A STRONG LAW OF LARGE NUMBERS FOR SUBSEQUENCES OF RANDOM ELEMENTS IN SEPARABLE BANACH SPACES

By A. Bozorgnia and M. Bhaskara Rao

Meshed University and Sheffield University

In 1967, Komlós proved that if $\{\xi_n\}$ is a sequence of real random variables for which $\sup_{n\geq 1} E|\xi_n| < \infty$, then there exists a subsequence $\{\eta_n\}$ of $\{\xi_n\}$ and an integrable random variable η such that for an arbitrary subsequence $\{\check{\eta}_n\}$ of $\{\eta_n\}$,

$$\lim_{n\to\infty}\frac{1}{n}(\check{\eta}_1+\check{\eta}_2+\cdots+\check{\eta}_n)=\eta\quad\text{a.s.}$$

In this paper, we attempt to extend this result to separable Banach space valued random elements. We impose a condition stronger than uniform integrability.

A. Introduction. In [1], page 218, Komlós proved that if ξ_n , $n \ge 1$ is a sequence of real random variables for which $\sup_{n \ge 1} E|\xi_n| < \infty$ then there exists a subsequence η_n , $n \ge 1$ of the sequence ξ_n , $n \ge 1$ and an integrable random variable η such that for an arbitrary subsequence $\tilde{\eta}_n$, $n \ge 1$ of the sequence η_n , $n \ge 1$

$$\lim_{n\to\infty}\frac{1}{n}(\tilde{\eta}_1+\tilde{\eta}_2+\cdots+\tilde{\eta}_n)=\eta\quad\text{a.s.}$$

Komlós' theorem is not generalizable as it stands to separable Banach spaces. Indeed, consider constant random vectors $V_n = e_n \in l_1$, where e_n , $n \ge 1$ is the canonical basis of l_1 . Then evidently $\sup_{n \ge 1} E ||V_n|| < \infty$. (V_n 's are even uniformly bounded.) For any subsequence V_n' of V_n , the sequence $n^{-1}(V_1' + V_2' + \cdots + V_n')$ does not satisfy Cauchy condition. Clearly, a similar example can be constructed in any space containing uniformly $l_1^{(n)}$, i.e., in any non-Beck convex space.

The following theorem is an attempt to generalize Komlós' theorem to general separable Banach spaces. The L_1 -boundedness is replaced by the condition (C) below which is stronger than uniform integrability of V_n , $n \ge 1$.

- **B. Theorem.** Let V_n , $n \ge 1$ be a sequence of random elements defined on a probability space (Ω, \mathcal{Q}, P) and taking values in a separable Banach space B. Suppose the following condition is satisfied.
 - (C) For any sequence A_k , $k \ge 1$ of Borel subsets of B with $A_k \downarrow \emptyset$ as $k \to \infty$

$$\lim_{k\to\infty}\sup_{n\geqslant 1}\int_{V_n^{-1}(A_k)}||V_n||dP=0.$$

Then there exists a subsequence V_n^* , $n \ge 1$ of V_n , $n \ge 1$ and a random element $V_0 \in L_1(B)$ satisfying

$$\lim_{s\to\infty} s^{-1} \sum_{i=1}^{s} V_i^* = V_0$$
 a.s.,

Received May 25, 1977; revised February 1, 1978.

AMS 1970 subject classifications. Primary 60F15; Secondary 60B05.

Key words and phrases. Random elements in separable Banach spaces, strong law of large numbers.

www.jstor.org

and the same holds for any further subsequence of V_n^* , $n \ge 1$. Moreover, the a.s. convergence above may be replaced by the convergence in $L^1(B)$.

- C. Proof. The proof is carried out in the following steps.
- (a) In any separable Banach space B there exists a sequence x_n , $n \ge 1$ in B and a sequence $f_n : B \to \{x_k, k \ge 1\}$, $n \ge 1$ of functions satisfying

$$||f_n(x) - x|| \le \frac{1}{n}$$
 for every x in B .

Define

$$f_n^m(x) = f_n(x)$$
 if $f_n(x) \in \{x_1, x_2, \dots, x_m\}$
= 0 otherwise

for $n, m = 1, 2, 3, \cdots$. Clearly, for each $n, m = 1, 2, 3, \cdots$, the sequence of random variables

$$\alpha_{n,k}^m = ||f_n(V_k) - f_n^m(V_k)||, k = 1, 2, 3, \cdots,$$

is bounded in $L_1(\mathbb{R})$ so that by Komlós' theorem and Cantor diagonal selection procedure there exists a subsequence V_{k_p} , $p \ge 1$ of V_n , $n \ge 1$ such that α_{n,k_p}^m , $p \ge 1$ converges in Cesàro mean to an α_n^m a.s. together with every further subsequence and for every $m, n \ge 1$.

