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ON THE SPEED OF CONVERGENCE IN STRASSEN’S LAW
OF THE ITERATED LOGARITHM

By E. BOLTHAUSEN
University of Konstanz

Here there is derived a conditon on sequences e, | 0 which implies
that P[W(n*)/(2n log log n)t ¢ K¢» i.0.] = 0, where W is the Wiener process
and K is the compact set in Strassen’s law of the iterated logarithm. A
similar result for random walks is also given.

1. Introduction. Let {W(f, w): t = 0, » € Q} be a Brownian motion process
defined on some probability space (Q, %7, P). We assume that W(t, ) is con-
tinuous in ¢ for each w e Q. Let C[0, 1] be the space of continuous real valued
function on the interval [0, 1], || || the sup-norm on C and % the class of Borel
setsin C[0, 1]. Forne Nlet W (o) € C[0, 1] be defined by W ,(w)(t) = W(nt, »)/nt.
It is well known that the W, all have the same distribution on (C[0, 1], £#). For
r>0let K, ={feC[0,1]: f’ exists and {}(f’(¢))*dt < r*}. K, is a compact
set in C[0, 1] (e.g., [2] page 282). Let H = |J,,,K,. If A c C[0, 1]ande > 0
let 4* = {f e C[0, 1]: exist ge 4 with ||f — g|| < ¢}. One half of Strassen’s law
of iterated logarithm [3] states that for each ¢ > 0

(1.1) P(lim sup,_.. {W,/(2LLn)t ¢ K;}) = 0.

Here and elsewhere in this paper we set L x = max (log x, 1). (1.1) is sharpened
in this paper in the followng way:

THEOREM 1. If @ < 4 and e, = (LL n)~* then
(1.2) P(lim sup, ... {W,/(2LLn)t ¢ K;»}) = 0.

The result should be seen as an attempt to prove “stronger” forms of infinite
dimensional log log laws, that is, to give conditions on increasing sequences of
sets 4, C C[0, 1] such that P(W, ¢ A, infinitely often) = 0. But of course the
above theorem is far away from providing a complete solution.

All proofs of infinite dimensional loglog laws consist in approximating the
random variables in question by elements of the compact set which appears in
the theorem to be proven. The approximation used in the proof of Theorem 1
is the following: We take a lattice on the state space with suitable span and
approximate W,/(2 LL n)! by the linear interpolation between the time points
where the process passes through a lattice point. One should compare this
method with the approximation used by Strassen. He takes a grid on the time
axis and interpolates the process between the points of the grid. One would
think it possible to obtain a theorem like the above by simultaneously refining
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the grid with the growth of n. This is indeed the case but the result which can
be obtained is less good. In fact with this method one can prove that (1.2)
hold for ¢, = (LL n)~* for & < §. Strassen’s approximation is more adapted
to the “Gaussian character” of the Wiener process where the former approxi-
mation uses the fact that Brownian motion is a Markov process.

With the use of Skorohod imbedding one can easily derive an invariance
theorem. Let {X,: ne N} be independent identically distributed real random
variables with EX;, = 0, 0 < ¢ = Var (X;) < oo and define {Y,(1): 0 = ¢t < 1}
as the linear interpolation of the chain Y, (k/n) = n=t 3%, X,.

THEOREM 2. If E|X,|**® < oo for some 6 > 0 and a and ¢, are as in Theorem 1
then

(1.3) P(lim sup, . {Y,/(2LLn) ¢ K/»}) = 0.

2. Proofs. For ¢ > 0 let T,° = inf{r: |W(f)| = 6} and inductively

T, = inf{r: |W(t + Y221 T — W(XNri T = o).

By the strong Markov property the 7, are independent and identically distributed.
Using a standard transformation argument one sees that 7,’ has the distribu-
tion of 6°T,'. We will write T, for T;'. T, and 1/T, have absolutely continuous
distributions on the positive real numbers. Let g be the density of T, and 4 the
density of 1/T,.

From well-known expressions for the distribution of the T, (see [1], page 330)
and some elementary calculations one obtains

(2.1) 9(x) = <_?T_>i x~t e (—1)%2k + 1) exp(—(2k + 1)*/2x)

22 K = (2) o D (— DAk + Dexp(—(k + Dxp2)

for x = 0.
LemMa 1. Ift < 1 and k€ N then

(2.3) PEiaTos 0 s (1) exp(—k2r).

ProoF. Let A, ={(x, -, x)eR:0<x, <1, 3%, x, <t} and 2* be
Lebesgue measure on R¥. Then P(Xf., T; < 1) = §,, 9(x;) - - - 9(x)A(d(xy, - - -,
x). 1f x, < 1 then g(x;) < (2/m)bx,F exp(—1/2x,). So

2 k/2
P TS 0 S (2) 2(A) Py mpes, 9(5) -+ 052)
t —3k/2
< (7> exp(—K*/21) .
LEMMA 2. There exists a number ¢ > 0 such that for all ke N and d > 1

2.4 P(% AT 2 d) < (2d* + o) exp <__"2_ d— 1)) .
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ProoF. Let 7 = (d — 1)/2d and p be the distribution of 1/T; — d. Forx =1
h(x) < (2/m)ix~t exp(—x[2).

p = E(exp(z(1/T; — d))) = {5 exp(z(x — d))h(x) dx
< <ei + <_?L>i (o er=x—te="/? dx) e~v¢

= (et + 2/(1 — 2)})e¢
= (et 4 2d¥)e " VP L 0.
Then :
1

P Bt (T) 2 d) = Pt (1T, — d) 2 0)

= Plexp(v(Li- (1T: — d))) 2 1)

< E(exp(r Lie (1/T; — 4)))

= p*. .
The proof of the lemma is finished.

