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MARCINKIEWICZ LAWS AND CONVERGENCE
RATES IN THE LAW OF LARGE NUMBERS
FOR RANDOM VARIABLES WITH
MULTIDIMENSIONAL INDICES!

By ArLLAaN GUT
Uppsala University

Consider a set of independent identically distributed random variables
indexed by Z¢, the positive integer d-dimensional lattice points, d = 2.
The classical Kolmogorov-Marcinkiewicz strong law of large numbers is
generalized to this case. Also, convergence rates in the law of large num-
bers are derived, i.e., the rate of convergence to zero of, for example, the
tail probabilities of the sample sums is determined.

1. Introduction. Let Z ¢, whered > 2isan integer, denote the positive integer
d-dimensional lattice points and let {X,, ne Z_ %} be a set of i.i.d. random vari-

ables. The notation m < n, where m = (m,, m,, ---, m;) and n = (n, n,, - - -,
n;) € Z,* means that m;, < n;, i = 1,2, ...,d, |n| is used for [[¢, n,and n — oo
is to be interpreted as n; —» o0, i = 1,2, --., d.

Let S, = ¥ .. Xy, ne Z,% It has been shown by Smythe [20] (see also [10])
that the strong law of large numbers holds if and only if E|X,| - (log* |X,|)*! <
oo. In the first part of this paper we generalize this result and prove a strong
Marcinkiewicz law, i.e., we show that [n|~". S, — 0 a.s. as n — oo if and only
if E|X |7 (log* | X)) ' < o0, 0<r< 2, with EX=0if r=1. If r = 1 one
recovers the result of [20]. In contrast to the case d = 1 where the strong and
weak laws both hold under the assumption of a finite mean, only the weak law
holds if d = 2; see [10]. A result of Pyke and Root [19] enables us to prove a
weak Marcinkiewicz law for 0 < r < 2 requiring only E|X|" < oo.

The second part of the paper deals with convergence rates in the law of large
numbers; that is, we investigate how fast quantities such as, e.g., P(|S,| = |n|-¢)
tend to zero if moments higher than the first exist and EX = 0.

This can be done by studying these quantities directly, but also by studying con-
vergence of sums of the type Y, |n|* - P(|S,| = |n| - ¢), where 7 is a real number.

In the case d = 1 this was initiated by Hsu and Robbins [12] and Erdds [7]
for + = 0 and Spitzer [22] for r = —1. Later Katz [14], Baum and Katz [1],
Chow [5], Lai [15], Chow and Lai [6] have continued these investigations.
Except for [1], they deal mainly with the convergence of the above sums. In
[2] it is shown that P(|S,| = ne) = o(n*"")asn — oo If E|X|" < o0, | £ 7 < 2.
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470 ALLAN GUT

This has later been extended and generalized to » > 1 in [1]. Jain [13] has
generalized some of the results to Banach space valued variables. For d = 2,
. [nft - P(|S,| = |n|e) has been studied in [21] for + = 0 and in [4] for t > —1.

The plan of the paper is as follows. In Section 2 we collect some auxiliary
results. Section 3 deals with the Marcinkiewicz laws. In Section 4 two theorems
comparing sums for convergence rates are stated and they are proved in Sections
5 and 6 respectively. The probabilities are studied directly in Section 7. Sec-
tion 8, finally, contains some remarks.

2. Preliminaries. In this section we collect some general facts along with
some lemmas that will be of use later.

Again {X,, ne Z,% are i.i.d. random variables with mean zero whenever it is
finite. Let X denote a random variable which has the same distribution as X,
and which is independent of all other random variables.

The notation ~ between sums and/or integrals will be used to denote that the
quantities on either side of the sign converge simultaneously. I{-} denotes the
indicator function of the set in braces.

Define d(x) = Card {ne Z % |n| = [x]} and M(x) = };i&, d(k). We have (cf.
[21])

(2.1) M(x) = O(x(log* x)*") and d(x) = o(x?)
YVo>0 as x—oo.

LemMa 2.1, Letr > 0andm =0,1,2, .... For any random variable X the
following statements are equivalent:
22) E\XT - (log* | X|)" - d(X) < oo,
(2.3) E|X|" - (log" | X|)**4~* < oo,
(2.4) S [nfert - (log jn)y™ - P(X| Z [nf* ) < 00, a>0,6>0,
(2.5) S, jort - (log )t P(X| Z jT ) < oo, a>0,e>0,
(26) X (log - d(j)- PX] 2 jooe) <o, @ >0,6>0.

