## ON LINEARITY OF s-PREDICTORS

## By Dieter Landers and Lothar Rogge

University of Cologne and University of Konstanz

Let  $(\Omega, \mathcal{C}, P)$  be a probability space and  $\mathfrak{B} \subset \mathcal{C}$  be a  $\sigma$ -field. Let s with  $1 < s < \infty$  be fixed. If  $f \in L_s(\Omega, \mathcal{C}, P)$  and  $\mathfrak{B} \subset \mathcal{C}$  is a  $\sigma$ -field, the unique element  $g_f \in L_s(\Omega, \mathfrak{B}, P)$  such that  $||f - g_f||_s = \inf\{||f - h||_s : h \in L_s(\Omega, \mathfrak{B}, P)\}$  is called the s-predictor of f relative to the s-norm and the  $\sigma$ -field  $\mathfrak{B}$ . Such  $g_f$  exists and is uniquely determined. The mapping  $P_s^{\mathfrak{B}}: f \to g_f$  is called a prediction operator. The prediction operator is not necessarily a linear operator. The problem is to characterize the  $\sigma$ -fields  $\mathfrak{B}$  in terms of  $P | \mathcal{C}$  for which  $P_s^{\mathfrak{B}}$  is a linear operator. We show that, for a fixed  $\sigma$ -field  $\mathfrak{B}$ , the prediction operators  $P_s^{\mathfrak{B}}$  are linear for all s or for no  $s \neq 2$ . We give a necessary and sufficient condition for the linearity of s-predictors in terms of conditional expectations only. If moreover regular conditional probabilities given  $\mathfrak{B}$  exist, the s-predictors are linear if and only if the regular conditional probabilities of  $P | \mathcal{C}$  given  $\mathfrak{B}$  consist only of measures concentrated on at most two points. Furthermore we obtain a simple criterion that s-prediction coincides with the usual conditional expectation (i.e., with 2-prediction): the conditional expectations of indicator functions may only assume the values  $0, \frac{1}{2}$  and 1.

1. Introduction and notations. If  $P|\mathcal{C}$  is a probability measure (p-measure) let  $L_s(\Omega, \mathcal{C}, P)$  be the Banach space of equivalence classes of functions which are integrable in the sth mean  $(s \ge 1)$ . The spaces  $L_s(\Omega, \mathcal{C}, P)$ ,  $1 < s < \infty$ , are uniformly convex. Hence if  $S \subset L_s(\Omega, \mathcal{C}, P)$ ,  $1 < s < \infty$ , is a closed linear subspace and  $f \in L_s(\Omega, \mathcal{C}, P)$  there exists a uniquely determined element  $g_f \in S$  such that

$$||f - g_f||_s = \inf\{||f - h||_s : h \in S\}.$$

The mapping  $P_s^S: L_s(\Omega, \mathcal{Q}, P) \to S$  defined by  $P_s^S: f \to g_f$  is a prediction operator. The problem treated by both Andô [1] and Rao [4] was to find conditions on S in order that  $P_s^S$  be linear for any subspace S. We consider here the particular subspace  $S = L_s(\Omega, \mathcal{B}, P)$  and treat the linearity of  $P_s^S$  which we denote by  $P_s^{\mathcal{B}}$ . We believe that our conditions for this special case are much easier to verify than the conditions given in Andô [1] or Rao [4]. Moreover our methods are completely different from those of Andô [1] and Rao [4]. The prediction operator has the following properties as can be seen from [2], page 114:

- (i)  $P_s^{\mathfrak{B}}(\alpha f) = \alpha P_s^{\mathfrak{B}} f$ , for all  $\alpha \in \mathbb{R}$ ;
- (ii)  $f \rightarrow P_s^{\mathfrak{B}} f$  is continuous in the sth norm;
- (iii)  $P_s^{\mathfrak{B}}f$  can be characterized as that  $\mathfrak{B}$ -measurable function  $g \in L_s$  which

Received August 22, 1977; revised July 7, 1978.

AMS 1970 subject classifications. Primary 60G25; secondary 46E30, 47H15.

Key words and phrases. Conditional, expectation, s-prediction, uniformly convex spaces, regular conditional probabilities.

fulfills

$$P_2^{\mathfrak{G}}\Big((f-g)\frac{s-1}{s}\Big)=0,$$

where  $y^s := |y|^s$  sign y is defined for each  $y \in \mathbb{R}$  and s > 0.