(b) Because of (C) and because for each $n = 1, 2, \dots$, the sets $\{f_n \neq f_n^m\} \setminus \emptyset$ as $m \to \infty$

$$\int_{\Omega} ||f_{n}(V_{k}) - f_{n}^{m}(V_{k})|| dP = \int_{V_{k}^{-1}\{f_{n} \neq f_{n}^{m}\}} ||f_{n}(V_{k}) - f_{n}^{m}(V_{k})|| dP
+ \int_{V_{k}^{-1}\{f_{n} = f_{n}^{m}\}} ||f_{n}(V_{k}) - f_{n}^{m}(V_{k})|| dP
\leq \frac{1}{n} + \int_{V_{k}^{-1}\{f_{n} \neq f_{n}^{m}\}} ||V_{k}|| dP
\leq \frac{2}{n}$$

for m greater than or equal to a certain m_n . By Fatou's lemma

$$E\alpha_n^m \le \lim \inf_{s \to \infty} E^{\frac{1}{s}} \sum_{r=1}^s ||f_n(V_{k_r}) - f_n^m(V_{k_r})||$$

so that $E\alpha_n^{m_n} \leq (2/n)$ for every $n \geq 1$. This implies that $\lim_{n\to\infty} E\alpha_n^{m_n} = 0$, and we can choose a subsequence n_r , $r \geq 1$ of $\{1, 2, 3, \cdots\}$ such that $\alpha_{n_r}^{m_{n_r}}$, $r \geq 1$ converges to 0 a.s.

- (c) For any fixed n and m, f_n^m takes values in a finite dimensional space, and because Komlós' theorem trivially holds in finite dimensional spaces, by Cantor diagonalization procedure, we can find a subsequence V_n^* , $n \ge 1$ of V_k , $r \ge 1$ and a β_n^m such that almost surely $f_n^m(V_k^*)$, $k \ge 1$ converges in Cesàro mean to β_n^m .
- (d) We conclude by proving that Cesàro means of V_n^* , $n \ge 1$ are Cauchy a.s. Take an $\omega \in \Omega$ from the set of probability 1 for which conclusions of (a), (b) and (c) simultaneously hold.

Let $\varepsilon > 0$. Find $n_r \ge 1$ such that $n_r \ge (4/\varepsilon)$ and $|\alpha_{n_r}^{m_{n_r}}(\omega)| < (\varepsilon/4)$. Then by (a) and (c) we can find $s_0 \ge 1$ such that for $s \ge s_0$

$$|s^{-1}\sum_{p=1}^{s} ||f_{n_r}(V_p^*(\omega)) - f_{n_r}^{m_{n_r}}(V_p^*(\omega))|| - \alpha_{n_r}^{m_{n_r}}(\omega)| < \frac{\varepsilon}{4}$$

and

$$||s^{-1}\sum_{p=1}^{s}f_{n_{r}}^{m_{n_{r}}}(V_{p}^{*}(\omega))-\beta_{n_{r}}^{m_{n_{r}}}(\omega)||<\frac{\varepsilon}{4}$$

Thus, for $s \ge s_0$

$$||s^{-1}(V_{1}^{*}(\omega) + V_{2}^{*}(\omega) + \cdots + V_{s}^{*}(\omega)) - \beta_{n_{r}}^{m_{n_{r}}}(\omega)||$$

$$\leq ||s^{-1}\sum_{p=1}^{s}V_{p}^{*}(\omega) - s^{-1}\sum_{p=1}^{s}f_{n_{r}}(V_{p}^{*}(\omega))||$$

$$+ ||s^{-1}\sum_{p=1}^{s}\left[f_{n_{r}}(V_{p}^{*}(\omega)) - f_{n_{r}}^{m_{n_{r}}}(V_{p}^{*}(\omega))\right]|| - \alpha_{n_{r}}^{m_{n_{r}}}(\omega)$$

$$+ \alpha_{n_{r}}^{m_{n_{r}}}(\omega) + ||s^{-1}\sum_{p=1}^{s}f_{n_{r}}^{m_{n_{r}}}(V_{p}^{*}(\omega)) - \beta_{n_{r}}^{m_{n_{r}}}(\omega)|| \leq 4.\frac{1}{4} = \varepsilon.$$

This shows that the Cesáro means of V_n^* , $n \ge 1$ satisfy a.s. Cauchy condition. The same proof shows that the same is true for any further subsequence of V_n^* , $n \ge 1$ and the L_1 -convergence follows from the uniform integrability implied by (C).

Acknowledgments. The authors are very much grateful to Professor F. Papangelou for many improvements in the first draft of this paper. We proved, originally, the theorem under the assumption that V_n 's are identically distributed. He suggested condition (C) and pointed out that the same proof essentially goes through. The authors are also grateful to the referee for his suggestions.

REFERENCES

 Komlós, J. (1967). A generalization of the problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 217-229.

DEPARTMENT OF MATHEMATICS, PROBABILITY AND STATISTICS MESHED UNIVERSITY MESHED, IRAN DEPARTMENT OF PROBABILITY AND STATISTICS THE UNIVERSITY SHEFFIELD, S3 7RH ENGLAND