This generalizes results from [21] and [4]. The proofs are similar and omitted.
LEMMA 2.2, Let Y, = X, - I[{|X,| £ ¢- |n|V7}. If E|X|" - (log* | X|)* "™ < oo,
0<r<2,m=0,1,2, ..., then .
2.7) 3. (log nf)" - Var (jn]¥ - ¥,) < oo,
(2.8) S50 J¥ - (log jy*Hm - Var (|X] - | X| < &) < oo
Formula (2.7) reduces to [21], Lemma 2.2 if r = 1, m = 0.
Proor. It is sufficient to prove the lemma with ¢ = 1.
3. (log )" - Var (jn] =" - Y,)
< X5 (log ) - j= - d(j) - E(XP - I X| = ')
= Dia(log jym - j=r - d(j) - Tl Su-v¥raugatrr X* dF(X)
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2 (D= (log )™ - j77 - d())) SimpyVr <imsivr X* dF(x)

< const. X1z, (X5 (log j)" « J4r+ M(J)) - 77+ P(i — 1 < |X]" < )
2 (D5 (log jymrea=t - j=om) - e P(i — 1 < |X|" < )

~ Ny (logi)m+e-t. i . Pi — 1 < |X["£0).

—_— i=1

R

The last expression is finite if and only if E|X|" - (log* | X|")™*¢"! < oo, which
is equivalent to E|X|" - (log* | X[)™*?~! < oo. This proves (2.7). The proof of
(2.8), being similar, is omitted.

Next we note that for any fixed ne Z,?, S, is simply a sum of |n| (i.i.d.) ran-
dom variables and therefore many results for partial sums remain valid when
d = 2. For example, this is true for the Marcinkiewicz-Zygmund inequalities,
[17], page 109, and the theorem of [19].

For ease of reference we state some of these results in a separate lemma.

LEMMA 2.3. Let{X,,ne Z+d} bei.i.d. random variables, suppose that E| X | < oo,
r >0, and that EX = 0 if r = 1. Then,

(2.9) E|S,|" = o(|n]) as n—ooo Iif 0<r<2,
(2.10) S, < B,-[n[- EX|"  if 1=r<2,
(2.11) E|S,|" < B, - |n|"?. E|X|" if r=z2,

where B, are constants depending on r only.

The last lemma is due to Hoffmann-Jgrgensen, [11], page 164 (see also [13],
page 159).

LEMMA 2.4, Let {X,,ne Z %} be i.i.d. symmetric random variables. Then, for
j=12,...

(2.12) P(S,| Z 31) < C; - - P(IX| Z 1) + DyP(IS.] = 1)*,

where C; and D; are nonnegative constants depending on j only. Also, C, = 1,
D, = 4.

3. Marcinkiewicz laws. In view of [20], finite mean is not enough for the
strong law of large numbers to hold for i.i.d. random var'iables; in fact,
E|X| - (log* | X|)*"! < oo is necessary and sufficient. Finite mean only, however,
entails the weak law of large numbers, [10]. In this section we extend these
results to 0 < r < 2, thus yielding strong and weak Marcinkiewicz laws. (For
d = 1, see, e.g., Loéve [16], pages 242-243.)

THEOREM 3.1. Ler {X,,ne Z,°} be i.i.d. random variables. Suppose that
ElX|"< o0, 0< r<2,and set EX=0ifr = 1. Then,

3.1) |n|~¥". S, — 0 in probability and in L* as n— co.

Proor. The L’-convergence is simply a restatement of (2.9) and the conver-
gence in probability follows by applying Markov’s inequality.
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THEOREM 3.2. Let {X,,ne Z,%} be i.i.d. random variables. Suppose that
E\X|" - (log* |X])*' < o0, 0< r< 2, and set EX = 0ifr = 1. Then

(3.2) [n|-¥". S, —»0 a.s. as n—oco.
Conversely, (3.2) implies that E|X|" - (log* | X|)*! < co.

REMARK 3.1. This result has, independently, been obtained by Chen [4] using
a slightly different approach. Furthermore, the sufficiency is proven for i.i.d.
random variables with a more general index set.

Proof. (Sufficiency). We begin by proving the result for symmetric random
variables.