The 2-prediction coincides with the conditional expectation which is usually denoted by  $E(f|\mathfrak{B})$  or  $E^{\mathfrak{B}}f$ . Hence in our notation  $E^{\mathfrak{B}}f$  is denoted by  $P_2^{\mathfrak{B}}f$ . If A is a set and  $1_A$  the corresponding indicator function, we write  $P_s^{\mathfrak{B}}A$  instead of  $P_s^{\mathfrak{B}}1_A$ . For s=2,  $P_2^{\mathfrak{B}}A$  is the usual conditional probability of A given  $\mathfrak{B}$ . In general we do not distinguish between a function and the corresponding equivalence class.

DEFINITION. The *p*-measure  $P|\mathcal{Q}$  is  $\mathfrak{B}$ -conditional atomar if for all  $A_1, A_2 \in \mathcal{Q}$  with  $A_1 \subset A_2$  the implication  $P_2^{\mathfrak{B}}(A_2)(\omega) < 1 \Rightarrow [P_2^{\mathfrak{B}}(A_1)(\omega) = 0 \text{ or } P_2^{\mathfrak{B}}(A_1)(\omega) = P_2^{\mathfrak{B}}(A_2)(\omega)]$  holds P-a.e., i.e., iff

$$P\{\omega: P_2^{\mathfrak{B}}(A_2)(\omega) < 1, 0 < P_2^{\mathfrak{B}}(A_1)(\omega) < P_2^{\mathfrak{B}}(A_2)(\omega)\} = 0$$

Whether a  $\sigma$ -field  $\mathfrak{B} \subset \mathfrak{A}$  is conditional atomar or not depends on  $\mathfrak{B}$  and  $P|\mathfrak{A}$ . In Criterion 5 we give a necessary and sufficient condition for  $\mathfrak{B}$ -conditional atomarity in terms of regular conditional probabilities.

For the sake of completeness we cite at first a lemma of [3] which we need for the proof of our results.

Let  $\Delta_n := \{(x_1, \dots, x_n) \in [0, 1]^n : \sum_{i=1}^n x_i = 1\}$ . The proof of the following lemma uses the property (iii).

LEMMA 1. Let  $P \mid \mathbb{C}$  be a p-measure,  $\mathfrak{B} \subset \mathbb{C}$  a  $\sigma$ -field and  $1 < s < \infty$ . Then for each simple function  $f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ , where  $A_i \in \mathbb{C}$ ,  $i = 1, \dots, n$  are disjoint,  $\sum_{i=1}^{n} A_i = \Omega$  and  $\alpha_1 \leq \dots \leq \alpha_n$  there exists a continuous function

$$H_{\alpha_1,\ldots,\alpha_n}^{(s)}:\Delta_n\to\mathbb{R}$$

such that

$$P_s^{\mathfrak{B}} f = H_{a_1, \dots, a_r}^{(s)} \left( P_2^{\mathfrak{B}} A_1, \dots, P_2^{\mathfrak{B}} A_r \right).$$

 $H_{\alpha_1, \dots, \alpha_n}^{(s)}(x_1, \dots, x_n)$  is the unique solution y of  $\sum_{i=1}^n (\alpha_i - y) \frac{s-1}{i} x_i = 0$ . Put r := 1/(s-1) and  $\varphi_s(x) := x^r/(x^r + (1-x)^r)$ . Then  $\varphi_s(x) = H_{0,1}^{(s)}(1-x, x)$ , whence  $P_s^{\mathfrak{B}}A = \varphi_s(P_2^{\mathfrak{B}}A)$ .

**2.** The results. We prove now that  $P \mid \mathcal{C}$  is conditional atomar iff the prediction operator  $P_s^{\mathfrak{B}}$  is linear for some s with  $1 < s < \infty, s \neq 2$ .

THEOREM 2. Let  $P \mid \mathbb{C}$  be a p-measure,  $\mathfrak{B} \subset \mathbb{C}$  a sub- $\sigma$ -field and  $1 < s < \infty$ ,  $s \neq 2$ . Then  $P_s^{\mathfrak{B}} \mid L_s(\Omega, \mathbb{C}, P)$  is linear if and only if  $P \mid \mathbb{C}$  is  $\mathbb{B}$ -conditional atomar.

