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ON THE MANY-ARMED BANDIT PROBLEM

By LEiBA RODMAN
Tel-Aviv University

Two models for the ‘‘many-armed bandit’’ problem with two distribu-
tions are considered. Feldman’s result is extended to these models.

1. Introduction. We consider two models for the “many-armed bandit” prob-
lem involving two distributions P and Q.

Model (A): We have n experiments. A trial on experiment i yields an obser-
vation from distribution P,, where all P, except one are equal to Q and the
exceptional one is equal to P. We do not know which P; is P but assign an a
priori probability s, to this event. If on some trial experiment i was performed,
we lose (unknowingly) 1 on that trial if P, = Q, and 0 if P, = P. For a fixed
number of trials (possibly oo), the goal is to find a rule for the choice of experi-
ments at each trial that will minimize the (discounted or undiscounted) expected

total loss.

Model (B): The same as model (A), the sole difference being that all P, except
one are equal to P and the exceptional one is equal to Q. The framework for
these problems is negative dynamic programming (see Strauch (1966)). They
generalize Feldman’s “two-armed bandit” problem (1962), which coincides with
both models (A) and (B) which we have introduced, when n = 2. Feldman
proved in the case of n = 2 for the undiscounted problem that the optimal rule
, for one trial, if applied again and again, will provide an optimal rule for any

number of trials. This rule yields a finite expected total loss in the undiscounted
case involving an infinite number of trials (unless, of course, P = Q).

The purpose of this work is to extend Feldman’s result to models (A) and (B).
Simple examples show that Feldman’s result can not be extended to the general
three-armed bandit problem involving 3 distributions, or to the model involving
2 distributions, but where more than one experiment yields an observation from
each one of them.

2. Two-armed bandit case. In this section we deal with Feldman’s two-armed
bandit model (1962). We establish a preliminary lemma and formulate for con-
venience the result Feldman has obtained.

We represent Feldman’s two-armed bandit model as a negative dynamic pro-
gramming problem (Strauch (1966)). The set of states S is the standard one-
dimensional simplex:

S = {(sp S)/5, + 5, = 155, 5, = 0} .
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The state (s,, 5,) means that we assign a priori probability s, to the event P, = P
and P, = Q, and probability s, to the event P, = Q and P, = P. The set of acts
is U = {4,, 4,}, where the act 4,(4,) means to choose experiment 1(2) for the
next trial. If we have been in state (s,, 5,) and applied the act 4,, then the new
state will be

(5 P(3)/(5:P(%) + $,9(x))s 529()/(5, P(x) + 5:29(*))) »
where p(x) and g(x) are densities of P and Q respectively, with respect to some
measure p#. If the act 4, is chosen, then the new state is
(5:9()/(5:9(x) + 52 (x))> 8 P(X)/(5:9(x) + 52 p(x))) -
The loss function is defined as follows:
r((sy, 55), Ay) = 8,3 r((sys 85) Ay) = 8, .

Consider the discounted problem with the discount factor ;0 < 8 < 1. Let
= be a stationary policy which is optimal for one trial (i.e., optimal in the game
consisting of one trial only). Let [,(s,, 5,) be the expected discounted loss from
7 in k trials, when the initial state is s = (515 5,). Define functions Ji(1,, t,), kK =

1,2, ... for every pair (¢, t,) of numbers, such that 7, 1, = 0:
J(tn ty) = (4 + )LL)t + ), L)(6 + 8))  if 4, +1,>0;
=0 otherwise.

Define J(#,, t,) = 0. We use the following abbreviations: instead of p(x), ¢(x),

#x), P(¥)> 9(¥)> () we shall write p, ¢, p, p,, q,, p, respectively.
From the definitions it may be easily seen that the functions J, are positive

 homogeneous, symmetric, and satisfy the following equation: if 7, > ¢,, then
(1 St 1) = 6, + B § Juy(tips 1,q) dp k=1,2,....
Define functions D,(1,, t,) as follows:
Dk(tl’ t2) =h—14L+ :8 S [Jk(th’ tzp) - Jk(tlp, tzq)] dy k=0,1,...
From this definition we obtain immediately that D(¢, 1,) = —D,(,, t,).
LemMA 1. D1, t,) is an increasing function of t,, when t, is kept fixed.
Proor. By induction. Suppose Lemma 1 is proven for k — 1. We have:
D1, ) =t — t, + B [Jtrq> ,p) — J(t1 P> 1:9)] dp
=t —ty+ BSueseym 199 + B $Si0sym Se1(199, . pp,) dpe, dpe
+ B Sityostgm 8P A1+ B §S 1105 tym Sea(014Pys 12 Pg,) dpty dpe
— B Vipstye 1P dlf — B $Sipstyn) Jema(t PGy 129P,) ity dpe
— B Stupstyn 29 A1t — B S o>ty Jea(t1 PPys 1 PPy) dpy dpe
and after rearranging terms we get
(2) Dy(ty, 1) = B Si10stym Pi—a(t195 ,p) dpt + B Liw>tya Dot ps 1,9) dpe
+ (1 =Bt —n).
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If we take £,* > 1, and calculate D(1,*, t,) — D,(1,, 1,) by using (2) and the in-
duction assumption, we get Lemma 1.