Define Y, = X, - I{|X,| < |n|} as in Section 2. (¢ = 1.) By (2.4) withar =1
andm =0, 3}, P(X,#Y,) < oo and by (2.7) withm =0, };, Var (jn|~"".Y,) < co.
In view of the symmetry 3, E(|n|~*". Y,) vanishes. Since the first two sums
have only nonnegative terms they converge absolutely. Thus, by the Kolmogorov
three series criterion as established in [8], [9],

(3.3) 2. |n|7Y" - X, converges unconditionally a.s.

In particular,
(3.4) D5t Diatcs 77 X, < 00 aus.

An application of Kronecker’s lemma yields the desired conclusion.

To remove the symmetry assumption we argue as follows. (Cf. [16].) Let
{X,’, ne Z,% be the symmetrized random variables. It is easy to see that
E|X®|" . (log* |X*|)*~! < oo. Therefore, by what has already been proved,
[n|=¥". S * — 0 almost surely as n — co. By the weak symmetrization inequali-
ties ([16], page 245) it follows that |n|~V" . (S, — med (S,)) — 0 in probability as
n — oo, where med (X) is a median of X. This fact together with (3.1) yields

(3.5) In|-v" . med (S,) >0 as n— oo,

which, together with the symmetrization inequalities ([16], page 247), shows
that (3.2) holds also in the nonsymmetric case.

Proor. (Necessity). If(3.2)holds, then [n|~'". X, — 0 almost surely as n — oo.
By the Borel-Cantelli lemmas this is equivalent to Y}, P(|X,| = [n|V" - ¢) < oo,
which is equivalent to E|X|"(log* |X|)*~* < oo, because of the equal distribution
assumption and Lemma 2.1. This proves the theorem.

4. Convergence rates comparing sums. In this section we relate moment con-
ditions to the convergence of certain sums. See [12], [7], [22], [14], [1] and
[5] for the case d = 1.

THEOREM 4.1. Let {X,,ne Z, %} be i.i.d. random variables, let r = 1/a and
a > 4. The following statements are equivalent:

4.1 EjX|" . (log* | X]) ! < o and, if r=1, EX=0.
|X]" - (log™ | X|
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4.2) a2 P(IS,| = nj*-e) < oo forall €>0.
(4.3) e o2 P(max, ., |S,| = n|*-¢) < oo forall ¢>0.
If r > lja, a > L, then the above statements are also equivalent to
(4.4) 25 JUT e P(Supgu ISi/IK[| 2 ) < o0 forall ¢>0.

To see that (4.4) is not equivalent to (4.1)—(4.3) when r = l/a, a > }, we
also prove the following result.

THEOREM 4.2. Let {X,,ne Z % be i.i.d. random variables, let r = 1/a and
a > L. The following statements are equivalent:
(4.5) E|X|"- (log* |X])* < oo and, if r=1, EX=0.
(4.6) >aint-log(n]) - P(JS,| = Y- e) < oo forall ¢>0.
4.7) a7t - log (In]) - P(max, ., |S,| = n|""-¢) < o0 forall ¢>0.
(4.8) X P(supsay [S/KM 2 ) < o forall £>0.

ReMARK 4.1. Using the results from Section 2 we note that the moment con-
dition in (4.1) may be replaced by E|X|"~'- M(]X|) < oo. Chen [4] has shown
that this condition (and EX = 0 if » = 1) implies (4.2) for i.i.d. random vari-
ables with a more general index set. For r = 2, @ = 1 this has also been done
by Smythe [21]. Both authors generalize the method of Erdos [7].

ReEMARK 4.2. In (4.5), E|X|"- (log"|X|)* < oo should be interpreted as
E|X|". (log* |X]|) - d(X) < oo in order to compare with [1], Theorem 2.

REMARK 4.3. By replacing X by aX, where a is some constant, it follows that
if one of the above series is convergent for one ¢ it converges for all ¢ > 0.

REMARK 4.4. Since a > } the condition ra = 1 implies that r < 2.

The proofs of the theorems are given in Sections 5 and 6.

5. Proof of Theorem 4.1. The proof is divided into several steps. In steps
(i)—(vi) the random variables are assumed to have a symmetric distribution.

(i) (4.1) = (4.2), ar = 1. Recall that, since a > %, r < 2. Define §,’ =
Skca X | X | Ze-n*}, k <nand S, =S, — S,’.