PROOF. (i) Let  $P \mid \mathcal{C}$  be  $\mathfrak{B}$  conditional atomar. Since  $P_s^{\mathfrak{B}}$ :  $L_s(\Omega, \mathcal{C}, P) \to L_s(\Omega, \mathfrak{B}, P)$  is a homogeneous operator, see (i), we have only to prove that  $P_s^{\mathfrak{B}}$  is additive. Let  $f = \sum_{i=1}^n \alpha_i 1_{A_i}$  with disjoint  $A_i \in \mathcal{C}$ ,  $i = 1, \dots, n$ ,  $\sum_{i=1}^n A_i = \Omega$  and  $n \geq 2$  be given. We show at first that

$$P_s^{\mathfrak{B}} f = \sum_{i=1}^n \alpha_i P_s^{\mathfrak{B}} A_{i}.$$

To prove this, we may assume w.l.o.g. that  $\alpha_1 \leq \alpha_2 \cdot \cdot \cdot \leq \alpha_n$ . Then according to our Lemma 1:

$$P_s^{\mathfrak{B}} f = H_{\alpha_1, \ldots, \alpha_n}^{(s)} (P_2^{\mathfrak{B}} A_1, \cdots, P_2^{\mathfrak{B}} A_n)$$

and

$$P_s^{\mathfrak{B}}(A_i) = \varphi_s(P_2^{\mathfrak{B}}A_i)$$
 for  $i = 1, \dots, n$ .

Hence (1) is equivalent to

$$(2) H_{\alpha_1,\ldots,\alpha_n}^{(s)}(P_2^{\mathfrak{B}}A_1,\cdots,P_2^{\mathfrak{B}}A_n) = \sum_{i=1}^n \alpha_i \varphi_s(P_2^{\mathfrak{B}}A_i)$$

where we assume that  $P_2^{\mathfrak{B}}A_i$  are chosen in such a way that

(3) 
$$\sum_{i=1}^{n} P_{2}^{\Re} A_{i}(\omega) = 1 \quad \text{everywhere.}$$

At first we prove that for P-a.a.  $\omega \in \Omega$  there exist  $i_{\omega}, j_{\omega} \in \{1, \dots, n\}, i_{\omega} \neq j_{\omega}$  such that

(4) 
$$P_{2}^{\mathfrak{B}}A_{i_{\omega}}(\omega) + P_{2}^{\mathfrak{B}}A_{j_{\omega}}(\omega) = 1.$$

Assume that this is false; then P(C) > 0 where

$$C:=\bigcap_{i\neq i}\{\omega\in\Omega:P_2^{\mathfrak{B}}A_i(\omega)+P_2^{\mathfrak{B}}A_i(\omega)<1\}.$$

According to (3) for each  $\omega \in \Omega$  there exists  $l \in \{1, \dots, n\}$  such that  $P_2^{\mathfrak{B}}A_l(\omega) > 0$ . If  $\omega \in C$ , then  $P_2^{\mathfrak{B}}A_l(\omega) < 1$ , hence according to (3) there exists  $k \neq l, k \in \{1, \dots, n\}$  such that

$$P_2^{\mathfrak{B}}A_{k}(\omega)>0$$

whence

$$C \subset \bigcup_{l \neq k} \{ \omega \in \Omega : P_2^{\mathfrak{B}} A_l(\omega) > 0, P_2^{\mathfrak{B}} A_k(\omega) > 0 \}.$$

Therefore there exists a pair l, k with  $l \neq k$  such that P(D) > 0 where

$$D := C \cap \{\omega \in \Omega : P_2^{\mathfrak{B}} A_l(\omega) > 0, P_2^{\mathfrak{B}} A_k(\omega) > 0\}.$$

Put  $E_1:=A_l, E_2:=A_l+A_k$ , then  $E_1, E_2\in \mathcal{C}$  and  $E_1\subset E_2$ . According to the definition of D we have for almost all  $\omega\in D$ 

$$P_2^{\mathfrak{B}} E_2(\omega) = P_2^{\mathfrak{B}} A_l(\omega) + P_2^{\mathfrak{B}} A_k(\omega) < 1$$

and

$$0 < P_2^{\mathfrak{B}} A_l(\omega) = P_2^{\mathfrak{B}} E_1(\omega) < P_2^{\mathfrak{B}} A_l(\omega) + P_2^{\mathfrak{B}} A_k(\omega) = P_2^{\mathfrak{B}} E_2(\omega).$$

Hence  $P\{\omega: P_2^{\mathfrak{B}}E_2(\omega) < 1, 0 < P_2^{\mathfrak{B}}E_1(\omega) < P_2^{\mathfrak{B}}E_2(\omega)\} > 0$  contradicting the conditional atomarity of  $\mathfrak{B}$  with respect to  $P|\mathfrak{C}$ . Therefore (4) is proven.

