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ASYMMETRIC CAUCHY PROCESSES: SAMPLE
FUNCTIONS AT LAST ZERO

By DiTLEV MONRAD
University of Southern California

For asymmetric Cauchy processes an integral test is given for the
sample function growth immediately after the process has been zero for
the last time.

1. Introduction. [X,, ¢ = O} be a one dimensional stable process of index «.
We shall assume that X has right continuous paths with left limits. For each
real number x, let T, = inf {t > 0: X, = x} denote the first hitting time of {x}.
Assume that 0 is regular for {0}, i.e., that P{T, = 0} = 1. Let us consider a
time interval during which the path t — X,() is not zero. (The interval covering
the point {,} for example.) We can then ask how the process behaves at the
endpoints of this interval. By time reversal (see [16]) it follows that the way
the process returns to zero is symmetric to the way it leaves zero. We need
therefore only study the latter.

In [7] Itd and McKean describe the initial sample function growth of the
Brownian motion (the case @ = 2) at the left-hand endpoints of its zero-free
intervals. The case 1 < a < 2 has been analyzed by Millar in [10] and by the
author in [12]. In this paper the remaining case: the asymmetric Cauchy
processes (@ = 1) is studied. The approach is that of [10] and [12]. But the
analysis is complicated by the fact that the asymmetric Cauchy processes are
not strictly stable. We shall study the initial behavior of the process Z, = X _,,
t 2 0, where L denotes the last time that the asymmetric Cauchy process X
is zero. (This process, unlike the strictly stable processes of index a > 1, is
transient.) A consequence of the zero-one law in Section 3, and the stationary
independent increments of X is that X leaves zero in exactly the same way at
each of the left-hand endpoints of its zero-free intervals.

In this paper it is shown that if X has both positive and negative jumps and
f is a nonnegative decreasing function, then with probability 1

lim sup, ,, Z(#)/tf(t) =0 or oo
and
lim inf,_, | Z(f)|fexp(—f(t)) = o0 or O

according as {} (¢f(f))"'dt < oo or = co. If X has no positive jumps (say), then
the process {Z(7), t > 0} is positive for an initial period of time. Furthermore

lim sup,_, Z(#)/t]log (t)| = 2/ a.s.
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772 DITLEV MONRAD

And if f is a nonnegative decreasing function, then with probability 1
lim inf,_, Z(1)/tf(f) = o or 0
according as §; f(¢)(¢ log® (f))"'dt < oo or = co.
2. The asymmetric Cauchy process. From now on let {X,, 7 = 0} be a one

dimensional Cauchy process, i.e., a stable process with stationary independent
increments and

E{exp(i0.X,)} = exp{—14(0)} ,
where ¢(0) = |0| + ihf log |f#|. The skew parameter i satisfies |a| < 2/w. If
h = 0, then the process is the usual symmetric Cauchy process for which one
point sets are polar. We will henceforth assume that 2 = 0. If A = 2/z, then
X takes only positive jumps, and if # = —2/x only negative jumps. The tran-
sition density of the Cauchy process with parameter # is

pi(x) = p(t, x, h) = (2x)7* {2, e~met(l0i+irdlosllD gf |
We have the scaling property
p(t, x, h) = t7'p(1, xt=* — hlog(¢), h) .
In the following asymptotic formulas it will simplify notation if we intro-
duce the parameter 8 = An/2. Note that —1 < 8 < 1. If £ > 0, we have the
representation
p(1, x, h) = m=! {7 exp{—ux — hulog (u)} sin {(1 + B)u} du
(see [14]). It therefore follows from a theorem on Laplace transforms that
P(L, x, ) ~ 71 4 Byt
p. (1, x, h) ~ —277%(1 4 B)x—*
as x — oo. In [14] Skorokhod shows that as x — — oo,
p(1, x, 2/7) ~ (n€[8)te~¢ ,
where § = (2/r) exp(—nx/2 — 1). It can also be shown that
p:'(L, x, 2/r) ~ (n/2)sp(1, x, 2/x)
as x —» —oo. For0 < h < 2fm,
p(L,x, By = § p(1 = B, x — 3, 0)p(8, y, 2/r) dy
=2 (1 =BT = A + (x = p))7PBs 3, 2m) dy .
It follows that
p(L, %, ) ~ 71— B)x=
p.(1, x, b)) ~ =271 — B)x~*
as x — —oo. We finally note that since

p(t, —x, —h) = p(t, x, ),



SAMPLE FUNCTIONS AT LAST ZERO 773

this also takes care of the asymptotic behavior in the case # < 0. From now
on we will let p,(x) denote the transition density. For 2 = 0 the 2-potential
kernel is u*(x) = (" e~*p,(x) dt. Let L, bealocal time at x with E° (P e~*d,L* =
u’(x). Special properties of the local times of the asymmetric Cauchy processes
are in [5] and [11].