P(IS.| = 26 - nf") < P(S)| = ¢ - [nf") + P(S,"| = ¢ - nl")
7« n[= . Var (S,") + In| - P(|X| z ¢ [n[%)
= &2 |~ Var (|X] - A|X] S ¢ - o)
+ ] - P(|X] = e - [n]7).

A

Thus
2la [0t P(|S,| = 2¢[n|*)
2ia 71+ P(IS,]| = 2¢[n|'7)
e a7 Var (|X] - [{|X| < e - n|'"}) + 2. P(|X]| = [n]'" - ¢)
et Var (|77 - Y,) + 3, P(|X]| = [n]V" - ¢),

(A
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where Y, is defined as in Lemma 2.2. The last two sums are finite by Lemmas
2.2 and 2.1 respectively. ’

(i) 4.1)=4.2), ar > 1, 1Ja <r < 1. By applying (2.12) with j =1,
Markov’s inequality and the ¢, -inequalities ([16]), we obtain
P(|Sal = 3 - [n|*-¢) < [n] - P(|X| = [n|* - €) + 4(jn|~"" - e77 - E|X]7)".
Therefore
Za = P(ISa] 2 3 - |- ¢)
= L. P X] = n|*-€) + 4 - (¢TE|X|) - X m]7
< oo by Lemma 2.1 and because ar > 1.
(In fact X, n|=* = (D, i) p > 1.)

(iii) (4.1) =(4.2), ar > 1, 1 <r< 2. Here we use (2.12) with j =1,
Markov’s inequality and (2.10) to obtain

P(IS. = 3-[n|*-¢) < [n| - P(|X| = [n]* - &) 4 4(¢7" - [n|7*" - B, - |n| - E|X|")?
and consequently
Za (M7 P(|S,] = 3 - [n|* - ¢)
< 2Za Tt P(X| = nf*-e) + 4 (77 B, - E[X]")" - X, |7
< oo by Lemma 2.1 and because ar > 1.
(iv) (4.1)=(4.2), ar > 1, r = 2. This time we use (2.12) with j > 1 (to be
chosen later), Markov’s inequality and (2.11).
P(IS,| = 37+ |n|* - &) < C; - |- P(IX| = [n|* - €) 4 D; - (P(|S.| = [n|* - €))”
< Gy [nf - P(X| = [nj* - ) + D - n-twr=rasd
Set =2 —ar + (ar — (r/2)) -2 =2 — ar + r(2a — 1) - 24. Since 2a > 1,

the last term is positive and we may therefore choose jsuch that 3 > 1. By
doing so we obtain

Za 07 (IS, = 37 nf" - ¢)
=G - Xamf™ - P(IX| = [n|*-¢) + D/ - X, [n|7*
< oo by Lemma 2.1 and because S8 > 1.

This proves that (4.1) = (4.2) in the symmetric case. In view of Remark 4.3
the sums converge for all ¢ > 0.

(v) (4.2) = (4.3). This follows immediately from
P(IS.| = [n|* - ¢) = P(max, ., [Si] = [n|*-¢) < 2°- P(|S,| = [n[*-¢) .

The last inequality is Lévy’s inequality for random variables indexed by Z ¢;
see [9], [18].

(vi) (4.2) = (4.4). This part of the proof follows the ideas of [1]. Let
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z(i) = (i, 1,1, ..., 1). Because of the i.i.d. assumption S, and S, ,, have the
same distribution.
For reasons of clarity we collect some of the steps in a lemma.

LEMMA 5.1. Under the assumptions of Theorem 4.1 and the symmetry
(5.1 P(S;| = a) £2-P(S| = a), i<k,a>0.
(5.2) P(SUPyi—1g i<t [Sa/[0]*| = 29047 - &) < 2% 310 mpiva P(IS,] = [n[* - ¢) .
(5:3) 2 Dwmai P(Sal = 2 |- ¢)
<235 (log i)y P(|S | = i €)  for large j.
(5.4) S i (log i)t P(IS | = i - ) < o0, ar=z1,a >1%.
ProoF OF (5.1). Because of the symmetry P(S, = a) = P(S;, = @) =