To prove (2) it suffices according to (4) to show that for all  $i, j \in \{1, \dots, n\}$ ,  $i \neq j$  and all  $x \in [0, 1]$ 

$$H_{\alpha_1,\dots,\alpha_n}^{(s)}(x_1,\dots,x_n)=\alpha_i\varphi_s(x)+\alpha_j\varphi_s(1-x)$$

if  $x_i = x$ ,  $x_i = 1 - x$  and  $x_y = 0$  elsewhere.

Let w.l.o.g. i = 1, j = 2. Using that  $H_{\alpha_1, \dots, \alpha_n}^{(s)}(x_1, \dots, x_n)$  is the unique solution y of  $\sum_{i=1}^{n} (\alpha_i - y)^{\frac{s-1}{2}} x_i = 0$ , one has to show

$$(\alpha_1 - [\alpha_1 \varphi_s(x_1) + \alpha_2 \varphi_s(1 - x_1)]) \frac{s - 1}{s} x_1$$

$$+ (\alpha_2 - [\alpha_1 \varphi_s(x_1) + \alpha_2 \varphi_s(1 - x_1)]) \frac{s - 1}{s} (1 - x_1) = 0.$$

This follows by a little computation from the definition of  $\varphi_s$ . Hence we have proven (1).

From (1) we obtain that  $P_s^{\mathfrak{B}}$  is additive on the system of  $\mathfrak{C}$ -measurable simple functions:

If f, g are two  $\mathfrak{C}$ -measurable simple functions, then there exists a representation of f and g such that

$$f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$
$$g = \sum_{i=1}^{n} \beta_i 1_{A_i}$$

where  $A_i \in \mathcal{C}$ ,  $i = 1, \dots, n$  are disjoint and  $\sum_{i=1}^{n} A_i = \Omega$ . From (1) we obtain that

$$P_{\mathfrak{s}}^{\mathfrak{B}}(f+g)=P_{\mathfrak{s}}^{\mathfrak{B}}f+P_{\mathfrak{s}}^{\mathfrak{B}}g,$$

i.e.,  $P_s^{\mathfrak{B}}$  is additive on the system of all  $\mathscr{Q}$ -measurable simple functions. The additivity of  $P_s^{\mathfrak{B}}$  on  $L_s(\Omega, \mathscr{Q}, P)$  follows now from continuity condition (ii) of the introduction.

(ii) In the converse direction we shall even show, if  $P_s^{\mathfrak{B}}|\mathfrak{A}$  is additive for some  $s \neq 2$ , i.e.,  $P_s^{\mathfrak{B}}(A_1 + A_2) = P_s^{\mathfrak{B}}A_1 + P_s^{\mathfrak{B}}A_2$  for disjoint  $A_1, A_2 \in \mathfrak{A}$ , then  $P|\mathfrak{A}$  is  $\mathfrak{B}$ -conditional atomar.

Let  $A_1, A_2 \in \mathcal{C}$  with  $A_1 \subset A_2$  be given. Put  $A_3 = A_2 - A_1$ . If  $P_s^{\mathfrak{B}} | \mathcal{C}$  is additive we have

$$P_s^{\mathfrak{B}} A_2 = P_s^{\mathfrak{B}} A_1 + P_s^{\mathfrak{B}} A_3 \qquad P - \text{a.e.}$$

and hence according to our Lemma 1

(5) 
$$\varphi_s(P_2^{\mathfrak{B}}A_1 + P_2^{\mathfrak{B}}A_3) = \varphi_s(P_2^{\mathfrak{B}}A_2) = \varphi_s(P_2^{\mathfrak{B}}A_1) + \varphi_s(P_2^{\mathfrak{B}}A_3)$$
  $P - \text{a.e.}$  We have to show

$$P\left\{\omega: \left(P_2^{\,\%}A_1 + P_2^{\,\%}A_3\right)(\omega) < 1, P_2^{\,\%}A_1(\omega) > 0, P_2^{\,\%}A_3(\omega) > 0\right\} = 0.$$

Hence  $P|\mathcal{C}$  is according to (5)  $\mathfrak{B}$  -conditional atomar if we prove

(6) 
$$x_1, x_2 \ge 0, x_1 + x_2 < 1, \varphi_s(x_1 + x_2) = \varphi_s(x_1) + \varphi_s(x_2)$$
 implies  $x_1 = 0$  or  $x_2 = 0$ .