Feldman (1962) proved the following theorem under 8 = 1, for the two-armed
bandit problem.

THEOREM 1. Let & be a stationary policy, which is optimal for one trial. Then
© is optimal for every number of trials (including co) and for every discount factor
B e[0, 1]. The expected total loss under n for the undiscounted problem involving
infinitely many trials is finite (unless P = Q).

REMARK. One can easily obtain the optimality of 7 from Lemma 1 (because
the optimality of 7 means exactly D,(t,, ) = 0 if #, = t,, and D (1, t,) < 0 if
h< ).

3. Model A. In this section we prove Theorem 1 for model (A) described in

the introduction. Represent model (A) as a negative dynamic programming
problem. The set of states S is the (» — 1)-dimensional standard simplex:

S = {(sl, ""sn),Z:';lsi =152 O}-

The state (s,, 5,, - - -, 5,) means that we assign a priori probability s, to the event
that P; is equal to P and all other P, are equal to Q. The set of acts is U =
{4, - - -, 4,}, where the act 4, means to choose experiment i for the next trial.
If act 4, is applied, when the state is (s;, - - -, 5,), an observation x is obtained
from P;, then the new state is

(5:9C)/Z, - - -5 5 p(X)[Zs - - -5 5,9(%)/Z)

where X = 5, p(x) + (1 — s,)q(x).
The loss function is defined as follows:

r((sy, -+ +5 8,), A4) =1 — 5,3 i=1,...,n.

Let 7 be a stationary policy which is optimal for one trial. Let I,(s,, - - -, s,)
be the discounted expected loss in the first k trials under =, when the initial
stateiss = (s, - - -,5,). Define functionsJ (¢, ---,1,);k = 1,2, ... fort,¢,,---,
t, = 0:

Jk(tl’ cee, tn)
= (Z?ﬂ ti)lk(tl/ng:l L t2/_4?=1 Lis =+ s tn/Z?:l ti) if Z?=1 > 0;

=0 otherwise.
Define J, = 0.
From the definitions it may easily be seen that J,(, - - -, 1,) is positive ho-
mogeneous, symmetric, and satisfies the following equation: if t, > --- = 1,,

then

Jk(tv ""tn)= L+t + - +tn+nBSJk—1(t1P’ 5,9, ""t'nq)df"
k = 1,2, e,
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In the sequel we use the following notations:

¢t will denote a vector (f, ---,1t,), where ¢, =0;

JeP(t x) = J(6,9(x), <+ -5 1,49(%), L, P(X)s 6419(X)s <+ 5 1aq(X)) 5

T=T()= Xt

Ayt x) = (1,9(x), « -+, 1,9(%), 1, p(X)s 1429(X), -+ -5 1,9(X)) -
LEMMA 2. Lett, = --- = t, = 0 and fix integer i with 1 < i < n. Then

(3) § L %) — 1.9, 2] dp
does not depend on t,.

Proor. We shall prove that
@) § L2t x) — (1, x)] dp

does not depend on ¢,. Use induction on k. The case k = 1 being trivial, we
proceed to the induction step. Suppose at first i = 2. We have:

§ [Jx2(t: x) — (2, x)] dpe
= o>ty Ju (6 X) dit + $ipse,q V(8 X) dpe
= Sitgos 0 e P(8 X) dpt — §ppcoi) Ju (2, X) dpe
= $iepotye [T(A(t, X)) — tip + B § ji2u(AL(2, x), y) dp,] dpe
+ Sepsta [T X)) — 1.9 + B § J2u(A(, x), ) dp,) dpe
= Stgootya [T(As(t, X)) — t,p + B § ji2i (Ay(t; %), y) dp, ] dpe
= Stgpstyo [T(A(t, %)) — 119 + B § ji2s (Ay(t, x), y) dpe ] dpe .
It is sufficient to check that the sum of the double integrals does not depend on
t,. But this sum is equal to:

§ ity B2 (AT X), y) — JRL(A(E, x), y)] dp, dp
+ §§ (A, x), y) dpe, dp
+ $Sityo5t,0 762 (Ag(ts x), y) — JiZu(Ao(t, %), y)] dp, dpe
= §§ Je(Ay(t, x), y) dpe, dpe
The second and fourth integrals are equal. (After changing the order of integra-
tion, and the names of variables, the second integral is seen to be equal to the
fourth integral.) From the assumption of induction we learn that (4) does not

depend on ¢,.
Suppose now that i > 2. Then, in the same way, we discover that independ-
ence of ¢, in the expression

(5) § L2 Aana(ts X)s y) — JiL(ALE, %), y)] dpe, dpe

is sufficient for proving independence of ¢, in (4). But by examining two cases,
tp, = t.q,and t, p, < t,q,, and by induction on k and n, we obtain that (5)

does not depend on #,.

ne
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LEMMA 3. Letl <ign—Lilett, =2t,=---2t,=20;t, =t =1, Denote
t=(t, -t =(ty, ooyt ). Then
(6) B[O x) = ju™(, %) — (8 %) + (6 X)) dp 2 1, — 1)

Proor. By induction on k and n. If n = 2, then (6) is a consequence of
Lemma 1. For k = 1 one can easily obtain (6) by straightforward calculation.
Suppose now that n > 3, and we have proven (6) for k — 1 in the model with
n experiments, and for every k in the model with n — 1 experiments. We shall
prove (6) for k in the model with n experiments.

Suppose at first i = 1. Computing as in the proof of Lemma 2, express the
left-hand side of (6) as follows:

Blta — ta 4 Sieya<tim 1998 — Sityaztpm WP+ Sigct,m 19A8 + S0zt t,pdy]
+ B S0ty (ALY %), y) — Ji2(Au(t', %), y)] dp, dpe
+ §§ Jii(Aul(e', %), y) dpe, dpe
= Sityro>tya A5 %), y) — JiZi(Au(t's %), y)] dpe, dpe
— V(AT ), y) dpey dpe
— it (A X), y) — Ji2(A(1s X), y)] dp, dp
— §§ JiU(Au(2, %), y) dp, dp
+ S ityos ty0 (A0 %), y) — 2Nt ), y)] e, dpe
+ §§ JE2(A(1, X), y) dpe, dp]
= (by force of Lemma 2) B[z, — 1, — Sityo<tym 119 du
— Siyeztym P AR+ Sijacty 19 A + Siaztyn P A1)
+ B §Si, 0500 [e-i(199ys tapPy) — Jeo(iqpys 10 pq,)] dpey dpe
— B Voot Veea(t1990 12/P) — Jeei(tiqpys 14'P9,)] Ay dpe
+ 82§V LA, %), y) — Ji2(Ay(7's X), )
— B2t %), y) + (A %), p)] dpy dpe
The last integral is greater than or equal to (¢, — t,’) by the induction assump-
tion. All that precedes it is nonnegative, as can be checked using Lemma 1.
Suppose now i = 1. Then we can restrict ourselves to the case 7, < #,_,. But

then by the same arguments as in the case i = 1, we obtain (6).
We start now with the proof of Theorem 1 for model (A). We must show

that
¥ Tt -0 1) = ming (T(0) — £, + B § ji(t, X) dp)

Use induction on n and on k. Without loss of generality, we can assume £, =
t,= -+ =t, Then '

Jk(tl’ tt n) — T(t) - t + ‘B S J(l) (t’ x) dﬂ
and the inequality
T(t) —t, + B jitu(t, x)dp < T(1) — 1, + B § Ji2u(t, ) dpe
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for i # n follows from Lemma 2 and from the assumption of induction. Now
(7) is a consequence of the inequality
T(1) = tay + BV Ji5(t X) dpp S T(1) — 1, + 8§ ji(t, X) dp
which follows immediately from Lemma 3. Theorem 1 is proven for every finite
k. From the results of negative dynamic programming (see Strauch (1966))
Theorem 1 follows also for k = co.
Suppose now that P = Q. We shall prove that the optimal expected total

loss in an infinite number of trials for the undiscounted problem is finite. It is
sufficient to find a real-valued function #(s), s € S, for which

(8 T u(s) < u(s)

for all s, where T, is the operator associated with the stationary policy = (see

T

Strauch (1966)). Define
M(Sl, R ) sn) = C(H:}=1 (1 - si))l/n ¢

Now (8) follows (when the constant C is large enough) from the inequality

®) § (X oy X))V dpe < (13-, § xo dp)™

where x; are measurable nonnegative functions, and from the following condi-
tion for a strict inequality in (9): if § x;dy > 0 for every i, and not all the
expressions x,/§ x, dp are equal a.s., then the strict inequality holds in (9).

