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ON THE BEHAVIOR OF CHARACTERISTIC FUNCTIONS
ON THE REAL LINE!

By STEPHEN J. WOLFE

University of Delaware and Technological University, Eindhoven

This paper is concerned with the following question: if a characteristic
function satisfies a certain property at the origin, what can be said about
its behavior on the entire real line? If k is an even integer and f(u) is a
characteristic function, then the existence of f¥)(0) implies the existence
of fib(u) for all u. If k is an odd integer, then it is possible to construct a
characteristic function f{x) such that f%)(0) exists but fi*)(u) fails to exist
for almost all . However the existence of f((0), when k is odd, implies
that f(u) satisfies a kth order smoothness condition uniformly on the real
line and thus f(x) has many of the properties of a characteristic function
with a continuous kth derivative. Several other results are obtained that
show that if a characteristic function has a property P at 0 then it either has
the same property everywhere on the real line or comes close to having the
property everywhere.

1. Introduction and summary. Let g(x) be a function and let A,'g(x) be the
kth symmetric difference of g at 4, i.e., Aigu) = Sk, (—1)i(*)glu + (K — 2i)].
The function g(x) is said to be smooth at u if A'g() = o(r) as t — +0. More
generally, the function g(x) is said to satisfy a smoothness condition s, at u if
At,,g(u) = o(t*) as 1 — +0. The function g(u) is said to satisfy condition s,
uniformly on a subset D of the real line if A}, g(¥) = o(t*) as t — +0 uniformly
for ue D.

The concept of a smooth function was first introduced by Riemann [6] in
conjunction with a problem in trigonometric series. Properties of smooth func-
tions were later studied by Rajchman and Zygmund. A detailed discussion of
their work can be found in [10]. It is easy to see that if a function g(u) is
differentiable at u, then it is smooth at u,. If g(x) has a derivative of the kth
order at u, then g(u) satisfies a smoothness condition s, at u,. This result can
be proved by using I’'Hopital’s rule and the fact that 3t ,(—1)i(})i* = 0 if
1 < s <k — 1. However a function g(«) can satisfy a smoothness condition s,
at u, and not have a kth derivative at u,.

Relationships between the asymptotic behavior of a distribution function and
the behavior of its characteristic function near the origin have been studied by
the author and others. A description of this work can be found in [7]. This
paper will be concerned with the following question: if a characteristic function
satisfies a certain property at the origin, what can be said about its behavior
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on the rest of the real line? This work is of importance in probability theory
because of its relationship with limit theorems. We give an example here. Let
{X,} be a sequence of independent, identically distributed random variables with
a distribution function F(x) and a characteristic function f(#). The random
variables satisfy the strong law of large numbers if and only if F(x) has an
absolute moment of the first order. The random variables satisfy the weak law
of large numbers if and only if f(#) has a derivative of the first order at the
origin. It follows that if u; is an arbitrary number, the random variables will
not satisfy the strong law of large numbers if f’(4,) does not exist. It also follows
from a result in this paper that the random variables will not satisfy the weak
law of large numbers if either the real or imaginary part of f(u) fails to be
differentiable in a neighborhood of u,.

Let F(x) be a distribution function with a characteristic function f(u). Ifkis
a positive even integer, the existence of f*(0) implies the existence of the kth
absolute moment of F(x) and thus the existence and continuity of f*(u) for all
real u. If k is a positive odd integer, the existence of f*'(0) does not imply the
existence of the kth absolute moment of F(x). In a previous note [9] it was
shown by the author that if k is a positive odd integer, then it is possible to
construct a characteristic function f(x) such that f*(0) exists but f*(u,) does
not exist for a sequence of numbers {u,} where u,, — 0 as m — co. The con-
struction of this example depends on a theorem of Boas [2]. In Section 2 of
this paper, a theorem concerning lacunary trigonometric series will be used to
show that if k is a positive odd integer then it is possible to construct a char-
acteristic function that has the property that f%*(0) exists but f*)(u) fails to exist
almost everywhere.

