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POINTWISE ERGODICITY OF THE BASIC CONTACT PROCESS

By DAvVID GRIFFEATH
University of Wisconsin

We prove a complete pointwise ergodic theorem for Harris’ basic one-di-
mensional two-sided nearest neighbor contact process, provided that the corre-
sponding one-sided contact process is nonergodic.

In this note we prove a complete pointwise ergodic theorem for Harris’ one-di-
mensional two-sided nearest neighbor contact processes [3] with sufficiently large
parameter value. Let Z = the integers, = = {all subsets of Z}, Z, = {finite subsets
of Z}, E, = E — E,. Attention will focus on two Z-valued Markov processes:

(1) the basic contact process (§) with “flip rates” at x € Z when the state is ¢

given by
at x with rate
1-0 1
01 A{x—-1Lx+1}n¥§,
(14| is the cardinality of £) and
(i1) the one-sided contact process (§,) by
at x with rate

1-0 1
01 Af{x-1}n{].
Here A is a positive parameter.

Letting (§") denote the basic contact process started at n € =, Harris [5] has
shown that all of these systems can be constructed on a joint probability space so
that
(1) gth"lz = gtm U £"’l2 M M € E’ t>0.

Note that & is a trap for (§"), and define 7" = min{¢: §" = &} (= oo if no such ¢
exists). It is easy to see that

) ™ =00 as. Vn € E,..

The Markov family {(£"); n € =} has a critical value A* such that: for A < A¥,
(3a) P € )=>0d5 as t—» VnE€Z,

(= denotes weak convergence; J is the delta measure at &)

(3b) P(r"< o0)=1 Vn€Ey;

while, for A > A¥, '

(42) P((* € )=v as t—o, with »(Zy) =0,

(4b) P(t"=000)>0 Vn€EE,~- {J}.
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At A = A* either properties (3a, b) or (4a, b) hold, but it is not known which.
Situation (3a, b) is called the ergodic case, (4a, b) the nonergodic case.

The remarks of the last paragraph apply equally well to {({); 7 € E}. In
particular, there is a critical value for the one-sided process, call it AF. It is known
that 1 < A* < 2 < A} < 4. For details, see [3], [4], [5] and [7].

In [1] it was proved that
(5) P € )= P(1" < 0)8y+ P("=o0)r 1 EE,
provided that the one-sided process ({,) with the same parameter A is nonergodic. A
key step in the proof was to consider

Lr = min{y S gtx}

R =max{y :y € §},
(we write x for {x} when convenient) and show that
(6) P(LF—> ~o00 and R*—>+o00 as t—oo |7 =00) =
Liggett [8] then made the useful observation that, because of the nearest neighbor
dependence, whenever x € 11 € E,
7 §={yeg LF<y<R’} as on {t°>1t}.
Equation (7) provides a coupling proof of (5). More importantly, it may be used to
show that in the nonergodic case, for all parameter values, d and » are the only
extreme invariant measures for (§). An analogous result holds for ({,). See [8].

One of the main results in [5] is a pointwise ergodic theorem for nonergodic

contact processes. Namely, Harris shows that if A is very large, then for any
f € @ = continuous functions on =,

(8) SIS ds > iy as.

provided that n is “dense.” This means there is an R > 0 such that n intersects
every Z-interval of length R. Actually, Harris’ method applies to more general
finite range contact processes (including one-sided ones) on any integer lattice Z¢,
d > 1. It also applies to the “extralineal” processes, satisfying generalizations of
(1), which are discussed in [2].

For the basic contact process a stronger result holds. In [5], Harris mentions an
elegant way of proving complete pointwise ergodicity for certain spin systems
which admit a “successful coupling.” The same strategy, aided by (6) and (7), leads
to the following

THEOREM. Let (&) be a basic contact process with \ large enough that the
corresponding one-sided process (§,) is nonergodic. Then for any f € C,n € E,

9) %f{,f(.fs") ds—>f(d) as t—w as. on {1"< o0}

— [fdv as t— oo as. on {1"=oc0}.
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The first assertion is trivial. The second extends (8) to arbitrary n € = (by (2)),
and also applies to 7 € Z,. In addition, with the aid of [7], the parameter range is
improved considerably.

Proor. Enlarge the probability space supporting {(£")} to support an indepen-
dent pr-distributed random subset y of Z, and define (§) by

£ =¢ on {y=n} nEE.

By (2) and (5), P(§" € )= v ast— o0 Vn € E . Since »(E) = 1, it follows that
the stationary process (£”) is Birkhoff ergodic, and so

(10) %f{,f(g,”) - [fdv as t—> Vf € L'(»).

Fixn € E, ny € Ey — {J}, and f € ¥,, = {functions f(§) € C which depend only
on £ N ne}. From the easily proven fact that »({§ : n N § = J}) = 0, we see that
P(t* = o for some x € 1) = 1. Using (6) and (7), we get

lim,_, P(£? N mo=£(F N Vs > t|7" = 0) = L.
Hence, for any 1, € =,

lim,_, PE" N =&" Ny Vs > 7" = 0) = L.
Therefore,

lim,_ PE"Nmg=& NnyVs >t = 0) = 1.

Thus, writing 6 =min{z: " N ny =& Ny Vs >}, 0 < o0 as.on {77 = 0}.
We conclude that on {7" = 0},

IO ds = ENPET) ds + 6 SE) ds

—alim,_,w%f{,f(g;’) ds= [fdv as t— oo,

o
o jﬂo'

the last equality by (10). Since 7, is arbitrary, (9) is proved for f € ¥ = U,,
The extension from % to C is routine. This completes the proof.

It seems most plausible that (8) holds whenever {(§")} is nonergodic, but our
proof breaks down in the same way that the proof of (5) does if A < Af. That (8)
will not hold for (§,) is clear from remarks in [1]. Whether or not complete
pointwise ergodicity should hold for symmetric nearest neighbor contact processes
in several dimensions is not at all clear.

Finally, we remark that the same method applies to various other “additive”
nearest neighbor processes on Z. For example, if (8, is the biased voter model of
Schwartz [9], with flip rates

at x with rate
(11) 1-0 |{x—1,x+1}n,Bc|
0->1 A{x-1Lx+1}npf A>1),
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then for any f € C, n € E,
% J6f(B)ds—>f(B) as t—ooas. on {B =D eventually}
—-f(Z) as t—>owas. on {Bnever J}.

The case of (11) where A = 1 is the simple one-dimensional Holley-Liggett voter
model [6]. Starting from n € E_, the pointwise ergodic behavior of this process is
unstable. From some irregular initial n the Cesaro averages converge to f(J) a.s.,
from others to f(Z) a.s., and from still others a.s. fail to converge. These assertions
can be proved by combining (i) the observation of [10] that the “borders” of (B,
are annihilating random walks, and (ii) the example at the end of Section 1 in [0].
The behavior starting from dense initial states remains open.
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