It is well known that u(x) = u%x) is continuous. (See [13].) In fact, u(x) is
differentiable everywhere except at 0. We shall need estimates of u(0) — u(x)
and of u’(x) for small x. In the sequel, whenever fis a complex valued function
we shall let Re {f} denote the real part of f and Im {f} the imaginary part of f.

LeMMma 2.1.

u(0) — u(x) = (2x)~* (=, Re {(1 — e=*)¢(6) 7"} 6 .
Proor. Since for any x

u(x) = (7 py(x)dt = (2m)™ (7 dt (=, e~%e™"" df

we derive the identity in question simply by changing the order of integration.
Justifying this step is not trivial, however. Note that Im {¢(6)7'} =
—hlog |6|(6 + 0hk*log?|0])~! is not integrable. Therefore the integral

{Im (1 — e~%=) Im {¢(6)~*} d6
is defined as
lim,_,, {¥, sin (6x) Im {¢(8)~*} 46 .

The convergence is ensured by the fact that |Im {¢(6)*}| is decreasing for § > 3
and goes to zero for § — oo.
For0 < ¢

(odt (=, |(1 — e%)e~? | df < {2 dt {7, |0x|e=?'df < oo .
Hence by Fubini
7 (pA0) — pix)) dt = (2m) §=. (1 — e=02)(6) e~ df .
Since Re {¢(0)7*} = |6]7%(1 + A*log?|6|)~" is integrable
lim,_, (=, Re {(1 — e~*)e~+¢"} Re {¢(6)~'} db
= {2, Re (1 — e7"*) Re {¢(0)"} db
by dominated convergence. Unfortunately,
Im {(6)") = —h log [6](6 + 0 1og? |9])"
is not integrable. So we can only conclude that
lim,_, (¥, Im {(1 — e~*)e=¢"} Im {¢(6)~'} d6
= (¥, Im (1 — e7*%) Im {¢(6)"} d6

-0

for any large positive constant N. Fix N. To finish the proof we will show that

lim Sup,_y |y Im {(1 — =)=} Im {(6)} dB] = O(N ) .
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First consider
{5 Im {e~¢@} Im {¢(6)*} d6 = — {5 e~ sin (¢ Im ¢(0)) Im {H(6)~'} db .

Using the change of variable z = Im ¢)(#) = 46 log (6) and arguing as in the
proof of Corollary 2.2 below, we find that as ¢ — 0, this integral is of the same
order of magnitude as log='(¢7!). To evaluate

i3 Im (e~ e~} Im {¢/(0)} do

= —{ye’sin(xf + ¢Im ¢(0)) Im {¢(6)"} 6,
we write

F= +{E=nL+1.
By dominating the integrand it is easy to see that /,— 0 as ¢ — 0. Finally,

using the substitution z = x6 + ¢ Im {¢(8)} we see that lim sup,_, |1,| = O(N-?).
This completes the proof.

COROLLARY 2.2. A4s x — 0
log (|x=)(1(0) — u(x)) = (k)" + sgn (x)(2h)* + o(1)
x| log? (|x|)u'(x) = —sgn (x)(zh*)™* — (2B)~" + o(1).
Proor.
. _ 1 1 — cos (6x) kb sin(fx)log |6|
WO =1 = sV G s rog iy T 2 Vot artog ]

As x — 0 the first term equals (7 log (|x|*))~*(1 + o(1)) and the second term
sgn (x)(2k log (|x|7*))7*(1 + o(1)). Let us prove the second assertion. Assume
that x > 0. Let 0 < ¢ < N and write

« Sin (6x) log (6 _ fen - .

So W—‘?loé(—%de - So ' + Sﬁ:—ll + SNz_l - ]1 + 1, + 1.
As x >0+, |I]| = O(clog™*(x7")) and || = O(N~'log*(x~')). Finally, by
~ dominated convergence,
sin (6) log (0x7)
0 + On* log? (6x71)

de

lim,_,, log (x~ )1, = lim,_,, log (x7%) {¥
— hr gy iil‘a(_"l d6 .