Let k be an odd integer. Although the existence of f*(0) does not imply the
existence of f*(u) for all 4, quite a bit can be said about the behavior of such a
characteristic function on the real line. It was shown in [7] that if [ is a posi-
tive even integer and 0 < 2 < [ then 1 — F(x) + F(—x) = o(x™*) as x > + o0
if and only if A/f(0) = o(¢*) as t - 0+4. By a similar argument, it can be
shown that if 1 — F(x) + F(—x) = o(x~?) as x — 4o then A/'f(u) = o(t*)-as
t — 0+ uniformly in 4. It follows that if f(u) satisfies the smoothness condition
s, at O then f(u) satisfies the condition s, uniformly on the real line. Thus the
existence of f*(0) implies that f(u) satisfies condition s, uniformly on the real
line. In other words characteristic functions that have a derivative of the kth
order at 0 have many of the properties of characteristic functions that have a
continuous derivative of the kth order on the entire real line.

A related result can be obtained using fractional derivatives. The derivative
of the ath order of f(u) will be defined to be

@(y) — a w S1) = fx) i a
f (u)_l"(l—a)s_” ) dx fO<a< 1and

fow) = 4 e w)
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if @ = 1 and n is the largest integer less than or equal to . This definition of
a fractional derivative was originally given by Marchaud [5]. The author has
shown [8] that if F(x) has an absolute moment of the ith order then f(u)
exists and is continuous on the entire real line. He also gives a formula that
expresses the ith absolute moment of F(x) in terms of f¥(u).

Let k be an odd integer, let 0 < 2 < k, and let F(x) be a distribution function
with a characteristic function that satisfies the relationship A%,, f(0) = o(t*) as
t— 40. Then | — F(x) + F(—x) = o(x7*) as x — oo, F(x) has an absolute
moment of the Ath order, and f¥(u) exists and is continuous on the entire real
line. Thus if k is an odd integer and f(u) is a characteristic function, the exist-
ence of f*(0) implies that f¥(u) exists and is continuous for 0 < 2 < k.

In Sections 3 and 4 the polynomial approximation of characteristic functions
will be discussed. It is well known that if k is an even integer and if the char-
acteristic function f(u) of the distribution function F(x) admits the expansion
Sty =14+ ¥+ C,t/jt + O(t*) as t — O then F(x) has an absolute moment of
the kth order. A proof of this statement can be found in [4]. The author
showed [7] that if k is a positive integer and k < 2 < k + 1 then the character-
istic function f() admits the expansion () = 1 + 3%, C,t9/j! 4 o(|t|))ast — 0
if and only if 1 — F(x) + F(—x) = o(x™*) as x — oo. This statement remains
true if o is replaced by 0. Boas [2] proved that a characteristic function f() has
the property that §57-|f(f) — 1| dt < co for some ¢ > 0 if and only if its distri-
bution function F(x) has the property that {In* |x|dF(x) < oo and that a
characteristic function f(u) has the property that {71 f(r) — 1|dt < co for
some ¢ > 0, where 0 < 2 < 1 if and only if its distribution function F(x) has
the property that (= |x|* dF(x) < oco. This theorem can be generalized. If k is
a nonnegative integer and if k < 2 < k + 1 then f(x) admits an expansion
Sty =1+ 3k, C,ti[j! + R(r) where {5 1=*-1|R(f)| dt < oo for some ¢ > 0 if and
only if {=, |x|* dF(x) < oco. If k is a nonnegative even integer then f(x) admits
an expansion f(t) = 1 4+ Yk_, C,ti/j! 4+ R(t) where {§t=*~*|R(t)| dt < oo for some
¢ > Oifand onlyif {*_ x*In* |x| dF(x) < oo. Ifkisa positive odd integer then f(x)
admits an expansion f(r) = 1 + Y%, C,ti/j! 4+ R(t) where {§t=*~!|R()| dt < oo
if {=, |x|* In* |x| dF(x) < oo. The converse of the previous statement is true if
F(x) = 0 for x < 0 but is not true in general. By using arguments similar to
those used in [7], it is possible to prove the following three theorems:

THEOREM 1. Let k be a positive even integer. If the characteristic function f(u)
admits the expansion f(t) = 1 + Y %21 C,t//j! + O(t*) as t — O then

flu+ 0y = 3k fOW)E)N + o(t%) as t—0
uniformly for all real u.

