7) give us $\sum n^{-1+\delta/2}||(1+|x|)^{2-1/p}\Delta_n(x)||_p < \infty$ for 1 , and we need only to show (7). From (5), we have

$$\sum n^{-1+\delta/2} ||(1+|x|)\Delta_n(x)||_1$$

$$\leq C \sum n^{-(3-\delta)/2} \int_0^{n^{\frac{1}{2}}} L(z) dz + C \sum n^{-1+\delta/2} \int_{n^{\frac{1}{2}}}^{\infty} z^{-1} L(z) dz$$

$$\equiv \sum_1 + \sum_2,$$

say. The statement that $\sum_1 \le CE|X_1|^{2+\delta} < \infty$ (0 $< \delta < 1$) was shown by Heyde [3]. Furthermore, we have

$$\sum_{2} = C \sum_{n=1}^{\infty} n^{-1+\delta/2} \sum_{m=n}^{\infty} \int_{m^{\frac{1}{2}}}^{(m+1)^{\frac{1}{2}}} z^{-1} L(z) dz.$$

Since L(z) decreases as z increases, we have

$$\begin{split} & \sum_{2} \leqq \sum_{n=1}^{\infty} n^{-1+\delta/2} \sum_{m=n}^{\infty} m^{-\frac{1}{2}} ((m+1)^{\frac{1}{2}} - m^{\frac{1}{2}}) L(m^{\frac{1}{2}}) \\ & \leqq C \sum_{n=1}^{\infty} n^{-1+\delta/2} \sum_{m=n}^{\infty} m^{-1} L(m^{\frac{1}{2}}) \\ & = C \sum_{m=1}^{\infty} m^{-1} L(m^{\frac{1}{2}}) \sum_{n=1}^{m} n^{-1+\delta/2} \\ & \leqq C \sum_{m=1}^{\infty} m^{-1+\delta/2} L(m^{\frac{1}{2}}) \\ & \leqq C E|X_{1}|^{2+\delta} < \infty , \end{split}$$

where the last step is found to be true in the proof of Heyde [3]. The proof of Theorem 2 is thus completed.

2. In this section, we assume that $\{X_k, k=1, 2, \cdots\}$ is a sequence of independent, but not necessarily identically distributed random variables with $EX_k = 0$, $EX_k^2 = \sigma_k^2 < \infty$ and distribution function $F_k(x)$. Write $s_n^2 = \sum_{k=1}^n \sigma_k^2$ and $\bar{F}_n(x) = P(S_n \le s_n^{\frac{1}{2}}x)$ in this section. We are going to show the following theorem of the Berry-Esseen type, which extends a result of Erickson ([2], corollary with $0 < \delta < 1$).

THEOREM 3. Let $0 < \delta < 1$ and $1 \le p \le \infty$. If $E|X_k|^{2+\delta} < \infty$, then we have (8) $||(1+|x|)^{2+\delta-1/p}\Delta_n(x)||_p \le Cs_n^{-(2+\delta)} \sum_{k=1}^n E|X_k|^{2+\delta} .$

PROOF. This time we use the following inequality for independent random variables, which was shown by Bikyalis ([1], Theorem 4).

(9)
$$\Delta_{n}(x) \leq C s_{n}^{-3} (1 + |x|)^{-3} \sum_{k=1}^{n} \int_{0}^{s_{n}(1+|x|)} dv \int_{|u|>v} u^{2} dF_{k}(u)$$

$$= C \{ s_{n}^{-2} (1 + |x|)^{-2} \sum_{k=1}^{n} \int_{|u|>s_{n}(1+|x|)} u^{2} dF_{k}(u)$$

$$+ s_{n}^{-3} (1 + |x|)^{-3} \sum_{k=1}^{n} \int_{|u|\leq s_{n}(1+|x|)} |u|^{3} dF_{k}(u) \}.$$

Moreover, this inequality readily gives us that for $0 < \delta < 1$,

$$\Delta_n(x) \leq C s_n^{-(2+\delta)} (1+|x|)^{-(2+\delta)} \sum_{k=1}^n E|X_k|^{2+\delta},$$

if $E|X_k|^{2+\delta} < \infty$ (Bikyalis [1], Corollary 1 of Theorem 4). Therefore, (8) holds for $p = \infty$. Thus, if we can show