P({Scuy = a} 0 {Seiwy — Seiny 2 0 2 - PSSy 2 @) =4 P(Si 2 a), a>0,
which together with a similar result for the other tail yields (5.1).
PROOF OF (5.2).
P(SUPyi-1gjn<si | S/ (0] = 2779 - )
< P(SUPyi-igia<nt [Sa] = 2907 - ) S P(SUPpayai |Sa] = 270F0 - ¢)
< P(SUPjmjmi+d SUPacm [Sa| = 299 - €) < 3 micsiva P(SUPacn [Su] = 29077 - ¢)
S Dimimai+a 2°P(|Sa] = 2900 - &) = 2% Fugiva P(IS.] Z |- ¢) -
ProoF OF (5.3). Note that d(27) ~ j=' ~ (log (24))*-*. Thus, for large j,
27 Dini=ai P(Sa] Z 2[n|* - ¢)
— V(D[S 00| Z 2+ 27 &) ~ 2i(log D) P(|S,00| Z 2 ¢
< D7 (log i) P(IS,05| Z 27 - €) < (by (5.1))
< 2 ZELT (log )7 P(IS,)| Z 277 - ¢)
< 2 S (log i)t P((S,] Z 07 6)
PROOF OF (5.4). The conclusion follows by estimating the tail probabilities as
was done in steps (i)—(iii) together with Lemmas 2.1 and 2.2.
We now turn back to (vi). Let C(a, r) = 2*"~?if ar > 2 and 1 otherwise.
D5 JUT e P(sup g [Su/IK|T| = 27D - e)
= XL XiotJm" - P(sup; g [Su/ k|| 2 270 )
< B2 () Cla, r) - P(supyay ISyIK[] = 2707 )
= Cla,r) i 2tar=h 2i5=in P(SUP,j-15ki<as 1Su/K|*] = 2044, €)
< (by (5:2)) = Cla, 1) Zina 247" X5einn 2 Diwmasva P(ISK] = [K[*-¢)
(3:3) < 2°C(a, r) B5oo (L2 247Y) Diaimai+a (IS Z | - ¢)
21C(a, ) D70 277 Tjw=ai P(ISa] 2 " - €) = (by (5-3))
const. +-2?+1C(a, r) Y57, 272 32057 (log i)~ P(|S, ()| = i*-¢/2)
const. 12, i* 2. (log i)*~ - P(|S, ;)| = i*-¢/2) < oo by (5.4).
Thus, (4.2) = (4.4).

A IIA A
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(vii) We now know that (4.1) = (4.2) < (4.3) and that (4.2) = (4.4) (for a
and r in appropriate regions) if the random variables have a symmetric distri-
bution. In this step we remove that assumption.

Suppose that (4.1) holds and introduce the symmetrized random variables as
in Section 3. As pointed out there, those variables also satisfy (4.1) and hence,
by what has already been proven, (4.2) holds for the symmetrized variables, i.e.,

(5.6) S Injer= P(S,| = [nj" - €) < oo .
By the weak symmetrization inequalities ([16], page 245), we have
(57) 4 P(S. — med (S,)] = [nj" - <) < (IS, = o - o)

<2p <|s,, — med (S,)| = nj* - %) .

Thus, (5.6) is equivalent to
(5.8) Siane?. P(|S, — med (S,)| = [n|*-¢) < oo .

If r < 2, then, by (3.5), |n|=¥ - med (S,) — 0 as n — oo, and, since ra > 1,
it follows that |n|~* . med (S,) — 0 as n — oo. Thus, (4.2), (5.6) and (5.8) are
equivalent, in particular (4.1) = (4.2).

Ifr = 2, then an application of Chebyshev’s inequality shows that |n|=*. S, — 0
in probability as n — oo, because « > L. Thus, |n|~*. med (S,) -0 as n — oo
and the conclusion follows.

The proof of (4.1) = (4.2) is now complete. To remove the assumption about
symmetry for (4.3) and (4.4) a similar argument is used together with the sym-
metrization inequalities ([16], page 247).

(viii) (4.4) = (4.1). This is the remaining part of the proof. Note that we
do not assume symmetry.

According to [1], Theorem 3, we know that the conclusion is true when
d=1. NOW,

00 > 315u1 JTPP(SUPgp [Su/ K[| = €)
Z X5 J T P(SUP s [Seam /K[ Z €)
and consequently, by [1], Theorem 3, we have E|X|" < oo and, ifr > 1, EX = 0.
The former fact is equivalent to

(3-9) Lia ) (X 2 j* ) < oo
and, in particular (since d(j) = o(j°) for every 0 > 0 and ar > 1) we have
(5.10) T, d) - P(IX) = jere) <20 < 1 if s large.