We consider at first the case s < 2 and prove

(7) 
$$\varphi_s(x_1 + x_2) > \varphi_s(x_1) + \varphi_s(x_2)$$
 for  $0 < x_1, x_2$  and  $x_1 + x_2 < 1$ . This implies (6).

To prove (7), differentiate  $\varphi_s$ . We have

$$\varphi_s'(x) = \frac{rx^{r-1}(1-x)^{r-1}}{\left[x^r + (1-x)^r\right]^2} \quad \text{for} \quad x \in (0,1)$$

Since s < 2 and hence r > 1 the numerator function is monotone increasing and the denominator function is monotone decreasing over  $(0, \frac{1}{2}]$ . Hence

(8) 
$$\varphi'_s(x), x \in (0, \frac{1}{2}]$$
 is monotone increasing for  $s < 2$ .

As  $\varphi_s(x) + \varphi_s(1-x) = 1$  we have  $\varphi_s'(x) = \varphi_s'(1-x)$ . Using these facts it is easy to prove (7).

We consider now the case s > 2 and hence r < 1. Then  $\varphi_s'(x), x \in (0, \frac{1}{2}]$  is monotone decreasing. This yields similarly

(9) 
$$\varphi_s(x_1 + x_2) < \varphi_s(x_1) + \varphi_s(x_2)$$
 for  $0 < x_1, x_2$  and  $x_1 + x_2 < 1$ , and hence (6) holds also in this case.

As can be seen from the proof (ii) of Theorem 2  $P_s^{\mathfrak{B}}$  is superadditive for 1 < s < 2 and subadditive for  $2 < s < \infty$ .

Though the proof of Theorem 2 shows that additivity of  $P_s^{\mathfrak{B}}$  extends from the indicator functions, for instance, to the class  $\phi$  of all test functions—i.e., all  $\mathcal{Q}$ measurable functions with values in [0, 1]—this does not hold true in general for subadditivity or superadditivity instead of additivity. One can easily show, using conditions (i) and  $P_s^{\mathfrak{B}}1 = 1$ , that  $P_s^{\mathfrak{B}}$  is linear on  $\phi$ —and hence by the proof of Theorem 2 on  $L_s(\Omega, \mathcal{C}, P)$  for all s > 1—if  $P_{s_0}^{\mathfrak{B}}$  is subadditive on all test functions or superadditive on all test functions (or on all nonnegative simple functions) for some  $s_0$  with  $1 < s_0 < \infty$  and  $s_0 \neq 2$ .

From Theorem 2 and the remarks thereafter one easily obtains

COROLLARY 3. Let  $P \mid \mathfrak{A}$  be a p-measure and  $\mathfrak{B} \subset \mathfrak{A}$  a  $\sigma$ -field. Then the following conditions are equivalent:

- (i)  $P_s^{\mathfrak{B}} | L_s(\Omega, \mathfrak{C}, P)$  is linear for all s > 1,
- (ii)  $P_s^{\mathfrak{B}}|\mathfrak{C}$  is additive for some  $s>1(s\neq 2)$ ,
- (iii)  $P_s^{(g)}|\phi$  is subadditive for some  $s > 1(s \neq 2)$ ,
- (iv)  $P_s^{\mathfrak{B}}|\phi$  is superadditive for some  $s>1(s\neq 2)$ ,
- (v)  $P \mid \mathfrak{A}$  is  $\mathfrak{B}$ -conditional atomar.

As a further application we obtain necessary and sufficient conditions under which the s-predictors are the 2-predictors, i.e., the usual conditional expectations.

