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ATTRACTIVE NEAREST NEIGHBOR SPIN SYSTEMS
ON THE INTEGERS!

By THOMAS M. LIGGETT
University of California, Los Angeles

We prove that an attractive nearest neighbor spin system on the in-
tegers has at most two extremal invariant measures, provided that its flip
rates satisfy a mild positivity condition.

1. Introduction. Stochastic spin systems have been studied extensively in
recent years (see [11] for a survey of results and a bibliography). Many of the
results have been concerned with the problem of determining when such a system
is ergodic, i.e., when it has a unique invariant measure to which the distribution
of the process at time ¢ converges as ¢ tends to infinity. Relatively few of the
results have described the behavior of the system when it is not ergodic. Among
the papers which do consider the nonergodic case are [1], [3], [4] and [6]. In
the present paper, we will prove that certain processes can have at most two
extremal invariant measures. The proof will be based on coupling techniques
similar to some of those which were used in [10] to determine the set of all
invariant measures for certain asymmetric exclusion processes. One of our
purposes is to illustrate the application of these techniques to spin systems.

In order to describe the processes we will consider, let X = {0, 1} with the
product topology, where Z is the set of integers, and let ¢(x, 7) be a nonnegative
translation invariant function on Z X X which satisfies:

(1.1) Nearest neighbor assumption: c(x, 7) depends on » only through »(x),
n(x — 1) and y(x + 1);

(1.2) Attractiveness assumption: if » < {, then ¢(x, 7) < ¢(x, §) for »(x) =
€(x) = 0, and ¢(x, ) = ¢(x, §) for p(x) = {(x) = 1;

(1.3) Positivity assumption: c(x, 7) + ¢(x, 7,) > 0 for each 7, where 7,(x) =
1 — 7(x), and 2,(y) = 5(y) for y # x.

The spin system 7, with flip rates ¢(x, ») is the Feller process on X whose generator
is the closure in C(X) of the operator

Qf(n) = 2. e(x, D f(n.) — )]+

which is defined for functions f which depend on finitely many coordinates.
The existence and uniqueness of this process was proved in [9]. S(¢) will denote
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both the corresponding semigroup on C(X), and the dual semigroup on the space
of probability measures on X.

The attractiveness assumption, which was introduced and exploited by Holley
in [5], leads to several important monotonicity properties. Let v, and v, be the
pointmasses on 7 = 0 and = 1 respectively. Given two probability measures
¢, and g, on X, say that g, < p, if there is a probability measure v on X x X
with marginals ¢, and g, respectively such that v{(y, {): < {} = 1. Then Holley
used coupling techniques to show that v,S(7) increases and v, S(f) decreases in ¢,
and therefore that the weak limits 9, = lim,_, v,8(f) and 5, = lim,_,, v, S(?) exist
and are invariant for the process. Furthermore, he showed that if 5, = 9,, then
the process is ergodic. In fact, if ¢ is any invariant measure, then v, < ¢ < 5,.

Let 7 be the set of probability measures on X which are invariant for the
process, and let _#, be the set of extreme points of _#. It is clear that 5, 5, € _Z,,
since for example if 5, = ay, + (1 — a)y, for p, p,e . and 0 < @ < 1, then
t <o and g, <9, s0 g, = p, = 0,. Our result then is

THEOREM 1.4. Under assumptions (1.1), (1.2) and (1.3), 7, = {5,, 1,}.

This theorem is of relatively minor interest in case c(x, 7) > 0 for all 7, since
then it is probably true that v, = 5, although the proof of this remains an open
problem. If ¢(x, ) is zero for some 7, on the other hand, then it is possible for
v,and p, to be different, and it is in that case that the result is most interesting.
One simple case to which our theorem applies where it is easy to see that 5, + 5,
is that in which ¢(x, ») = 0 for » = 0 and » = 1, since then 5, = v, and p, = v,.
The nearest neighbor one dimensional voter model [6] is one such case in which
the conclusion of Theorem 1.4 has been obtained using other techniques. A
more interesting class of examples is provided by Harris’ contact processes [2],
in which ¢(x, 7) = 1 if (x) = 1and ¢(x, ) = A[p(x — 1) + p(x 4 1)] (the sym-
metric case) or ¢(x, 7) = Ay(x + 1) (the one-sided case) if 7(x) = 0. Then 5, = v,
of course, and 5, # v, for sufficiently large values of 2 ([2], [4], [7]). Itisin this
context that Griffeath [1] raised several questions which are partially answered
by our result.