(10)
$$||(1+|x|)^{1+\delta}\Delta_n(x)||_1 \leq C s_n^{-(2+\delta)} \sum_{k=1}^n E|X_k|^{2+\delta} ,$$

then we have that for 1 ,

$$\begin{split} \|(1+|x|)^{2+\delta-1/p}\Delta_{n}(x)\|_{p} \\ &\leq \|(1+|x|)^{2+\delta}\Delta_{n}(x)\|_{\infty}^{(p-1)/p}\|(1+|x|)^{1+\delta}\Delta_{n}(x)\|_{1}^{1/p} \\ &\leq Cs_{n}^{-(2+\delta)}\sum_{k=1}^{n}E|X_{k}|^{2+\delta}. \end{split}$$

Accordingly, it suffices to prove (10). Making use of (9), we have

(11)
$$\begin{aligned} \|(1+|x|)^{1+\delta}\Delta_{n}(x)\|_{1} \\ &\leq C\{s_{n}^{-2}\sum_{k=1}^{n}\int_{-\infty}^{\infty}(1+|x|)^{-1+\delta}dx\int_{|u|>s_{n}(1+|x|)}u^{2}dF_{k}(u) \\ &+s_{n}^{-3}\sum_{k=1}^{n}\int_{-\infty}^{\infty}(1+|x|)^{-2+\delta}dx\int_{|u|\leq s_{n}(1+|x|)}|u|^{3}dF_{k}(u)\} \\ &\equiv \int_{1}+\int_{2}, \end{aligned}$$

say. We have

(12)
$$\int_{1} = C s_{n}^{-2} \sum_{k=1}^{n} \int_{|u| > s_{n}} u^{2} dF_{k}(u) \int_{|x| < |u| s_{n}^{-1} - 1} (1 + |x|)^{-1 + \delta} dx$$

$$\leq C s_{n}^{-2} \sum_{k=1}^{n} (2/\delta) s_{n}^{-\delta} \int_{|u| > s_{n}} |u|^{2 + \delta} dF_{k}(u)$$

$$\leq C s_{n}^{-(2 + \delta)} \sum_{k=1}^{n} E|X_{k}|^{2 + \delta} .$$

Furthermore, we have

$$\int_{2} = Cs_{n}^{-3} \sum_{k=1}^{n} \int_{|u| \leq s_{n}} |u|^{3} dF_{k}(u) \int_{-\infty}^{\infty} (1 + |x|)^{-2+\delta} dx
+ Cs_{n}^{-3} \sum_{k=1}^{n} \int_{|u| > s_{n}} |u|^{3} dF_{k}(u) \int_{|x| \geq |u| s_{n}^{-1} - 1} (1 + |x|)^{-2+\delta} dx
\leq Cs_{n}^{-3} \sum_{k=1}^{n} \int_{|u| \leq s_{n}} |u|^{3} dF_{k}(u)
+ Cs_{n}^{-3} \sum_{k=1}^{n} (2/(1 - \delta)) \int_{|u| > s_{n}} |u|^{3} (|u| s_{n}^{-1})^{-1+\delta} dF_{k}(u)
\leq Cs_{n}^{-3} \sum_{k=1}^{n} s_{n}^{1-\delta} \int_{|u| \leq s_{n}} |u|^{2+\delta} dF_{k}(u)
+ Cs_{n}^{-(2+\delta)} \sum_{k=1}^{n} \int_{|u| > s_{n}} |u|^{2+\delta} dF_{k}(u)
\leq Cs_{n}^{-(2+\delta)} \sum_{k=1}^{n} E|X_{k}|^{2+\delta} .$$

Thus, (11)—(13) complete the proof of the theorem.

REFERENCES

- [1] BIKYALIS, A. (1966). Estimates of the remainder term in the central limit theorem. Litovsk. Mat. Sb. 6 323-346. (In Russian.)
- [2] Erickson, R. V. (1973). On an L_p version of the Berry-Esseen theorem for independent and *m*-dependent variables. *Ann. Probability* 1 497-503.
- [3] HEYDE, C. C. (1975). A nonuniform bound on convergence to normality. Ann. Probability 3 903-907.
- [4] IBRAGIMOV, I. A. (1966). On the accuracy of Gaussian approximation to the distribution functions of sums of independent variables. *Theor. Probability Appl.* 11 559-576.

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING KEIO UNIVERSITY 832, HIYOSHI, KOHOKU YOKOHAMA 223, JAPAN