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CONTINUOUS VERSIONS OF REGULAR CONDITIONAL
DISTRIBUTIONS!

BY SANDY ZABELL
University of Chicago

Let X and Y be random variables and assume X has a density fy(x). An
inversion theorem for the conditional expectation E(Y|X = x) is derived which
generalizes and simplifies that of Yeh. As an immediate corollary an almost-
sure version of Bartlett’s formula for the conditional characteristic function of
Y given X = x is obtained. This result is applied to show the existence under
regularity conditions of a version of the regular conditional distribution P {dy|X
= x} which is well defined for those values of x such that fy(x) # 0.

1. Introduction. Let X and Y be real-valued random variables with a continu-
ous joint density f(x,y). If fy(x) = [f(x,y)dy is the marginal density of X and
x € R a fixed number such that fy(x) > 0, then f(y|x) = f(x,y)/fy(x) may be
interpreted as the conditional density of Y given X = x. Let ¢(s, £) = E {e ¥ *+)}
be the joint characteristic function of ¥ and X. If ¢(s, ¢) is integrable in ¢ for each s
then it is easy to show (as noted by Bartlett (1938)) that the characteristic function
of the probability distribution having f(y|x) as its density is given by the formula

f o(s, t)e™™dt

(1.1) brix=n(s) = m'

‘The function ¢yx—,, is called the conditional characteristic function of Y given
X = x. Bartlett’s formula for the conditional characteristic function has been used
by Steck (1957) to derive a number of limit theorems for conditional distributions
and by Blanc-Lapierre and Tortrat (1955) in their treatment of statistical
mechanics.

If the probability measure p, of X is assumed to have a density f,(x) but X and
Y do not have a joint density, then f(y|x) cannot be defined as above. Regular
conditional distributions P{dy|X = x} for Y given X exist (see, e.g., Breiman
(1968), Section 4.3), but are only defined py-almost surely, and in general one
cannot meaningfully refer to the probability measure P {dy|X = x} for a specific
value of x. In this note we show that if ¢(s, ¢) is uniformly dominated by an
integrable function of ¢, i.e., for some () € L', |¢(s, £)] < y(?) for all s and ¢, then
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160 SANDY ZABELL

there exists a version of P{dy|X = x} which is well defined for all x such that
Jx(x) # 0. The family of probability measures indexed by x which corresponds to
this version varies continuously in x (in the sense of weak convergence). In some
sense it is this continuity property which is responsible for the existence of a
“canonical” version of P{dy|X = x}.

Our proof essentially reverses the process by which (1.1) is derived: (a) given any
version of P{dy|X = x}, equation (1.1) holds for this version almost surely in x
given s fixed (Theorem 3.1); (b) this implies that the right-hand side of (1.1) is a
characteristic function in s for almost all x (Lemma 3.1); and thus (c) the family of
probability distributions corresponding to these characteristic functions is a version
of P{dy|X = x} (Theorem 3.2).

In Section 2 of this note we derive an inversion theorem for conditional
expectations which generalizes a result of Yeh (1974) and is of interest in its own
right (see, e.g., Zabell (1978) for a number of applications to limit theorems for
conditional expectations). In Section 3, this inversion theorem is used to deduce the
needed generalization of Bartlett’s theorem.

Throughout Sections 2 and 3 we assume X takes values in a locally compact
abelian group. This is the natural setting in which to work given the Fourier-
analytic techniques employed and permits a unified treatment of the cases when X
has a density, X is lattice-valued, and X is a random vector with both continuous
and lattice components. These three examples are discussed at the end of Section 2.

2. The inversion theorem for conditional expectations. We need the following
definitions and facts from abstract harmonic analysis; the reader should consult
Rudin (1962) for further details.

Let § be a locally compact abelian group and p a Haar measure for § (i.e., the
unique—up to multiplicative constant—translation-invariant measure on the Borel
sets of §). A continuous character of § is a continuous map y : G — C such that
|v(g)] = 1and y(g + h) = y(g)y(h) for all g, h in §. We will write y(g) as g, v).
The set T of continuous characters forms an abelian group, the dual group of §.
The dual group may be topologized so that it becomes a locally compact topologi-
cal group; it thus also has a Haar measure fi.

If f is a function in L'(8, p), the Fourier transform of f is the function fonT
given by

fv) = 16 f(8)<g v>du(g);

if f is in L(T,, i), the Fourier inversion theorem states tha}t

f(g) = CIrf(x)< — & vdi(y)  p—ae
Here C is a constant independent of f which can be taken to be unity by absorbing
it into fi.
Similarly, if » is a probability measure on §, the Fourier-Stieltjes transform or
characteristic function of » is the function on T given by

2(v) = [6<8 v>a(g).
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If » € L'(T, fi) then » has a bounded continuous density with respect to the Haar
measure i, namely

j—;(x> = e PO = x Yd(Y).