In [1] and [4], most results concerning the nonergodic case were proved under
the assumption that 2 be sufficiently large, and did not cover all values of A for
which the process is nonergodic. (Similar assumptions occur frequently in the
statistical mechanics literature.) One interesting feature of our theorem is there-
fore that it applies to all values of the parameter. In [1], Griffeath proved a
stronger result than that in Theorem 1.4 for the symmetric contact process with
Asolarge that the one-sided contact process is not ergodic. In [3], Harris proved
for a class of processes which overlaps but does not contain the ones we are
considering, that all invariant measures which are also translation invariant are
convex ‘combinations of 5, and »,.

It would be very interesting to remove the nearest neighbor assumption in
Theorem 1.4. It would have to be replaced by some type of irreducibility
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assumption, since the conclusion of the theorem is false for the process with
e(x,7) =1 for p(x) =1 and c(x, 9) = Ap(x — 2) + p(x + 2)] for p(x) = 0,
provided that 2 is sufficiently large. Our techniques seem not to suffice outside
of the nearest neighbor case. Theorem 1.4 cannot be extended to processes on
Z¢ for d = 3, since the voter model [6] and the stochastic Ising model provide
counterexamples. It would be very interesting to determine whether the result
is true for Z%. Ifitis, that would solve a problem in statistical mechanics which
is apparently still open. As was pointed out to me by David Griffeath, some type
of irreducibility assumption or strengthened positivity assumption would have
to be imposed in two dimensions to eliminate the following types of counter-
examples: (a) ¢(x, y) = 0 whenever three or four neighbors of x are the same
as 7(x), since then configurations which are one on one side of a vertical (or
horizontal) line and zero on the other are absorbing; (b) c(x, 7) depends only
on the neighbors directly above or below x, so that the process is not genuinely
two dimensional; and (c) the example at the end of [8].

Section 2 is devoted to the proof of Theorem 1.4. In Section 3, we state an
analogous result for discrete time processes, and indicate briefly how to modify
the proof in Section 2 to obtain it. The discrete time theorem resolves the
conjecture stated just before the Theorem in the introduction of [12], and gives
some information regarding the problem mentioned at the end of [13]. I want
to thank David Griffeath for encouraging me to work out the discrete time
version of these results, and for providing me with references [12] and [13].

2. The proofs. Before turning to the proof of Theorem 1.4, we will illustrate
our technique by sketching a coupling proof of Griffeath’s complete convergence
theorem for symmetric contact processes [1]. Consider the symmetric contact
process 7, described in the introduction, and let 2 be so large that the one-sided
contact process with that 2 is nonergodic. Griffeath’s result is that for any
ne€ X, 9,8(t) converges to (1 — a)y, + as,, where a = P7[y, % 0 for all 5] and
9, is the pointmass at 7. We will prove this for an initial configuration consisting
of only one particle, since the general case is similar. The standard coupling
of two copies 7, and ¢, of the process with 7,(0) = 1, y,(x) = 0 for x = 0, and
Co = 1 has the property that for each ¢, either », = 0 or there are integers L,
and R, such that 9,(L,) = 7,(R,) = 1, 7,(x) = {,(x)for L, < x < R,,and ,(x) = 0
for x < L,and x > R,. Since the corresponding one-sided contact process is
nonergodic, L, — —oo and R, —» —oo a.s. on {y, % 0 for all s}. Therefore

Py (x) = {,(x) for all large ¢|75, = 0 for all 5] =1

for each x, and hence the result follows from the fact that the conditional distri-
bution ({, |7, # 0) converges to 5,. The key point is that the number of regions
into which Z is decomposed by the requirement that », = 0 or 7, = {, on each
region is nonincreasing in f, and therefore is at most three for all z. It is this
type of monotonicity which we will exploit.
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Throughout the rest of this section, we will assume that