The estimate for u’(x) is obtained in the same manner once we have convinced
ourselves that we can compute #’(x) by differentiating the integrands. We can
now get estimates for the probability of hitting the point {y} before the point
{0} in the case |A| # 2/r. The estimates for the case |#| = 2/r can be found in
Corollary 6.3.

COROLLARY 2.3. Assume that |h| < 2/x. Then there exist constants 0 < ¢ < C
such that for all small enough y + 0,

clogly|/log x| < P*{T, < T} < Clog|y|/log|x| if [x] < [y
- eflog(|x] + 2) < PHT, < T} < C/log (x| + 2) it |yl <|x.
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PrOOF. According to Getoor [4]

. _ w0y — x) — u(—x)u(y)
P ST = "oy — =)
If we write G(x) = u(0) — u(x), then

poiT, < T ~ SO+ 6(=2) = Gy = %)
v G(y) + G(—y)

as x, y — 0. For |y| < |x] < s,

G(—x) — G(y — x) = =2P|[W'(—x)| = —3G(y)
by virtue of Corollary 2.2. This implies that

0<csPT, < T} 1
for a suitable positive constant c. For y* < |x| < |y]| < &,
—2(hlog |x)* < —2jx|[W())] < G(y) — G(y — x) < G(y).

For |x| < p* < ¢,

1G(y) — G(y — x)| = 20x[[w'(y)| = (hlog |x|)~*.

The estimates for P*{T, < T,} therefore follow from Corollary 2.2. Finally, if
ly] < € < |x|, then P*{T, < T,} is proportional to #(—x). And according to
Proposition 2 of [13], u(—x) is proportional to log™ |x| as |x| — co. This com-
pletes the proof.

According to Blumenthal and Getoor [1]

PHT, < ) = (i H(t — s)p,(—x)ds,

where H is a positive, differentiable, and decreasing function on (0, co) with
Laplace transform (2x*(0))~*. It follows by a Tauberian theorem that

lim,_, H(r)[log (¢7) = 48 /=(1 + |B]) ,
where 8 = Ar/2. Furthermore, H(t) — u(0)™* as t — co.
LEMMA 2.4.
PAT, > 1} = (u(0) — u(—x)H(1)(1 + e(x, 1))

If |h| < 2/m, then e(x, t) is a bounded function that goes to zero uniformly in x and
tas x/t — 0. If |h| = 2/x, then the same is true provided we only consider x of the
opposite sign of h.

PROOF.
PHTy > 1} = §{ H(t — s)(p,(0) — p(—x)) ds .
We will first show that for small x,

15 1£/0) — p(—x) ds = O(log™ (|x|™)) -
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Since |p,(0) — p(—x)| = 2(p,(0) — p(—x))* — (p0) — p,(—x)), it is sufficient
to show that
{7 (PA(0) — p(—x))* ds = O(log™* (|x|7))
by virtue of Corollary 2.2.
17 (P0) — p(—x)tds < (¢ p,(0) ds + (% | p(0) — p(—x)| ds
=1+ 1.
From the scaling relation p,(y) = s7'p,(ys~* — hlog(s)) it follows that
I < C{stlog™?(s)ds = Clog™(|x|™") .
Furthermore, for s > |x|
17.(0) — p(—x)| = [xs7?p/(—%s™* — hlog(s))|
= O(|x[s7*(1 + [log®(s)))7) -

Hence for small x, I, = O(log=3(|x|~*)). This proves the assertion. We now
proceed with the proof of Lemma 2.4.

PAHT, > 1} = H(1)(u(0) — u(—x)) — H(1) {7 (p0) — pi(—x)) ds
+ §o (H(r — 5) — H(1))(p0) — p(—x))ds .
We have to show that the two error terms get smaller and smaller compared to
the leading term H(t)(u(0) — u(—x)) as x/t — 0. This is true for the first error

term which is O(H(#)|x|/t(1 + |log®(?)])) for |x| < t. To evaluate the second
error term we write

=+ +a=h+ L+ 1.
1L < (H(t — |x]) — H(1) & |p0) — p(—x)| ds .