Let 7, = 3%, T.% 7, = 0. For d > 0 we define {W,(f): 0 < ¢t < 1} as fol-
lows: Let
m(0) = max{k: 7’ < 1},
Wi(z?) = W(b) if k< m),
Wi(1) = W(tnw)

and W,(7) linearly interpolated elsewhere. Clearly
(2.5) SUPogis1 [W(r) — W(D)| = 20

26 WoeH and  GW/@)d= Do 2.

PrROOF OF THEOREM 1. Let p > 0, > 1, Ke N such that p*/K > 1. If Wis
as above but restricted to [0, 1], then
PW ¢ K,2) < (W, ¢K,) = P(Z2d 0T, = o)
= AU (X5, 04T2 =2 o} 0 {0 T < 1))
(2.7) S D K T =2 0% N T = 1/0%)
SKPZE T, Z 0°) + Xit—g PR T, < 1/6%)

< KQo/K* + C)F exp (2 (0K — 1))
- 1 -3k/2 62k2
+ Iiea(zg) o0 (-%)
by Lemmas 1 and 2
, = [0 + IL;», say.

If now s > 0 and ¢(s) = s7% for 2a < a’ < 1 (« as in the statement of the
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theorem) then
P(W ¢ sK*®) < P(W ¢ K3 )
(2.8) < ]E:§1+s-a’/2)) + 11{(:;*“’/4)
for s sufficiently large, where [s] as usual denotes the integer part of s.
Here we used the relation
(2.9) K¢ DK,

Indeed if f € K37, , there exists g € K, ,,,, With||f — g|| < ¢/2. Then g/(1 + ¢/2) ¢ K,
and||f —g/(1+¢/2)]| < ¢/2+]1—(1+¢/2)7"||lgl| < e because sup {|ig]|: g € K,..} =
1 + ¢/2. So (2.9) and then (2.8) follow. Now by some elementary calculations
one obtains
(2.10) Igp+ = < exp(—45(1 + s7(1 + o(1))))
(2.11) @™ < exp(—s*?)
for some 6 > 0 and s sufficiently large, where o(1) in (2.10) is understood to
hold for s — oo.

For me N we take n, = [exp(m/L m)], s, = (2LLn,)}. Then using (2.8),

(2.10) and (2.11) and the fact that >;2_ (m/L m)~3+e=m~7") <« o for ¢ > 0,
7 < 1 one obtains

(2.12) Dimaa P(W s, Kfem) < oo .
Now W, has the same distribution as W, so we obtain from (2.12)
P(lim sup,), .., {W,,m ¢ (2LLn,)Ksm}) = 0.

For » € Q not belonging to this exceptional set, there is a N(w) € N such that
for m = NM(w)
W, €(2LLn,)Ksem
that is, there exists f,, € K, such that with the abbreviation 5(n) = (2n LL n)t
SUPygi1 [W(nn1)[b(ny) — fu()| < (LL n,)~*/% If n,, < n < n,,, and m = N(w)
let g,(f) = fuii(tn/Np ). Then
W (n)/6(1) = fasall = 1 fmsr = Gull + (oA s) BRI (1) [b(1 1) — 0|
+ ((0(1n42)/b(1)) — D)9l
g (1 - nm/nm+l)i + (b(nm+l)/b(nm))(LL nm+l)_a,/2
+ (O(11)/b(n)) — 1)
= O((LLn,,,,)"*""*) = O((LL n)~*'/*) < (LL n)~*¢
for n sufficiently large, where we used the fact that for fe K, |f(f) — f(5)| <
(t — s)t. The theorem is proved.

ProoF oF THEOREM 2. Under the hypothesis of the theorem there exists a
Brownian motion W(r) and a sequence {X, i e N} with the same distribution
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as the sequence {X;: ie N} and 0 < p < % such that
T =sup, {r: [W(t) —Y'(t) = t#} < o0 w.p. 1

where Y'(k) = 3., X, and linearly interpolated elsewhere (see Theorem 4.6
of [4]). If w is not in the exceptional set where T = co we have for n > T(o)

W(nt) _ Y'(nt) w(t)  Y'(r)
supost51 T_ nt n* - n*

= SUPygi<a

=< SUPygi<rwy |W(t) - Y’(t)|/n§ + n7f = 0(”—") .

Theorem 2 follows from Theorem 1, the above relation and the fact that the
sequence {Y,(7); n € N} has the same distribution as {Y'(nr)/nt: nc N}.

3. Concluding remarks. It seems to be difficult to obtain lower class state-
ments, e.g., to derive conditions on e, | Osuch that (with notation of Theorem 1)
P(W,[(2LL n)* ¢ K= infinitely often) = 1. It would be interesting to know if
¢, = (LL n)== for @ = } belongs to that class. It is a fairly trivial consequence
of the well-known integral tests for lower-class functions of sums of independent
random variables that ¢, = (LL n)~" is lower class. Indeed if W,(1)/(2 LL n)t >
1 4 ¢, then W, /(2 LL n)} ¢ K;*n, but from the Kolmogorov-Petrovski-Erdos test
it follows that P(W,(1) > (2 LL n)¥(1 4 1/LL n) i.0.) = 1. On the other hand
P(W,(1) > (2LL n)¥(1 + (LL n)=*) i.0.) = O for « < 1. But of course W, may
escape from (2 LL n)!K,*» in another way than “through” W,(1). So there re-
mains a gap for 1 < a < 1.
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