THEOREM 2. Let k be a positive integer and let k < 2 < k + 1. If the charac-
teristic function f(u) admits an expansion

fO) =1+ Tha Cityfft +o(ltf)  as =0
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then
fu 1) = Theo fOWE +o()  as 10

uniformly for all real u. This statement remains true if o is replaced by 0.

THEOREM 3. Let 2 be a positive real number that is not an odd integer and let k
be the largest integer that is less than or equal to 2. If the characteristic function
f(u) admits the expansion

() =14 X5, G0t + R()
where (§t=2=1|R(t)| dt < oo for some ¢ > O then

S+ 0 = X O] + S(u, 1)
where corresponding to every C>0 there exists an ¢’ >0 such that ;'t=*=1|S(u, t)|dt < C
for all u.

The author has studied the relationship between the asymptotic behavior of
distribution functions and the behavior of symmetric differences of their char-
acteristic functions at the origin. It was shown in [7] that if 0 < 2 < I where
[ is a positive even integer then A/f(0) = o(#*) as t+ — +0 if and only if
1 — F(x) + F(—x) = o(x™*) as x —> +oco and {;~*~A}f(0)| df < co for some
¢ > 0 if and only if {>, |x|*4F(x) < co. The first relationship is true if o is
replaced by 0. By using a similar method of proof, it is possible to obtain the
following result.

THEOREM 4. Let | be a positive even integer, let k be an integer such that
0 < k <, and let 2 be a real number such that k < 2 < l. If the characteristic
function f(u) admits the expansion

(1) fi) =1+ 55, Cf + R()
where AR(0) = o(t*) as t — 40 then
@ fu+ 1) = Tl fP@P + S, 1)

where A'S(u, 0) = o(t*) as t — 40 uniformly in u. This result remains true if o is
replaced by 0. If f(u) admits anexpansion of the form (1) where {5 1=*=%|A,*R(0)| dt < oo
then (2) holds where corresponding to every C > 0 there exists an ¢’ > 0 such that
s t=*=1A,'S(u, 0)| dt < C for all u.

In the above theorem the symmetric difference of S(u, 1) is taken with respect
to the second variable. Theorems 1 to 4 will be proved in Section 3.

Let k be an odd integer. In view of the example in Section 2, if a character-
istic function f(#) admits the expansion f(rf) = 1 + Y %_, C,t9/j! + o(*)ast —0
then it need not follow that f(u + ) = 1 4+ Yk, f9(u)ti/j! + o(t*)ast — O for
all real u. However it is possible to use theorems concerning smooth functions
to obtain weaker results. In Section 4 the following theorems will be proved.

THEOREM 5. Let k be a positive odd integer and let f(u) be a characteristic function
with real part ¢(u) and imaginary part (u). If f(u) satisfies a smoothness condition
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s, at O then there exists everywhere dense subsets D, and D, of the real line that both
have the power of the continuum such that

du+ 1) = Xk )tk k! + o(t¥) as t—0
uniformly in D, and

P+ 1) = 2h_ oD (u)rk[k! + o(t%) as t—0
uniformly in D,.

CoROLLARY 5. The conclusion of Theorem 5 holds if the characteristic function
f(u) admits an expansion

)y =1+ Xk, Ctifjt + o(t¥) as t—0.

THEOREM 6. Let k be a positive odd integer. If f(u) satisfies a smoothness con-
dition s, at the origin [i.e., if AL, f(u) = o(t*) as t — O] then

flu + 0y = 2k23 fOu)t]j! + o(t*Int) as t—04
uniformly in u. This theorem remains true if o is replaced by 0.
COROLLARY 6. Let k be a positive odd integer. If f(u) admits an expansion
[y =14 3% Citk + o(th) as t—0+

then the conclusion of Theorem 6 holds.