Here, (H(t — |x|) — H(t))/H(t) is bounded for 2|x| < ¢t and goes to zero uni-
formly in x and ¢ as x/t — 0. This, together with the fact that

7 1p0) — p(—x)| ds = C(u(0) — u(—x)),
shows that I,/H(t)(#(0) — u(—x)) — 0 as x/t — 0.
Ll < (H(1/2) — H(1)) §i2 [P0) — pu(—x)| ds
= O((H(#/2) — H(1)/(1 + [log (|x[)])) -

(H(t/2) — H(t))/H(t) is a bounded function that goes to zero as t— oco. It
follows that 7,/H(t)(#(0) — u(—x)) — 0 as x/t — 0. Finally,

L = §is H(t — 5)ip(0) — p(—x)| ds
= O(|x[H(1)/(1 + |log*(1)])) -
This completes the proof of Lemma 2.4.

ReMARKs. This proof does not work for small positive x in the case & = 2/r,
or for small negative x in the case # = —2/x. The reason is that u(0) — u(—x)
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is of the magnitude |x| (see Lemma 6.2) whereas § |p,(0) — p,(—x)|ds is much
larger.

Since we do not have a scaling property for P*{T, < f} we shall need

LEMMA 2.5. For any ¢ > O there exists a constant C > 0 such that for t small
enough and x(ht log (£))™* > ¢ > 0 we have

P*{T, < 1} < Clog™ ().

Proor. Fors <t
P—x) = s7'p(—xs7! — hlog(s)) < s7'p(—xs7) < Csx72.

So P*{T, < 1t} < Cx~**log(t~*). This completes the proof.

From now on let Q, denote the probability distribution with density

9dy) = PLY) — H(O7 $5(pAy) — Pe-(y))H'(s) ds .
To see that this is indeed a probability density we will show that
— S H'(5)ds {2 |pl(y) — Pe-iD)l dy < o0
(Remember that H(s) is a decreasing function.)
_Sé = _85/2 - 5/2 = 11 + 1.
From the scaling property p,(y) = t~'p(yt~* — hlog(r)) and the asymptotic
formulas for p, and p,’ in the beginning of this section it follows that if 0 <
s < t/2, then
1P(¥) = P = Cs(1 4 )7

where the constant C depends on ¢. Hence

I, £ —nC\{?sH'(s)ds < nC {{* H(s)ds < oo .
Finally, since |p(y) — pe-D)| < PAY) + P-o¥):
I, < -2, H'(s)ds = 2(H(t/2) — H(t)) < oo .
LEMMA 2.6. Let f be a bounded Borel function and fix t, > 0. If |hl < 2/x,
then
im, ;o0 Ef(XO)HT, > /PHT, > 1} = Qu(f) -
The same is true if |h| = 2/, provided we only consider x of the opposite sign of h.
Proor. For every fixed s > 0,
lim,_, P*{T, > s}/P*{T, > t,} = H(s)/H(t,)
by virtue of Lemma 2.4. It follows that if g(s, f) is a continuous function on
R.? that vanishes for 0 < s < ¢, then
(2.7) lim, ., .o $6 9(s, £)P*(Ty € ds}/P*{T, > 1}
= —H(t,)7* §to g(s, t,)H'(s)ds .
Furthermore, if 0 < é < § and x is small, then
(3 sP*{T,e ds} < \3 P*{T, > s}ds < CP*{T, > t} {} log(s7")ds,
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where C does not depend on 4, ¢, or x. It follows that (2.7) continues to hold
if g(s, t) is any continuous function on R,? for which
lim sup,_,, SUPyc,c, [9(s, N)l/s < oo .

In particular, if y # 0, then (2.7) holds for

9(s, 1) = PdY) — Pe-i)) -
Therefore the density of the probability measure
PHX,edy, T, > }[P4T, > 1}
which for small x is approximately

PAY) + §5(Pdy) — Po-¥)P*{To € ds}[P{T, > 1}
converges to ¢,(y) as t — t, and x — 0. The proof is identical to Millar’s proof

of Lemma 4.5 in [10]. We will omit the details.

3. The last exit process. We shall now describe the process Z given by the
path of X from its last zero. Let
9(x) = P{Ty = oo} = 1 — u(—x)/u(0)
L =sup{s >0: X(s) = 0}.
Then P{0 < L < oo} = 1. For t = 0 put Z(t) = X(L + t), and consider the
o-fields
=Nt 0{Z(1): 0 u < 5}, t=0.

According to [8], {Z,, & ,,t > 0} is a strong Markov process with transition
functions

Hyx, f) = ES[(fo)X)Hr < To}]/9(x) -

Put H/(0, ) = E°f(Z,) and let {P,*} denote the usual family of measures associ-
ated with the transition functions {H,}. The potential operator has the form

UL f(x) = ¢ Hy(x, f)dt = § f(y)un(x, y)dy
where u,(x, y) = E*L} g(y)/9(x). It is well known that
lim, , Z(t) =0,

because a Lévy process that is not compound Poisson never leaves zero in one
big jump. (See Section 2 of [10].)