(2.1) ¢ = min {min, [¢(x, 7) + ¢(x, 7,)], 2¢(x, 1) + ¢(x, 0,_,) + ¢(x, 0,,,),
2¢(x, 0) + e(x, 1,1) 4 ¢(x, 1,,)} > 0,

where 0 and 1 are the configurations which are identically zero or one respec-
tively. If (1.3) holds and ¢ = 0, then either the second or third term in the
definition of ¢ is zero. If ¢(x, 1) = ¢(x,0,_,) = ¢(x,0,,,) =0, for example,
then it is easy to see directly that if there are ever two consecutive zeros in 7,
then the distribution of the process converges to v,, while if there are never two
consecutive zeros in 7,, then the distribution of the process converges to v,.
Therefore Theorem 1.4 holds in that case, and we may assume that ¢ > 0.

The technique of proof involves coupling together several copies of the spin
system in an appropriate way, and then studying the resulting coupled process.
This will be done twice, and in each case, the coupling is chosen in such a way
that the copies which agree at a given x at a given time, will flip together as
much as possible, subject to the constraint that each copy be Markovian with
semigroup S(r). The coupling is a simple extension to several processes of the
“basic coupling” which is described in [11] and which has been used extensively
by several authors. In our main application, three processes 7,, 7,, and ¢, are
coupled in such a way that 5, <y, < {, for all # > 0. The coupled process is
then a Feller process (7,, 7., ) on X; = {(7, 7, {) € X*: y < r < {} whose flip
rates are given by the following table.

(0, 0, 0) (0,0, 1) ©,1,1) (1,1, 1)
(0,0,0) — ex, &) —e(x, 1) e(x,7) —e(x,m)  o(x,7)
0,0,1) ¢, ¢) — e(x7) —e(xm)  e(x, )
O, L, 1) ex,C) elx,7) = e(x, €) — e(x, 7)

(LL1) o0  cxnp)—end) ey —cxy)  —

For example, the third row is to be read as follows: if 7,(x) =0, 7,(x) =1,
Ci(x) = 1, then y,(x) and {,(x) will flip to zero together at rate c(x, {,), r,(x) will
flip to zero alone at rate ¢(x, r,) — ¢(x, {,), and z,(x) will flip to one at rate
¢(x, n,). Note that the attractiveness assumption (1.2) guarantees that all the
entries in the table are nonnegative. Also, the marginal processes 7,, 7,, and
C; are separately Markovian with the transition law of the spin system with flip
rates ¢(x, 7). Let Q be the generator of the coupled process (7,, 7,, {,), and put

Wi={mnreXsin=7}, W,={nnleX:r=1_}
Wy ={(n 1, C}e X,: there isan xe Z so that 5(y) = y())

for y < x and y(y) = {(y) for y > x},
We=A{(71,{) e X,: thereisan xe Z so that p(y) = 7(y)

for y > x and 7(y) ={(p) for y < x}.

In what follows, it is suggested that the reader keep in mind the case in which
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¢(x,7)=0ifp=0o0rp=1, and set », = 0 and {, = 1. The key ideas of the
proof are much easier to see in this case, and of course, 5, = v, and 5, = v,.

LeEmMMA 2.2. If the probability measure v on X is invariant for (y,, 1, ,), then
v(W,u W, u Wy u W) = 1. If v is extremal invariant, then w(W,) = 1 for some
i=1,2,3,4.

ProoF. For m < n and [ > 1, define functions f,, , and ¢!, , on X, in the

following way: Let m < x, < x, < --- < x, < n be all those x’s between m
and n for which {(x) = 1 and »(x) = 0. Then
fm,n(v’ 7> C) =0 if k=0

= 1 + number of i such that y(x,.,) # 7(x;) if k=1,
and
947, 7, () = number of i suchthat i>1, i+ [+ 1<k, and
T(X) # 1(Xisr) = 7(Xira) = -+ = 1(Xep)) F 7 (Xiia4a) -
Thus f, , is the number of strings of zeros or ones in y between m and n, where

7 is only observed at points at which { and 7 differ, and ¢!, , is the number of
interior strings of length /. Note that