COROLLARY 4. Let  $P \mid \mathfrak{C}$  be a p-measure and  $\mathfrak{B} \subset \mathfrak{C}$  be a  $\sigma$ -field. Then the following conditions are equivalent:

- (i)  $P_2^{\mathfrak{B}}A \in \{0, \frac{1}{2}, 1\}$  P-a.e. for each  $A \in \mathfrak{C}$ , (ii)  $P_s^{\mathfrak{B}}|\mathfrak{C} = P_2^{\mathfrak{B}}|\mathfrak{C}$  for some  $s > 1(s \neq 2)$ , (iii)  $P_s^{\mathfrak{B}} = P_2^{\mathfrak{B}}$  on  $L_s \cap L_2$  for all s > 1.

PROOF. We have  $P_s^{\mathfrak{B}}A = \varphi_s(P_2^{\mathfrak{B}}A)$  according to our Lemma 1. If  $s \neq 2$ , then  $\varphi_s(x) = x \text{ iff } x \in \{0, \frac{1}{2}, 1\}.$ 

If (i) is fulfilled, then  $P_2^{\mathfrak{B}}A = \varphi_s(P_2^{\mathfrak{B}}A) = P_s^{\mathfrak{B}}A$  P-a.e. Hence  $P_s^{\mathfrak{B}}|\mathfrak{C} = P_2^{\mathfrak{B}}|\mathfrak{C}$ , whence  $P_s^{\mathfrak{B}}|\mathfrak{C}$  is additive. According to Corollary 3,  $P_s^{\mathfrak{B}}|L_s(\Omega, \mathfrak{C}, P)$  is therefore linear and coincides with  $P_2^{\mathfrak{B}}$  on  $\mathfrak{C}$  and hence on all  $\mathfrak{C}$ -measurable simple functions. Using a continuity argument (see (ii) of the introduction), one obtains  $P_s^{\mathfrak{B}} = P_2^{\mathfrak{B}}$  on  $L_s \cap L_2$ . Therefore (i) implies (iii).

Since (iii)  $\Rightarrow$  (ii) trivially, it remains to show (ii)  $\Rightarrow$  (i). Assume to the contrary that there exists  $A \in \mathcal{A}$  with

$$P(\lbrace \omega: P_2^{\mathfrak{B}}A(\omega) \notin \lbrace 0, \frac{1}{2}, 1 \rbrace \rbrace) > 0.$$

Since  $P_s^{\mathfrak{B}}A = P_2^{\mathfrak{B}}A$  we obtain according to our Lemma 1

$$\varphi_s(P_2^{\mathfrak{B}}A(\omega)) = P_2^{\mathfrak{B}}A(\omega)$$

on a set of positive measure with  $P_2^{\mathfrak{B}}A(\omega) \notin \{0, \frac{1}{2}, 1\}$ . Therefore there would exist an  $x \neq 0, \frac{1}{2}, 1$  with  $\varphi_s(x) = x$ .

Now we will give a criterion for \mathbb{G}-conditional atomarity in terms of regular conditional probabilities which can be easily proven.

CRITERION 5. Let P be a p-measure on a countably generated  $\sigma$ -field  $\mathfrak C$  on  $\Omega$  and  $\mathfrak B \subset \mathfrak C$  be a sub- $\sigma$ -field. Assume that there exists a regular conditional probability  $R:\mathfrak C \times \Omega \to [0,1]$  for  $P|\mathfrak C$ , given  $\mathfrak B$ . Then  $P|\mathfrak C$  is  $\mathfrak B$ -conditional atomar iff for P-almost all  $\omega \in \Omega$  the p-measure  $A \to R(A, \omega)$ ,  $A \in \mathfrak C$ , is concentrated on at most two atoms of  $\mathfrak C$ .

Acknowledgment. We thank the referee for improving the presentation.

## REFERENCES

- [1] ANDÔ, T. (1966). Contractive projections in  $L_p$ -spaces. Pacific J. Math. 17 391-405.
- [2] Andô, T. and Amemya, I. (1965). Almost everywhere convergence of prediction sequence in  $L_p(1 . Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 113-120.$
- [3] LANDERS, D. and ROGGE, L. (1978). Connection between the different L<sub>p</sub>-predictions with applications. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 45 169-173.
- [4] RAO, M. M. (1974). Inference in stochastic processes IV: Predictors and projections. *Indian J. Statist.* Ser. A 36 63-120.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT KÖLN WEYERTAL 86-90 D-5000 KÖLN 41 WEST GERMANY FACHBEREICH STATISTIK UNIVERSITÄT KONSTANZ D-775 KONSTANZ POSTFACH 5560 WEST GERMANY