By time reversal and Corollary 3.5 of [9] it follows that if X has both positive
and negative jumps, then Z immediately assumes both positive and negative
values, jumping across zero an infinite number of times. If X has no positive

jumps (say), then Z is nonnegative for an initial period of time.
The following result identifies the entrance law of Z.

LEMMA 3.1. For each bounded continuous function f and each t > 0

E'f(Z,) = w(0O)H(1)Q f9) -
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Proor. For x =0

H(x, f) = ELOXOs < T Pos < Ty}
’ Pe{s < Ty} P*{T, = oo}

Under the restrictions of Lemma 2.6, it follows from Lemma 2.4 and Lemma
2.6 that

lims—'t,asﬁo H_(x, f) = u(O)H(t)Qt(fg) *

If |h| = 2/n, then Z, has the opposite sign of 4 for all sufficiently small s. So
by dominated convergence and the Markov property

E'f(Z,) = lim,_, E%{H,_(Z,, )} = lim,_, H,_(Z,, f)
= u(0)H(1)Q( f9)

for all asymmetric Cauchy processes.
COROLLARY 3.2. For Ae 5, we either have P'(A) = 0 or P'(A4) = 1.

Proor. The zero-one law will follow from Proposition 5.17 of Chapter I in
[2] once we have shown that {Z,, 5} is strong Markov not only for r >0
(which we know from [8]) but for + > 0. One way of proving this is to apply
Theorem 8.11 of Chapter I in [2]. Because, as we have just seen, for each fixed
s > 0 and every bounded continuous function f, the map t — H(Z,, f) is right
continuous not only for ¢ > 0 (which we know from [8]) but also at ¢ = 0.

4. Probability estimates. The estimates obtained in Lemmas 4.1 to 4.4 will
be used to determine the upper envelope of the process {Z,} at 0. The estimates
for the potential operator will be used to determine the lower envelope of the
process {|Z,|} at 0. We shall need the following asymptotic formulas for the
densities of the asymmetric Cauchy processes. (See Section 2.) If & % —2/r,
then p(y) ~ Ay~>as y > . If h = —2/x, then p(y) ~ Aexp(By — Ce™) as
y — oo. In the following estimates the letters ¢ and C will denote positive con-
stants whose values are unimportant. We may change their values from line
to line, even on the same line. We will assume that r is small.

LeMMA 4.1. For N > t we have
Svpdy)dy < §594y)dy -
If h #+ —2[n, & > 0 is fixed, and N > (1 + &,)t|h log (¢)|, then
NP < (59 y)dy < CtN~*.
Ifh = —2|r and e > ¢ > 0, then
§&/eterenog wn 9(¥) 4y < exp(—17%).

Proor. The first assertion follows from Fubini and the fact that for s < ¢

35 (PLY) = Pe=s(0) &y
= P[Nt™' — hlog(t) < X; < N(t — s)™* — hlog(t —s5)} > 0.
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To get the upper bound in the case & = —2/7 we note that

§% (P(y) — Pe-d ) dy < CsN7*.
Hence

$o —H'(s)ds {5 (py) — p.-{¥)) dy
< CN-'{4 —sH'(s)ds < CN-! { H(s)ds < CtN-*H(r).

The case h = —2/n is proved the same way.
Combining Lemma 3.1, Lemma 4.1, and the estimates for H(r) and P*{T, = oo}
we get

Lemma 4.2. If |h| < 2/n and t|log (t)| < N, then
¢ < P,{Z, > N}Nlog(2 + N7Y)/tllog (1) < C.
If h = —2|r, then for fixed ¢ > 0
PNZ, > (2/x + e)iflog (1)]} < exp(—17).

For small ¢ the distribution of X, is concentrated around htlog(¢). The same
is true for Z,. If h < 0, then the first assertion in Lemma 4.3 follows from
Lemma 4.1. By symmetry, the assertion is also true for # > 0.

LemMmA 4.3. Fork > 1
lim,_, P,k < Z(htlog (1)) < k} = 1.
Fix k > 1. If |h| < 2/r, k=* < x(ht log (1))™* < k, and 2kt|log (t)| < N, then
¢ < P.*{Z, > N}Nlog(2 + N~ Y)/tllog ()] < C.