4. Model (B). In this section we prove Theorem 1 for model (B). The proof
is analogous to the proof of Theorem 1 for model (A). Therefore, we shall
mention only the main steps of the proof.

The set of states S is as in model (A), but now s, is the a priori probability
of the event that P, is equal to Q, and all the other P, are equal to P. The set
of acts A4 is as in model (A). If act A4, is applied when the state is (s, -- -, $,),
an observation x is obtained from P;, then the new state is

(51 P2, 3 P(X)/Zs - -+ 5:9(X)[2s - -+, sup(X)/Z) 5
where X = s5;9(x) + (1 — s;)p(x). The loss function is defined as follows:
r((Sy -5 8,), A) = 5,

Let = be a stationary policy which is optimal for one trial. Define /' and J,‘™
as for model (A) (the index (n) stresses the fact that the values 7, and J,‘»
are associated with the n-armed bandit problem). J,™ is symmetric, positive
homogeneous and satisfies the equation: ift, > ¢, > ... > ¢,, then

Je™(tyy oo osty) =t + BTG ps taps - o5 tag) dp s k=1,2,....
We use the following notations (i;l a way analogous to the preceding section):

tz(tl, "',tn);

Jin(ts X) = L p(X), -5 iy P(X)s 89(X)s i P(X)s o5 1a (X)) 3

At x) = (p(x)s -5 19(X)s -5 1 p(Y)) -
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LEMMA 4. Letn = 3,4, = --- =t,=0;1 <i< n. Denotet = (t,, ---,1t,).
Then

§ L/t x) — jim(e, x) dp = § [t x) — jiaie, x)]de .
LEMMA S. Let2 <i<njlett,=z2t,= - =1t,=0, and let t/ satisfy t; <

2 = =

t) < t,. Denotet = (t/,t,, ---,1t,). Then
B S L7t %) — Jiu(t, X) — Jiu(t's X) + Jin(t's ¥)]dp < 6 — 17
The proofs of Lemma 4 and Lemma 5 are analogous to the proofs of Lemma 2
and Lemma 3 respectively.
Now Theorem 1 for model (B) follows from Lemma 4 and Lemma 5 in the
same way as in the preceding section.

For establishing the finiteness of the optimal expected total loss in an infinite
number of trials for the undiscounted problem, choose

U(sy, - vy 8,) = C(s; - -+ 5,)V"

and use the inequality

Sp(n—l)/nql/n d# < 1 s
if p and g are different.

5. Examples. We present here two examples we have mentioned in the
introduction.

ExaMmpLE 1. Let P, P,, P, be mutually singular distributions. We have 3
experiments; a trial from experiment i yields an observation from distribution
P,,,, where ¢ is a permutation of the set {1, 2, 3}; i = 1, 2, 3. If experiment i
was performed we lose (unknowingly) 1 if o(i) = 2 or o(i) = 3,and 0if o(i) = 1.
Denote by g,, g,, g5, g,, d;, 0, the permutations of the set {I, 2, 3} which move
{1,2,3} to {1, 2,3}; {1, 3,2}; {2, 1, 3}; {3, 1, 2}; {2, 3, 1}; {3, 2, 1} respectively.
We assign a priori probability s, to the permutations,; j = 1, 2, 3,4, 5, 6. Then
for the state s, = 0.01; s, = 0.47; s, = 0.44; 5, = 0.03; 5, = 0.01; 5, = 0.04 the
optimal policy for one trial is optimal for no number of trials greater than 1.

ExAMPLE 2. Let P and Q be singular distributions. We have 4 experiments; a
trial from experiment i yields an observation from distribution P,;; i = 1, 2, 3, 4.
Two P, are equal to P, and two other P, are equal to Q. If experiment i was
performed we lose (unknowingly) 1 if P, = Q, and 0 if P, = P. We assign a
priori probabilities s,, 5, 55, 5,, S5, 5, to the events that {P, = P, = P; P, = P, = Q};
{P1:P3:P;P2:P4=Q}; {P1:P4:P; P2:P3:Q}; {P2:P3=P; P1=
P =0} {P,=P, =P, P =P, =Q};{P,=P, = P; P, = P, = Q} respectively.
Then for the state s, = 755, = 855, = 0; 5, = A5 5, = #; S = 2 the optimal
policy for one trial is optimal for no number of trials greater than 1.

It is possible to construct Examples 1 and 2 with mutually absolutely con-
tinuous distributions. Such examples should satisfy a strict inequality between
integrals. We can change a little the mutually singular distributions of Examples
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1 and 2, making them mutually absolutely continuous and maintaining the
inequality.
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