Now let (2, @, P) be a probability space, X : @ » § a measurable map, » =
P o X ! the measure induced on § by X, and Y : @ - R a random variable such
that E(|Y|) < 0.

THEOREM 2.1. If v < p and E(Y{X, *)) is in L\(T, i), then
-1
@1) E(Y|X=x)= (j—;(x>) [ E(YCX, ) = x y)di(y) — as.

PrROOF. Let
dv , ..
fx) = E(Y|X = x)gﬁ(x),
fis an integrable function with Fourier transform
J(v) = [)<x, ypdu(x)
= 1 B = 0 5@ [ x )

= [{E(Y|X = x){x, v) }dv(x)
= E(E(Y|X){X, 1))
= E(E(Y<X, v)|X))

= E(Y<X, 7).
By hypothesis f(y) is integrable and thus, by the Fourier inversion theorem,
d -
22) E(Y|X = x)d—;(x) = [ EYX, DX = %, di(y)  p—ae [0

If (dv/dp)(x) is continuous, then Theorem 2.1 states that E(Y|X = x) actually
has a continuous (and hence “canonical”) version on the open set

av
S = {x : a'_,u(x) > O].

Since E({X, *>) = #(), such continuity always holds when the characteristic func-
tion E({X, +))is in L. This gives us )

COROLLARY 2.1. If E({X, *)) and E(Y{X, *)) are in L', then E(Y|X = x) has
a continuous version on S = {x : (dv/dp)(x) > 0} given by the formula
— Jr E( Y{X, )X — x, Y>dﬁ(7)

St ECX, v))X = x, v)di(y)

ExaMPLES. (a) § = R and dp = Lebesgue measure dx. In this case the con-

tinuous characters are the functions {y,(x) = e™ :¢ € R}. Thus, I =R, dji =

E(Y|X = x)
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(2m)~'dt, and equation (2.1) becomes
(2.3) E(Y|X =x) = —21—7TfX(x)—lf|R E(YeX)e~ixidy

where fy(x) is the density function of X.

(b) § = a lattice in R with maximal span d (= {nd : n € Z}) and p(nd) = 1.
Here the continuous characters are all functions of the form {y,(nd) = e™®,
—7n/d <@ <m/d},sothat T =S, dji = (27)~"! d6 and equation (2.1) takes the
form

E(Y|X = nd) = %px(nd)“fs. E(Ye'X0)e=indbgy

where py(nd) is the probability mass function of X.

(© 8 = R" X L™, where L™ is a lattice subgroup of R™. Because the dual group
(resp. Haar measure) of a product is the product of the dual groups (resp. Haar
measures) of each factor in the product, I' = R” X 7™, where T™ is an m-dimen-
sional torus and equation (2.1) becomes

1
27
where x = (x,* -+, X,,,,) € R" X L™, fy(x) is the Radon-Nikodym derivative of
v with respect to the Haar measure on R* X L™ and dz = dt, ... dt,df, ... db,,.

n+m
EOX =) = (55 ) 50 faprm E(Fe0)e=

ReMARK. Yeh (1974) proved Theorem 2.1 for absolutely continuous random
vectors X (i.e., the case § = R" and dp = Lebesgue measure). Yeh’s proof is
somewhat lengthy and uses both the machinery of regular conditional distributions
and the Lévy-Haviland inversion theorem for finite measures. The inversion
theorem in its simplest form dates back to Wicksell (1933), who derived (2.3) for X
and Y having a continuous joint density and later gave numerous applications to
regression in Wicksell (1934).

3. The conditional characteristic function. We now assume that there exists a
regular conditional distribution ﬁ(aﬁle = x) for Y given X, where X and Y are
random variables both taking values in §. (? is used to indicate that we are
working with some specific version.)

Let J(y, 8) = E(Y, v){X, 8)) denote the joint characteristic function of ¥ and
X and let

Orix=x(r) = [y, y)ﬁ(aﬂX = x)

be the conditional characteristic function of Y given X, relative to the version p.
Because .

E(g(X, Y)|X = x) = [g(x, ) P(dy|X = x) »—as.
(see, e.g., Breiman (1968), Proposition 4.36), it follows that for each y € T’
¢(Y|X=x)(Y) = E(< Y, Y>|X = X) v — as.
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and hence we immediately conclude from Theorem 2.1 the following generalization
of Bartlett’s theorem.

THEOREM 3.1. Lety €T. If v < p and J(y, *) is in L'(T, fi), then
d -1 .
(3.1) deyix=x(Y) = (Z%(x)) JrJ(v, 8)X — x, 85dji(5) v —as.