Proor. The last assertion is proved the same way that Lemma 3.4 in [12] is
proved. By definition

PZ, > N} = {5 P*{X,edy, t < T}P{T, = oo}/P*{T, = oo} .

‘To evaluate this integral we replace P*{X,edy, t < T;} with P*{X, edy}. We
can do this because P*(X, > y, T, < t} = O(|log (#)|='P*{X, > y}) by virtue of
Lemma 2.5 and the first passage relation.

Put Z* =sup{Z,: 0 < s < 1}.

Lemma 4.4, If h < 0, then
P, {Z* > N} < CP{Z, > N}

for all N and small t. If 0 < h < 2/r, then the same conclusion holds for
N > 21jlog(1)].

Proor. If h < 0 and N < }hrlog(t), then P,°{Z, > N} is almost 1 by virtue
of Lemma 4.3. Furthermore, arguing as in the proof of Lemma 4.3, we see
that if # < 0, there exists a constant C > 0 such that

PLZ{Zt—l > x} Z C
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for all s < ¢ and all x = }htlog (). By the first passage relation, this implies
PAZF > N} < CTPYZ, > N)

for all N = 1htlog(r). Next, if 0 < A < 2/z and x = N = 2t|log (7)|, then
P,*{Z,_, < 3N} £ CP.{Z, > N}

by Lemma 4.2 and an argument similar to the proof of Lemma 4.3. Hence

PYZ* > N} < PYZ, > 3N} + PO(Z* > N, Z, < §N)
< CP{Z, > N}.
This completes the proof of Lemma 4.4.
REMARK. If & = 2/x, then P,°{Z* >0} - 0ast— 0.

We shall now turn our attention to the potential operator. The Green’s
function u,(x, y) was introduced in Section 3. In this section we shall assume
that |h| < 2/x. The case |h| = 2/x is analyzed in Section 6.

LEMMA 4.5. Assume that |h| < 2/x. If |x| < |y| < e, then
clog™ (IyI7") < uy(x,y) < Clog™(|y[™).
If |y] £ |x| < e, then
¢ log (|x|7) log™ [y| < uy(x, y) < Clog (|x|7)log™[y] .
I 1| < & < |, then
clog™ (Jx| + 2)log™ [y| < uy(x, y) < Clog™(|x| + 2) log™ )] .
PRrooOF. ug(x, y) = E*Ly PY{T, = oo}/P*{T, = oo}. Clearly, E*L} =
P*(T, < T)E'LY, .
EvLy, = Ev {7 dLy — Ev {3 dL}
= u(0) — PY{T, < co}E° {¢dLy
= u(0) — (u(=y)/u(0)u(y)
= G(y) + G(—y) — G(»)G(—y)/u(0),
where G(x) = u(0) — u(x). By Corollary 2.2,
clog™(|y|™) = E*Ly, < Clog™ (|yI™) -

The estimates for P¥{T, = oo} and P*{T, < T,} follow from Corollaries 2.2
and 2.3.
Forb >0,put B=[—b,b]and T, = inf{r > 0: |Z,| < b}.

LEMMA 4.6. Assume that |h| < 2[/z. For b < |x| < e,
¢ log |x|/log (b) < P,*{T, < co} < C log ||/log (b) -
For b < e < x|,
c/log (b7) log (|x| + 2) = P*{T < oo} = C/log (b7) log (|x| + 2) -
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Proor. Write T = T,. For all x
Uy(x, B) = E,*I{T < oo}U,(Z,, B)

by the strong Markov property. Hence

UL(x) B) < PLav{T < OO} <

Uy(x, B)
supU(z, B) —

infU,(z, B)

where the supremum and the infimum are taken over all ze B. The result now
follows from Lemma 4.5 and a couple of straightforward calculations.

LEmMMA 4.7. Assume that |h| < 2[n. Forb < t < ¢
c < PYNZ| < b for some s >.1}log(b)flog(t) < C.
Proor.
PM|Z| < b forsome s >t}
= EP,7(T, < oo}
= u(0)H(?) § PY{Ty < oo} P{T, = oolq(y)dy .

The assertion therefore follows from Lemma 4.6 and the estimates for H(r) and
PYT, = OO}

CoOROLLARY 4.8. For a suitable choice of ae (0, 1)
¢ < PM|Z| < b for some se(t,t*)}]log(b)/log(t) < C.
5. The case |h| < 2/r.