(2-3) S 12 0) £ 24 o 0 15 C)
(2.4) S ot () Sn—m+ 1,

and f,, , and ¢!, , are increasing functions of n and decreasing functions of m
for all (7, 7, {) € X,. The first conclusion of the lemma can then be restated as
§gmndv=0forl =1, m < n. Sincev is invariant and f,, , and ¢, , are in the
domain of Q, § Qf, ,dv = 0and | Qg’, ,dv = 0. A somewhat tedious computa-
tion of these expressions leads respectively to the following two inequalities,
where ¢ is as in (2.1) and K = max, c(x, 7):

(2.5) 26 (g nd S K§ [fooin + frnss — 2fmnl @y,
(2.6) e gitidy < 4Kl g, dv for [>1.

While the complete computations are tedious, it is not hard to see why they
imply these inequalities. To obtain (2.5), one should observe (a) thatf,, ,(7,,7.,¢,)
can only increase via a flip at m or n, and it increases via a flip at m only if
Sm-1,n > fm,n» and via a flip at nonly if f,, .., > f,. ., and (b) that £, .(9,, 7., C,)
can decrease by two via a flip at each x; for 1 < i < k for which y(x,_,) # r(x,)
and y(x,,,) # 7(x;), and that the rate at which that flip occurs is at least . In
fact, the reason that f, , is a particularly useful function to consider is that it
can only increase via flips at m and n, while it can decrease via flips at all x
between m and n. It is here that we need to make the nearest neighbor assump-
tion (1.1). To obtain (2.6), note (a) that g, .(7;» 74> €,) can only decrease via
flips at at most lg?, , x;’s or their neighbors, and that the rate at which this occurs
is at most 2K at an x; and at most K at the neighbor of an x,, and (b) that



634 THOMAS M. LIGGETT

Im (7 70> €,) can increase at at least g} sites or pairs of sites at a total rate for
each pair which is at least ¢. To check the last statement, observe for example
that if # < v are such that y(y) = land 9(y) = Oforu < y < vandp(u — 1) =
7(v + 1) = 1, then there is a flip at » or v at rate 2¢(x, 1) + ¢(x, 0,_,) + ¢(x, 0,,,).

Now, since fo,_1 . + fani1 < 2fm.n + 2, (2.5) gives sup,.<, § Omndv < oo, and

then repeated use of (2.6) gives sup,,., § g%, . dv < oo forall/ = 1. Inequalities
(2.3) and (2.4) together yield

fm,n i 1 2 L l
n_m+1 L+n_m+1[+21=1gm,n]

A

forall L = 1, solim,_,, ., 1/(n — m){f, ,dv=0. Therefore
. 1 _
llmN_.oo ]’Va Zo ==—N+1 Z'ft\;ol S [fm—l,n +fm,n+1 - 2fm,n] le
. 1
< lim,_, N (X2 Sf—zv,n v+ Yoy Sme ] =0,

so lim,, . o.pie § Oh.ndv = 0 by (2.5) and the monotonicity of g;, , in mand n.
Using this monotonicity again gives § g}, ,dv = 0 for all m < n, and then (2.6)
implies § g%, ,dv = 0 for all m < nand [ > 1, which completes the proof of the
first part of the lemma. The second part follows from the fact that for each i,

PTO[(,, 1, C) e Wi = Lif (3, 7, C) e W
PRrROOF OF THEOREM 1.4. Let p, € 7, and let y, be the translate of y, defined
by
tofn:p(x) =1 for xeT} = pi{p: p(x + 1) =1 for xe T}