It should be noted that in Theorem 1 the hypothesis that f(r) =1+ > 1421 C, ¢7/j! +
O(t*) as t — 0 can be replaced by the hypothesis that the real part of f(u) satisfies
the same requirement. Similar results hold for the other theorems and their
corollaries.

If the characteristic function f(x) admits an expansion of the form f(r) =
14+ 255 C 00 4+ O(t*) as t — 0 where k is a positive even integer then
fu 4+ 0= 3k, fPw)t]j! 4+ o(t*) as t — 0 uniformly in u. In Section 5, an
example will be constructed to show that if k is a positive odd integer then it is
possible to construct a characteristic function f() that has the property that it
admits the expansion f(r) = 1 + %21 C,#7/j! + O(t*) as t — O but it is not true
that f(u + 1) = Yk, fPu)t[j! 4+ o(t*) as t — O for any value of u.

2. An example. A lacunary trigonometric series is a series of the form
i1 (@, cos myx 4+ b, sin n, x) where the n, satisfy the inequality n, ,,/n, > ¢ > 1
for all k. It can be shown (see [1], Volume II, page 241 or [12], Volume I, page
203) that a lacunary series converges almost everywhere if > 7, (a,* + 5,%) < oo
and diverges almost everywhere if 375, (a,* + b,?) = oo. It can also be shown
that if 4, — 0 and B, — O then the set of points where the series converges is
identical to the set of points where the integrated series possesses a derivative
and that the integrated series is uniformly smooth on [0, 27]. These results will
be used to show that if k is a positive odd integer then it is possible to construct
a characteristic function f(u) such that f*(0) exists but f*(u) fails to exist for
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almost all values of u. Only the case k = 1 will be considered as the result can
be generalized easily.

Let {n,}7_, be a sequence of numbers such that n,,,/n, > ¢ > 1 forall k. Let
{P.}r-_. be a sequence of numbers such that kP, — 0 and kP_, — 0 as k — oo,
P,z 0forallk, ;5. ,P,=1,and P,=0. Thenf(u)= 35 [(P,+P_,)cosn,u+
i((P, — P_;)sin n,u] is a characteristic function that is uniformly smooth on the
real line. If 3¢, m*P, — P_,)* = oo both the real part and imaginary part of
f(u) are not differentiable almost everywhere. If 2, n*P, — P_,)* < oo but
2= (P 4+ P_,)* = oo then the imaginary part of f(u) is differentiable almost
everywhere but the real part of f(u) is not differentiable almost everywhere. If
2 M (P, + P_,)* < oo then both the real part of f(x) and the imaginary part
of f(u) are differentiable almost everywhere. Also f’(0) exists if and only if
limy ., 21K, n (P, — P_,) exists.

For example, let n, = 2¥and let P, = P_, = C/2*k* where C is properly chosen.
Then f(u) is a uniformly smooth real characteristic function that is differentiable
at the origin but not differentiable except on a set of measure zero.

3. Proof of Theorems 1—4. Let F(x) be a distribution function with char-
acteristic function f{t), let G(x) = F(x) — F(—x) and let

S(u, t) = f(u + nH — ;€=0f“"(u)tf/j! .
fy =1+ DECH[ + 0@ as 10,

where k is an even integer then F(x) has an absolute moment of the kth order.
Since

If

e — Zi—a (W0Y[j] < 60™*/(n + 1)!
(see [3], page 512) it follows that
IS, )] < §5 e e — Kk, (ixt)ijt]] dG(x)
= (9 le™ — iz (xey ! dG(x) + §F (x0)*/k! dG(x)
= 0([") as t—0
and Theorem 1 is true.