Standard inequalities now yield
P(sup; <y [Su/[K|*] = 27204 . ¢)
= P(sup; g [ Xupa/[K + 1% = 279 - ¢) = P(U sp{|Xuia] = [K|* - €})
= Xiem POIX| = [K|* - €) — 3( 2,5 P(X] = [K[* - €))?
= Yo, dOP(IX| 2 i &) — H(NE; d)P(X] Z i - o))
2 (by (5.10) = (1 — 9)- Tz, d() - (X Z i -¢),  for j=J.
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Thus,
00 > NiFu JUTh P(sup,gu [Si/[K[*] Z 270 L ¢)
2 (1 —0). X5, jo - {Xe,d0) - P(X| z i* - ¢)}
= const. - 3, (X5-a ) - d() - P(IX] Z i - ¢)
= const. 3% it d(i) - P(|X| = i*-€) .
ByLemma?2.1, the finiteness of the last sum is equivalent to E|X|"-(log* | X|)* 1<

oo and hence (4.4) = (4.1).
The proof of Theorem 4.1 is now complete.

6. Proof of Theorem 4.2. The proof is similar to the proof of Theorem 4.1
and will therefore not be given in full detail. Again we begin by assuming that
the random variables have a symmetric distribution. Recall that r < 2.

(a) (4.5)=(4.6). By arguing as in step (i) of the proof of Theorem 4.1 we
obtain
X |7 - log || - P(IS,| = [n['" - ¢)
< ¢ Tulogn|- Var (In-*"- ¥,) + ¥, log|n| - P(X| = |n]'" - )
< oo, by (2.7) and (2.4) with m = 1.
(b) (4.6) = (4.7). This follows as in (v), Section 5.
(¢) (4.6) = (4.8). By arguing as in (vi), Section 5, we obtain
L7 J7 e P(sup g [Si/[K[7] 2 20407 - ¢)
= 20 2720 (B ) Dimeaiva P(Sa] Z [0 - ¢)
=2 N7o0 ] Dimi=aita P(IS.] = [nf"" - ¢)
2441 F17, 270 D (log i) P(IS, ] 2 7 - ¢f2)
const. 3352, i(log i)? - P(|S. ;| = iV - ¢/2) < oo by (5.4).
(d) We now know that (4.5) = (4.6) <= (4.7) and that (4.6) — (4.8) in the

symmetric case. The symmetry assumption is removed exactly as in step (vii)
of the preceding proof.

A IA

(¢) (4.8)=(4.5). No symmetry is assumed. The proof proceeds by in-
duction on the dimension. For d = 1 see [1], Theorem 2. Now suppose the
conclusion holds with d — 1 dimensions. Obviously, P(sup,,, [S,/|k|""| = €)
dominates P(SUp;q. |Sie/[K*["| = ) where k* = (k,, ---, k,_,, 1), i.e., k*
equals k except that the last coordinate equals 1. Therefore,

(6.1) 2517 P(SUP gy [Sie/R* [V Z ¢) < o0,

and from the induction hypothesis we conclude that E|X|" - (log* |X|)*! < o
and, if r = 1, EX = 0.
By Lemma 2.1 the former fact implies that

(6.2) D55 d() P(X| 2 o) <20 <1 if j, s large.
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By arguments like those following (5.10), together with (6.2), we obtain
(6.3)  P(sup;gp [Si/[K[""] = 279747 - ) 2 (1 — 0) L, dP(|X| =2 17 - ),
for j = j, and so

00 > T J 7 P(sup g [Si/IK|VT] Z 270707 - ¢)
= (1= ) S5, )7 (S, dli) - KX 2 77+ 5))
= const. - Y12 logi-d(i)- P(|X| = iV - ¢).

By Lemma 2.1 it follows that E|X|" - (log* |X|)* < oo which concludes the
proof.

7. Direct convergence rates. It follows from (4.4) that (4.1) in particular
implies that
(7.1) 25a Jh e P(SUPy < [Si/ K[| =2 €) < o0
foralle > 0,ar > 1, @ > 4.

This gives a way of deriving information about the rate of convergence to 0
of, e.g., (IS, = [n] - ).