As in Section 2, let S = {x : (dv/dp)(x) > 0}. If e is the identity element of T,
J(e, ) = E({X, -»); thus when J(e, -) € L'(T, i), » has a continuous density
dv/dp and S is an open set with »(S) = 1. This will be the case for the remainder
of the paper, the integrability of J(e, -) being trivially contained in the hypotheses
of Lemma 3.1 and Theorem 3.2 below.

We now show that if § is separable (i.e., has a countable base for its topology),
there exists a version of P(dy|X = x) such that (3.1) holds for all x € S, given a
regularity condition on J. Separability ensures that (a) § is a standard Borel space
(so that regular conditional distributions exist) and (b) that T" is separable (and
hence has a countable dense subset, a property of I' required in the proof of
Lemma 3.1). A number of facts about weak convergence and characteristic
functions on separable locally compact abelian groups will be needed. These are
well known for the real line; for the general case the reader may consult Grenander
(1963) or Parthasarathy (1967) for details and proofs.

Let C,(y) denote the right-hand side of (3.1) when x € S and set C,(*) = 1, say,
for x & S. We first prove that C,() is a characteristic function for all x € S.

LemMma 3.1. If § is separable and there exists a function K(8) € L\(T, i) such
" that |J(y, 8)| < K(8) for all y and 8, then C(Y) is a characteristic function in y for
every x € S. Moreover, there exists a set A of v-measure zero such that (3.1) holds
forall x & A and y €T.

Proor. The assumption that J(y, 8) is uniformly dominated by K(8) implies
that C,(y) is continuous in y for each x € S. Because a continuous limit of
characteristic functions is itself a characteristic function, it suffices to prove the
lemma for a dense subset of S. Let A be a countable dense subset of I" and for each
Y € A, let 4, be the set of »-measure zero off of which (3.1) holds for x € S. Then
A = U, ¢, 4, is itself of measure zero, and for x & 4, (3.1) holds for all y € A. But
both ¢(yx-(Y) and C,(y) are continuous in v, hence ¢y)x—(v) = C.(y) for all
x & A and y € T; thus C,(y) is a characteristic function off 4. Because »(4) = 0,

it follows that S — A4 is dense in S. ]
Lemma 3.1 allows us to prove: -

THeOREM 3.2. If § is separable and J(y, 8) is uniformly dominated by a function
K(8) € L'(T, i), then there exists a version of P(dy|X = x) such that (3.1) holds for
all x € S and v € T; furthermore, this version varies continuously in x (in the sense
of weak convergence).
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ProoOF. By definition, ﬁ(dy|X = x) is a family of probability measures P, (-),
indexed by x € §. Let 4 be as in Lemma 3.1 and modify ﬁ(ajle = x) on 4,
replacing each P (), x € A, by the probability measure with characteristic func-
tion C,(-). Denote the resulting family of measures by Q.(-). Since »(4) =
0, Q,(B) will clearly be a version of P(dy|X = x) if measurable in x for every Borel
set B.

Since the C,(y) are continuous in vy for each x € S and continuous in x for each
v € T, the probability measures Q,(-) vary continuously on S (in the sense of weak
convergence). Hence, for every open set B, Q (B) is lower semi-continuous in x,
hence measurable in x. Since the class ¥ of open sets forms a 7-system (i.e., is
closed under finite intersections), and the class £ of sets B for which Q (B) is
measurable in x forms a A-system (i.e., is closed under complementation and
monotone increasing limits), it follows from Dynkin’s 7-A theorem that (%) C L.
0

ExampLE. (a) Let Z, and Z, be independent random variables such that
¢z(f) = E(e"®?) is integrable and take X = Z, + Z,, Y = Z,. Then X has a
continuous density fy = f; . and

IE(ei(sY+ tX))' = |E(ei(‘+’)Z')E(ei’ZZ)|
< loz, (),
hence the regular conditional distribution of Z, given Z, + Z, has a continuous,
well-defined version on the set S = {z : f; . (z) > 0}. (Note that in this example
Z, could even have a Cantor-type distribution.)

(b) Sometimes we may wish to consider random variables X and Y which take

values in two different groups; clearly the proofs of this section require only trivial

modification to apply to this more general setting. To illustrate this case, let
Z=(Z,---,Z,)be arandom vector in R* inducing the uniform distribution on

S% and take X = Z,, Y = (Z,, Z,, Z,). Because E(e®Z) = 0(|j¢]|"), £ € R* (see,
e.g., Jessen and Wintner (1935), page 59), it follows that

E(ei(s-Y+ tX)) - O(Itl—%)
uniformly in s, where s € R%, ¢ € R Hence the regular conditional distribution of
(Z,, Z,, Z,) given Z, is well defined and continuous on the set S = {z € R' : |z|
<1}
Acknowledgment. 1 am indebted to Professor Michael Wichura for his valuable
comments on an earlier draft of this paper.
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