THEOREM 5.1. Let f(t), 0 < t < 1, be a nonnegative decreasing function. If
§o(2f(2)) 1 dt < oo, then lim, , Z,[tf(t) =0 a.s. If §§(tf(1))'dt = oo, then
lim sup,_, Z,/tf(t) = oo a.s.

PRrOOF. Assume that the integral is finite. Then }; f(2-")~'is finite, too. Put
A, = {Z*27") > ¢f(27)27"} .

By virtue of Lemmas 4.2 and 4.4 we have )] P(4,) < . By Borel-Cantelli,
this implies

lim sup,_, Z,*/1f(f) < 2¢  a.s.

This proves the first part of the theorem. Next, assume that the integral is
infinite. Then }; f(27")7! = co. We may assume that f(¢) > 2|log(¢)]. Put
o(t) = (htlog(tr))™and let 1 < k < K. Put

B, = (k71 < ZQ27" (27" <k, K277f(277) < Z(277)}

By the Markov property and Lemma 4.3, }; PY(B,) = co. The events B, are
not independent. But for m + n we have

PY(B,, 1 B,) < CPY(B,)P'(B,)
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by the Markov property and Lemma 4.3. By a generalization of the Borel-
Cantelli lemma for dependent events (see page 317 of [15])

P(limsup B,) > 0.
By Corollary 3.2, this implies P(lim sup B,) = 1. Thus
lim sup,_, Z,/tf(t) = K a.s.
This completes the proof.

THEOREM 5.2. Let f(t), 0 < t < 1, be a nonnegative decreasing function. If
Yo (#f(1))1dt < oo, then liminf, ,|Z,|/exp(—f(t)) = co a.s. If {5(¢f(1))dt =
oo, then liminf, |Z,|/exp(—f(t)) = 0 a.s.

PrOOF. Assume that the integral is finite. Then

2 2*/f(exp(=2")) < .
Let K be a large positive constant and put
A, = {|Z,] < Kexp(—f(exp(—2"))) for some s > exp(—2"*!)}.
By Lemma 4.7, P°(A4,) < C2"*/f(exp(—2")). Hence
liminf, o |Z,|/exp(—f(?)) = K a.s.

This proves the first part of the theorem. Next, assume that the integral is
infinite. We may assume that f(r) > 2|log (#)|. Choose a € (0, 1) as in Corollary
4.8. Then

2 a*/f(exp(—a™")) = .
Let K > 1. To simplify notation, write x, = exp(—a~") and /I, = {x: |x| <
exp(—Kf(x,)}. Put
B, ={Z,el, forsome se(x,, x,_,)}.
By Corollary 4.8,
ca™*/f(exp(—a™)) < PY(B,) < Ca™"/f(exp(—a™")).
So 3} PYB,) = oco. The events B, are not independent. Form + 1 < n,
PY(B, N B,)
< PYB,)sup,.,, P,*{Z,e 1, forsome s> x, — x, ,}
by the strong Markov property. By virtue of Lemma 4.6 and Lemma 2.4 we
have for ¢ and b small and |y| < ¢
P¥{|Z,| < b for some s > ¢}

= EpP 70Ty < oo}

= Ev(I{t < TP T, = 0o} P, ATy < o})/PHT, = oo}

< CPv{t < Ty} log (b~Y)P¥{T, = oo} g Clog (t71)/log (67%) .
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Hence
P(B, n B,) < CPY(B,)a~"/f(exp(—a™")) < CPYB,)PY(B,) -

We may therefore apply the extended Borel-Cantelli lemma. So P(limsup B,) >
0. By Corollary 3.2, this implies

liminf,_, |Z,|fexp(—f(t)) = 0 a.s.

6. The case || = 2/z. If |h| = 2/x, then {Z} has the opposite sign of & for
an initial period of time. If {X,} is a Cauchy process with parameter & = —2/x,

then {—X,} is a Cauchy process with parameter 2/z. So we need only consider
the case h = —2/x.

THEOREM 6.1. If h = —2/x, then
lim sup,_, Z,/t]log ()| = 2/z a.s.
Proor. Given ¢ > 0, choose b < 1 and put
A, = {Z*(6") > (2/m + €)br|log (67)]} -

By virtue of Lemma 4.2 and Lemma 4.4 we have 3} P%(4,) < co. This implies
that
lim sup,_, Z,/t|log (t)| < 2/m + 2¢ a.s.

provided we have chosen b close enough to 1. Next, put
B, = {2/ — ¢ < Z(n"")n/log (n)} .
By virtue of Lemma 4.3, P(B,) = ¢ > 0. Hence
lim sup,_, Z,/t|]log (t)] > 2/mr — ¢ a.s.
This completes the proof.