More precisely, assuming (4.1) and @ = 1, an application of [1] (lemma, page
113), yields

“e P(sup, <k [Su/[K|| =€) — 0 as j— oo,
and so
" P(IS.] = [nf - ¢) = [n|"™ - P(|Squp| = (0] - €)
< [ - P(SUP, <k [S/IKI[ Z €) >0 as m— oo,

ﬂI

Thus, if E|X|"- (log* |X])** < oo, r > 1, and EX = 0 we conclude that
(7.2) "t P(|S,/ = n|-e) >0 as n—ooo.

However, the same conclusion can be obtained without the logarithmic factor
in the assumption by studying the probabilities directly.

THEOREM 7.1. Let{X,, ne Z %} be i.i.d. random variables with zero mean. If
E|X|" < oo, r =1, then, Y ¢ > 0, the following are equivalent:

(7.3) " P(|X| = n|) > 0 as n— co;
(7.4) m==t- P(|S,| = n| - ) > 0 as n— oo,
(7.5) [n|™~!. P(max,_, |S,| = |n|-¢)— 0 as n— oo .

If r > 1, then the above statements are also equivalent to
(7.6) [n|™=* . P(sup,_, |S,/|k|| = ¢)— 0 as n—oo.

In [1], Theorem 4, it is shown that (7.3) and (7.4) are equivalent if r > 1
and that (7.3), (7.4) and (7.6) are equivalent if r > 1 without assuming that
E|X|" < oco. Earlier Brillinger ([2]) proved that E|X|" < oo, 1 < r < 2 implies
(7.4). These results are for d = 1,
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REMARK 7.1. The theorem asserts, for example, that (7.4) holds if E|X|" < oo,
i.e., (7.2) is valid under a weaker assumption than before. However, when
d = 1 they coincide.

Proor oF THEOREM 7.1. We first note that (7.3) holds trivially and that (7.5)
and (7.6) both imply (7.4).

Secondly, since P(|S,| = |n| - ¢) = P(|S;ay] = |n| - €), it follows that the proof
given in [1], Theorem 4, for the equivalence of (7.3) and (7.4) when d =1
remains valid without change. We include, however, a proof of (7.3) = (7.4)
because of its simplicity.

Now, let 1 <r < 2. If r =1, (7.4) is nothing but the weak law of large
numbers, see, e.g., [10], so let 1 < r < 2. Since the sequence of arithmetic
means constitutes a reversed martingale, [20], it follows from the Doob-Cairoli
maximal inequality ([3], [10]) and (2.9) that

=t (1S, 2 [n] - <)
< 0t P(sup, [Su/K]| Z ) < a1 e - Esup, o [Sy/lk]l"
=t e g, EISJ I = a7t e gy, - EIS,

€ 7g, - 0o(jn))—>0 as n-—oo.

A

Here 7, , is a constant depending on d and r only. This proves (7.4) and (7.6).

To deduce (7.5) we first assume symmetry. By the Lévy-inequality, [9], [18],
P(max, ., |S,| = [n]|-¢) < 2¢- P(|S,| = [n| - ¢). To desymmetrize we proceed as
above. The case 1 < r < 2 is thus completely proved.

Now, let » = 2. Since (2.11) is too crude an estimate for E|S,|” the above
approach using reversed martingales does not work. To prove this part of the
theorem we begin with the symmetric case.

To show (7.4) we use (2.12) with j = 1, (2.11) and (7.3) to obtain

™=t P(|S,| = 3-|n|-&) < |n|"- P(|X| = |n| - ¢) + const. [n|?

—0 as n—ooo.

(7.5) follows from the Lévy inequalities and it remains to prove (7.6).

Define Z,' = X, - I{|X,| < 2°- ¢}, 2, = X, — Z.", S.' = Y u<k Zo'and S =
S, — 8,/ for k| < 2° and let i be large. Then, from (5.2), (2.12) with j = 1,
the boundedness of Z,’ and (7.4), we obtain

P(SUpyi-1-agu car-a [SK]| Z 2¢ - 6e)

< 2 Do PSS 2 20+ 36) = 2+ d(29) - H(|SLo] Z 2°- 3e)

S 20-d(2) - (20 K2 2 2° - €) + AP(IS00] Z 2+ ¢)))

= 2900 d(2)(P(|Slay| Z 2°¢))* = 0(29) - (274 D) = o(2-ramm),
where 0 may be chosen arbitrarily small.