for finite T C Z. Then p, € 7, also. Consider the coupled process (,, 7.}, 7,,¢,)
on X, ={(p, %8 eX*: np <7, r* < {} which is constructed in a manner
analogous to the one described at the beginning of this section. Then (7,, 7.}, {,)
is Markovian for i = 1,2 and has generator Q. Since 5, z,, Uy, D1 € F, and
Uy = s ¢y = ¥, there is a probability measure v on X, with marginals oy, g,, p,, 9,
which is extremal invariant for (y,, 7., 7,% ¢,). The proof of this is the same as
the proof of Lemma 2.3 of [10]. Let v and v® be the measures on X, which
are obtained from v via the projections (», 7%, 72, §) — (7, 1, {) and s rh8) —
(7, r*, €) respectively. Then by Lemma 2.2, v®(W,) = 1 for some iand v (W) = 1
for some i. Since g, and y, are translates of one another, it is easy to see that
if v, # 9, then there is one i for which both v»(W,) = 1 and v®(W,) = 1. (If
9, = b,, then the entire theorem is trivial, of course.) Supposei = 3 or4. Then
(@ 7 7% ©)F T lr'(®) — 1%(¥)| < oo} = 1. Note that Porro(pt = 2 = 1,
and that (2.1) implies that P77y 1 = % > 0 for # > 0 whenever Y, |r(x) —
7%(x)] < ‘co. Therefore, since v is invariant, it follows that vi(p, % 1% €):
r* = r’} = 1, which is impossible if i = 3 or 4 and v, = v, Hencei =1 or 2,
SO p; = 9, or p; = b,, which completes the proof of the theorem.
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3. Discrete time. Let o, (7) be translation invariant on Z X X and satisfy
0 < o,(y) = 1. The discrete time spin system corresponding to {o,(7)} is the
discrete time Markov chain 7, on X with transition law given by

Pﬂ[’?l(") = 1’ x€ T] = HzeT Pz(’?) ’

for finite subsets T of Z. We will make the following assumptions:

3.1 Nearest neighbor assumption: either (a) p,() depends on 7 only through

7(x) and »(x 4 1), or (b) p,(») depends on 7 only through »(x — 1) and »(x + 1)

if 7(x) = 0, and is constant if »(x) = 1.

(3.2) Attractiveness assumption: p,(7) < p,(¢) for » < C.

(3.3) Positivity assumption: either p,() > 0 for all » or p,(3) < 1 for all 7.
THEOREM 3.4. Under assumptions (3.1), (3.2) and (3.3), .7, = {5,, ,}.

The proof of this result is very similar to that of Theorem 1.4, so most of it
will be omitted. The main change is that relations (2.5) and (2.6) are replaced

by
(35) 2 lel e S gi»,» dv = S [fm—l,n +fm,»+1 - 2fm,n] dv

where ¢ = 1 — max, p,(y) + min, p,(7), which is positive by (3.3). Inequality
(3.5) follows from

POy (x) = 7y(x) = C(x)] = ¢
where (7,, 7., {,) is the analogous coupled discrete time process.

Assumption (3.1) above appears to be somewhat unnatural, so some remarks
may be helpful. The role of this assumption is to guarantee that f,, , can only
increase via a flipat mor at n. To see this, suppose » =0, { = 1, and r(x)=1
ifx < 0andy(x) =0if x > 1. Thenf, , =2form < 0 < n. If p,(y) is allowed
to depend on 7 through »(x — 1), 7(x) and 5(x + 1), then after one transition,
it is possible to have flips at 0 and 1 in such a way that f,, (7, 7,, {,) = 4 for
negative m and positive n. Assumption (3.1) makes this impossible. In con-
tinuous time, (1.1) suffices because only one flip occurs at a time.

In fact, as was pointed out in [12], Theorem 3.4 does not hold if (3.1) is re-
placed by the requirement that p () depend only on 5(x — 1), (x) and p(x + 1).
Their counterexample is given by

p(n) = (1 = O)n(x — 1) + 7(x + 1) — 7(x — Dp(x + 1)].
For small 4, there is an invariant measure which is not translation invariant,
but does have period two under translations in Z. Our techniques can be used,
however, to show that for all # in this example, either the process is ergodic
or there are exactly three extremal invariant measures: 5,, 5;, and the measure
which is the limit in ¢ of vS(¢), where

v{n(2x) = 1, p(2x + 1) = 0 for all x}
=v{p(2x) = 0,92x + 1) =1 forall x} = 4.
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The conjecture in [12] which is resolved by our result pertains to the spin

system with p,(7) = (1 — 6)[n(x) + n(x + 1) — n(x)n(x + 1)]. There it is proved
that the process has at most two extremal invariants which are translation
invariant.
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