If h = —2/x, then Z is nonnegative for an initial period of time. We shall
now determine the lower envelope of the process at 0.

LEMMA 6.2. There exists a positive constant ¢ such that u(x) = u(0) exp(—cx)
for x > 0.

PrROOF. u(x) = u(0)P°{T, < oo}. Letx > 0and y > 0. By the strong Markov
property,
PAT,,y < 0o} = PT, < 0o}PAT,,, < oo}
= PT, < o}PT, < o},
since X has no upward jumps.
In the same manner that Corollary 2.3 was proved we get

COROLLARY 6.3. Define *
B(x, y) = log (y)/log (x) if 0<(l=x)x<y
= log(y)log (1 — y/x)/log*(x)  if 0<y< (1 —x)x.
Then there exist constants 0 < ¢ < C such that for all small positive x and y

¢B(x,y) < P*{T, < T} < CB(x, y).
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The next lemma fills the gap between Lemmas 2.4 and 2.5.
LEmMMA 6.4. For all small positive x and t
c log (t)/log (xt) < P*{T, > t} < Clog (t)/log (xt) .
LEMMA 6.5. IfO < x < tlog(t ') and t < b < 4tlog(t7),
P,*0 < Z, < b} < Cb[tlog*(1).
Proor. By weak convergence we need only consider the case 0 < x. Then

Ef It < T, 0 < X, < B}PTOT, = oo}]

PrO<2 <8 = Pe{T, = o]
—

The density of P*{t < T,, X, e dy} is
Py — x) = 5 P- ¥)P*{T, € ds}
= (Py — ) — pOWNWPHT < 1} 4 ply — X)P*{To > 1}
+ 5 (P(y) — pe-d(¥)P*{Ty € ds} .
Integrating each of the 3 terms we get
Pt < Ty, 0 < X, < b} < Cbh/tlog(t)log(x).
Hence
P70 < Z, < b} < Cb/tlog(t)log(b).
This proves the lemma.
COROLLARY 6.6. Under the assumptions of Lemma 6.5,
¢ < tlog (1) 318+ y1P (Z(1) e dy} < C.
For b > 0, put B =[0, 4] and T, = inf{r > 0: Z, e B}. As usual, T, denotes
the first hitting time of {5}.
LEMMA 6.7. If0 < b < x < ¢, then
P,AT, < 0o} < P,*{T, < o0} < CP,HT, < oo} .
PRrROOF. Obviously, P,*{T, < oo} = P*{T, < T}P*{T, = oo}/P*{T, = }. So
P, *{T, < oo} is of the magnitude B(x, b) log (x)/log (b). Arguing as in the proof

of Lemma 4.6, we see that b log (b)/x log (x) is an upper bound for P, *{T < oo}.
This is not the best possible upper bound. But it shows that

P.*{inf Z, < b} = o(P*{inf Z, < b})
as b | 0. It follows that P,*{Z(T;) > 6%} = c¢P,*{Ty < oo}. By the strong
Markov property and Corollary 6.3
PLZ{TI; < °°} = PLz{Z(TB) > b, T, < 00}
= E {Z(T;) > b, P2 78T, < oo}}
= P MZ(Ty) > b} = P T < o0} .

This completes the proof.
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LEMMA 6.8. If0 < x < tlog(t)andt < b < tlog (t7), thenc < P,*{Z,e B
for some s > f}tlog? ()b < C.

PRrROOF.
P {Tp o0, < oo} = E;*P Ty < oo}
S PAHO K Z, < 2B} + §yy PL¥{Ty < oo}P*{Z, e dy}.

By Lemmas 6.5, 6.7, and Corollary 6.6, these two terms are both less than
cb/tlog? (). On the other hand,

E P 20Ty < oo} = §, PL¥{Ty < o}P,*{Z,cdy}.

And by Lemma 6.7 and Corollary 6.6, this integral is greater than cb/t log? ().

We can now determine the lower envelope of the process {Z,} at 0. The proof
is identical to the proof of Theorem 5.1 of [10] or Theorem 5.2 of the previous
section.

THEOREM 6.9. Assumethath = —2/x. If fis a nonnegative decreasing function,
then with probability 1

lim inf, , Z(t)/tf(t) = oo or O
according as \; f(1)(t log? (£))~' dt < o0 or = .
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