If k is a positive integer, k < 2 < k + 1, and f(#) admits an expansion
f)y =14+ 3%, C;ti/j' 4+ o(|t*|) as t — 0. Then it follows from Theorem 3 of
[7] that 1 — F(x) + F(—x) = o(x"%) as x — oco. An argument similar to that
used in the proof of Theorem 1 can be used to prove Theorem 2.

Let [ be a positive even integer, let k be an integer such that 0 < k < /, and
let 2 be a real number such that k < 2 < [. If

(3) fit) = 1+ S5 C8[t + R(7)

where (§1-7-YR(1)|dt < oo for some ¢ >0 then it follows easily that
§627*1A4,'R(0)| dt < oo and thus F(x) has an absolute moment of the th order by
Theorem 2 of [7]. Iff(x) has an expansion of the form (3) whereA,tR(0) = o (%) as
t — +0 then it follows from Theorem 1 of [7] that 1 — F(x) + F(—x) = o(x~%)

as X — oo.



560 STEPHEN J. WOLFE

Assume that the hypothesis of Theorem 3 holds. Two cases must be con-
sidered. If Zis not an integer and k is the largest integer less than 2 then

§ 1718, )] dr < §5 T et — Tk, ((ix)7)jt)] de] dG(x)
= {5 X557 (™ — Zi-o (()I1y*)] dy] dG(x) .

If h(y) = (e — X ko ((y)[j1)/y**", it follows from Feller’s lemma that |A(y)| <
y¥=%/k! for small y, Thus §¢ |h(y)|dy < co and the conclusion of Theorem 3
follows.
If the hypothesis of Theorem 3 holds, where k is an even integer and 2 = k
then
(R dr = §5 172, et — S (X)) dF(x)] di

= 1555 (€ — Zhoo ()Y )] dy dG(x) -

But there exists a constant 4 > 0 such that

(e — 25= ())[y**'| > Ay for large y.
Thus it follows that
{*. x*¥In* x dF(x) < oo .

The conclusion of Theorem 3 now follows from an argument similar to that
used in the proof of the first case.

Assume that / is a positive even integer, k is an integer such that 0 < k < [,
and 2 is a real number such that k < 2 < I. If the characteristic function f(u)
admits the expansion

f6) = 1+ T4, C,05 £ R(Y)
where A/'R(0) = o(t*) as t — +0 then
|48, 0)] = |AHf(u)] = 2%|(=. e=*(sin xt)} dF(x)| < 2" (>, (sin xt)! dF(x)
= Af(0) = AR(0) .

Thus it follows that A:S(u, 0) = o(#*) as t — +0. The proof of the second part
of Theorem 4 is similar.

4. Proof of Theorems 5 and 6. Rajchman proved that if a function g(x) is
continuous and smooth in an interval (a, b) then the derivative g’(x) exists and
is finite on an everywhere dense set of points of that interval. This result was
strengthened by Zalcwasser who showed that if g(x) is continuous and smooth
on (a, b) then the set of points of differentiability of g(x) is of the power of the
continuum in every subinterval of (a, b) This proof, that can be found on
page 45 of Volume 1 of [10], can be altered to show that if g(x) is continuous
and uniformly smooth in an interval (a, b) then there exists an everywhere dense
subset D that is of the power of the continuum in every subinterval of (a, b)
such that g(u + 1) = g(¥) + ¢’'(#) + o(t) as t — O uniformly for all u in D. The
result can be used to prove Theorem 5.

Assume that f(x) is smooth at the origin. Then 1 — F(x) + F(—x) = o(x™)
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as x — 4 oo and f(u) is uniformly smooth on the real line. It follows that both
the real and imaginary parts of f(u) are uniformly smooth on the real line and
that the conclusion of Theorem 5 holds.