Now, suppose that 2"~! < |n| < 2™, where m is large.

07 P(sup, o |SC/IK|| = 27 - 66) < 2700 B, P(SUPy-igpgent 1S)/IK]| Z 2-6¢)
—_<__ 2m(r——1) . 0(2—m(2r—6—2)) — o(z—m(r—l—d))
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and hence
(7.7 [n|™=t. P(sup,, |S./IK|| = 2¢ - 6¢) — 0 as n— oo.

We now turn to S,”. First we need a sharper estimate of the number of points

in Z_¢ that are involved. Let n be fixed and define

A(m, j)={keZ%n <Kk, |n =21 k| < 2" 1}

A(m, j) ={keZ%n <Kk, |n =271 k| = 2"}

Am, ) = Ui ke Z,5k < i,ie Am, j),
where the union is taken over all i € A,(m, j). (Note that i above has been
replaced by m + j — 1.)

Also, let d(m, j) = the number of k € Z ¢ belonging to 4,(m, j), s = 1,2, 3.

By routine calculations we find that dy(m, j) ~ dy(m, j) ~ 2™ '+i(log 27)*~*
when m is large.

Now, the event {sup,_, |S.”/|k|| = 2¢ - 6¢}, where 2"~! < |n| < 2™, is contained
in the event {sup, ., |S.”/|K|| = 2¢- 6¢}, where n’ < n and |n’| = 2"~'. If the
latter occurs, then necessarily at least one Z" in J3, 44(m, j) has to be nonzero.
Thus,

(7.8) P(sup, |S./[K|| = 2° - 6¢) < X5, dy(m, ) - P(127] # 0).
For m large we obtain
dym, j) - P(|1Z"| # 0) = dym, j) - P(|X] = 2""""%)
~ 2m—1+j(10g zj)d—l . 0(2—(m—1+j)r) g 0(2~m(r—1)) . 2——,7'(1'—1—6) s
where 6 may be chosen arbitrarily small.

Thus, if 2! < |n| < 2™ it follows that
[nfrt - P(sup, o [S/IK]| Z 2¢ - 6c) S 2770 0(27mrb) L Mg, 27910 = o(1)
as m — oo, i.e.,

(7.9) a1 Psup, ., [S,”/[k]| Z 20 66) >0 as nm—oo.

By combining (7.7) and (7.9) it follows that

[nj==t . P(sup, ., |S./|k|| = 2¢. 12¢) —» 0 as n— oo,
which proves (7.6) in the symmetric case.

The desymmetrization is carried through as before and the proof is complete.

REMARK 7.2. The proof that (7.6) holds for » > 2 also applies to 1 < r < 2
(if (7.4) has been proven earlier). However, the proof presented above for that
case seems more attractive.

8. Concluding remarks.

(i) Tt is easy to see that the Marcinkiewicz laws can be generalized to
independent random variables with zero mean if they are dominated by an
Lr(log L)*~'-bounded random variable (cf. [16], page 242 when d = 1).
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(ii) Whend = 1,d(j) = 1forall j. However, the proofs remain valid. Thus,
for example, Section 5 provides another proof of Katz [14], Theorem 1 (the
sufficiency).

(1ii) InSection 4, ar = 1isone limiting case behaving differently from ar > 1.
Another limiting case is « = 4, which has been studied by Lai [15] when d = 1
and by the author d = 2 in a forthcoming paper.

(iv) A closer look at the sums involved in Theorems 4.1 and 4.2 reveals
that, in fact, more than their finiteness has been established. For example, for
a2 P(|S,] = |n|* - €), it follows from steps (ii) and (iii) of Section 5 that
(8.1) 2o [ K|S Z [n| - )

= Ca, ry ¢) - (EX|"(log" [X)*" + (E|X]'))
when ar > 1, a > } and r < 2. A similar inequality holds when r > 2.

By using Chebyshev’s inequality instead of Markov’s inequality in the latter
case we obtain (j = 1)

(8.2) 2a |*r7* - P(IS,| = [n|* - €)
< Ua, r, ¢) - (E|X["(log* |X|)*~ + (E|X]P)) .
In all cases C(a, r, ¢) is a constant depending on a, r and ¢ only. As they stand,
(8.1) and (8.2) are valid in the symmetric case, but they remain true also after

desymmetrization, except that the constant then also depends on d. These results
are related to estimates obtained by Chow and Lai [6].
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