Suppose that f(u) satisfies a smoothness condition s, at the origin where k is
an odd integer greater than one. Let g(u) = f*~"(u)/f*~"(0) and let G(x) be the
distribution function that has characteristic function g(x). The fact that f(u)
satisfies a smoothness condition s, at 0 implies that 1 — F(x) + F(—x) = o(x7¥)
as x — +oo and thus 1 — G(x) + G(—x) = o(x™") as x — + oo and g(u) is uni-
formly smooth on the real line. Thus there exists an everywhere dense subset D,
of the real line that is of the power of the continuum in every subinterval such
that ¢~ V(u + 1) = ¢*V(u) + ¢¥(u)t + o(t)ast — Ouniformly for uin D, where
&(u) is the real part of f(u). It follows that ¢(u + 1) = 3 %_, ¢V (u)t?/j! 4 o(t*) as
t — 0 uniformly for  in D,. A similar result holds for the imaginary part of f(u).

If the characteristic function f(#) admits an expansion f(¢) = 1 + Y%, C,#9/j! 4
o(t*)ast — O then it follows that f(u) satisfies the smoothness condition s, at 0.
Thus Corollary 5 follows immediately.

It is shown on page 44 of Volume 1 of [12] that if g(x) is continuous and
A'g(u) = o(t) as t — 0 uniformly for u in [a, b] then w(h, g) = o(hInh)ash — 0
where w(h, g) = sup |g(x,) — g(x,)| for x,e[a, b], x,€[a, b] and |x, — x;| < h.
This result also is true if o is replaced by 0. The theorem can be generalized to
the case where g is continuous, bounded, and uniformly smooth on (—co, o).
This result yields Theorem 6 when k = 1. An argument similar to that used
in the proof of Theorem 5 can be used to obtain Theorem 6 when k is an odd
integer greater than 1.

5. Another example. In this section it will be shown that it is possible to
construct a characteristic function f(u) such that f(x) admits an expansion of the
form f(f) = 1 + 2 1 C,t7/j! 4+ O(t*) as t — 0 but it is not true that f(u + 1) =
Tk_o fO(u)tijt 4 o(t*) as t — O for any value of 7. Only the case k = 1 need
be considered.

Zygmund [11] proved that if f(u) is a characteristic function of a distribution
function F(x) such that f(u) is smooth at 0, then f’(0) exists if and only if
lim,_,, |, x dF(x) exists. A similar method of proof can be used to show that
if f(t) + f(—1t) — 2 = O(t) ast — 0 then lim sup,_, |(f(t) — 1)/t < o if and only
if lim sup,_, |{*, x dF(x)| < oo. It follows that a characteristic function f(u)
admits an expansion of the form f(r) =1 4 O(t) as t — 0 if and only if
f() + f(—1) —2=0(t) as t — 0 and lim sup,_, |{*, x dF(x)| < oo.

If 0 < « < 1and b is an integer greater than one the Weierstrass function
g(x) = Yz, b~ cos b"x is nowhere differentiable on the real line and has the
property that g(¢) 4+ g(—t) — 2g(0) = O(r) ast — 0. The function f(u) = g(u)/9(0)
is the characteristic function of a symmetric distribution function and thus
admits an expansion of the form f{(t) = 1 + O(f) as t — 0 but does not have the
property that f(u + t) = f(u) + f'(u)t + o(f) as t — 0 for any value of u.
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If f(u) admits an expansion of the form f(r) = 1 + Y 1 C,ti/j! + O(t*) as
t — 0 where k is odd then AL, f(0) = O(#*) as t — 0 and thus AL, f(u) = O(t%)
as 1 — 0 uniformly in u. It follows that even though f(u) does not have a kth
derivative at any point each of the four Dini derivatives of f*~V(u) exist on
nowhere dense subsets of the real line that are of the power of the continuum
in any subinterval.

6. An unanswered question. Let f(u) = @(u) + i¢(u) be a characteristic func-
tion, let D, be the set of points at which ¢(u) is differentiable, and let D, be the
set of points at which ¢(u) is differentiable. It has been shown that if f(u) has a
derivative at the origin then both D, and D, are everywhere dense sets that have
the power of the continuum. Is it possible to construct a characteristic func-
tion that has the property that the intersection of D, and D, consists only of
the origin?
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