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ON LINEARITY OF s-PREDICTORS

By DIETER LANDERS AND LOTHAR ROGGE

University of Cologne and University of Konstanz

Let (2, @, P) be a probability space and ® C @ be a o-field. Let s with
1 <s < oo be fixed. If f€ L(2, & P) and B C & is a o-field, the unique
element g € L(Q, B, P) such that |f - g, = inf{||f — 4|, : h €
Ly(Q, B, P)} is called the s-predictor of f relative to the s-norm and the o-field
. Such g; exists and is uniquely determined. The mapping P2:.f> g is called
a prediction operator. The prediction operator is not necessarily a linear
operator. The problem is to characterize the o-fields % in terms of P|@ for
which P2 is a linear operator. We show that, for a fixed o-field ®, the
prediction operators P,? are linear for all s or for no s = 2. We give a necessary
and sufficient condition for the linearity of s-predictors in terms of conditional
expectations only. If moreover regular conditional probabilities given % exist,
the s-predictors are linear if and only if the regular conditional probabilities of
P|@ given B consist only of measures concentrated on at most two points.
Furthermore we obtain a simple criterion that s-prediction coincides with the
usual conditional expectation (i.e., with 2-prediction): the conditional expecta-
tions of indicator functions may only assume the values 0, 1 and 1.

1. Introduction and notations. If P|@ is a probability measure (p-measure) let
L(2, @, P) be the Banach space of equivalence classes of functions which are
integrable in the sth mean (s > 1). The spaces L(Q, @, P), 1 <s < oo, are
uniformly convex. Hence if S C L(2, &, P), 1 <s < 0, is a closed linear sub-
space and f € L(Q, @, P) there exists a uniquely determined element g; € S such
that

If = gll, = inf{||f = All, : h € S}.

The mapping P’ : L(Q, @, P)— S defined by P’ : f— g, is a prediction operator.
The problem treated by both And6 [1] and Rao [4] was to find conditions on S in
order that P® be linear for any subspace S. We consider here the particular
subspace S = L(Q, B, P) and treat the linearity of PS5 which we denote by Pfﬂ.
We believe that our conditions for this special case are much easier to verify than
the conditions given in Andd [1] or Rao [4]. Moreover our methods are completely
different from those of Andé [1] and Rao [4]. The prediction operator has the
following properties as can be seen from [2], page 114:
(i) P3af) = aP?, for all a € R;
(ii) f— P2 is continuous in the sth norm;
(i) P,®f can be characterized as that % -measurable function g € L, which
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fulfills

P?((f—g)s_ 1)=0,

where y2: = |y|’ sign y is defined for each y € R and s > 0.

The 2-prediction coincides with the conditional expectation which is usually
denoted by E(f|% ) or E ®f. Hence in our notation E #f is denoted by P IfAisa
set and 1, the corresponding indicator function, we write P,®4 instead of P21,.
Fors = 2, PfBA is the usual conditional probability of 4 given % . In general we do
not distinguish between a function and the corresponding equivalence class.

DEFINITION.  The p-measure P|@ is % -conditional atomar if for all 4,, 4, € @
with 4, C A4, the implication P3(4,)(w) < 1=[P2(A4,)(w) =0 or P3A)(w) =
P2(A4,)(w)] holds P-a.e., i.e., iff

P{w: P2(4,)(w) < 1,0 < PR(4,)(w) < PR(4)(w)} =0

Whether a o-field 9 C @ is conditional atomar or not depends on % and P|@. In
Criterion 5 we give a necessary and sufficient condition for % -conditional atomar-
ity in terms of regular conditional probabilities.

For the sake of completeness we cite at first a lemma of [3] which we need for
the proof of our results.

Let A, : = {(x;,- -+, x,) €[0,1]" : Z7_,x; = 1}. The proof of the following
lemma uses the property (iii).

LEMMA 1. Let P|@ be a p-measure, B C @ a o-field and 1 < s < 0. Then for
each simple function f = 37_,a;1,, where A, € @, i = 1, - - , n are disjoint, "_ A,
=Qand a; < - - - < a, there exists a continuous function

Hg‘l?...,a”:A,,—)R

such that
PR =H®. .. (PR, ,P24,).
-1
H(ff’),“,a"(x,,- **, X,) is the unique solution y of Z7_,(a; — y) g x; = 0. Put

r:=1/(s—1) and g(x): = x"/(x" + (1 — x)). Then @(x) = HE(1 = x, x),
whence P24 = @ (P2A).

2. The results. We prove now that P|@ is conditional atomar iff the predict-
ion operator P2 is linear for some s with 1 <s < oo, s % 2.

THEOREM 2. Let P|@ be a p-measure, B C @ a sub-o-field and 1 < s < oo,
s # 2. Then P2|L(Q, @, P) is linear if and only if P|@ is B -conditional atomar.

Proor. (i) Let P|@ be B conditional atomar. Since P®: L(Q, @, P)—
LR, %, P) is a homogeneous operator, see (i), we have only to prove that Pfﬂ is
additive. Let f = 37_ 1, with disjoint 4, € @,i=1,---,n,2"_,4, = Q and
n 2 2 be given. We show at first that

(1) Ps%f = 2:“-lail:)s%"“i’
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To prove this, we may assume w.l.o.g. that a; < a, - - - < a,. Then according to
our Lemma 1:
P =H®. . . (P24, ---,PR4,)
and
P3(4) = ¢(P24,) fori=1,---,n

Hence (1) is equivalent to

2 H«ﬁf) .. ,a,,(PZQAl’ Tt PzggAn) = 27-1“.-%(1’2%14.')
where we assume that P24, are chosen in such a way that
3) St P24 (w) =1 everywhere.
At first we prove that for P-a.a. w € @ there exist i, j, € {1, - -, n}, i, #j,
such that
4 P4, (0) + P4, (0) = 1.

Assume that this is false; then P(C) > 0 where
C:=N{w€Q: PP4(0) + PP4(0) < 1).

According to (3) for each w €  there exists / € {1, - - , n} such that Pz“’BA,(w)
> 0. If w € C, then PZ%A,(w) < 1, hence according to (3) there exists k =/, k €
{1,- - -, n} such that

P24, (w) >0
whence
C C Upufw €Q: P4 (w) > 0, P4, (w) > 0).
Therefore there exists a pair /, k with / % k such that P(D) > 0 where
D:=Cn {0€Q:Pl4(w) >0, P24, (w) > 0).

Put E,: = A4, E,: = 4, + A, then E, E, € @ and E, C E,. According to the
definition of D we have for almost all w € D

PzéBEz(w) = PzgﬂAl(w) + PZ%Ak(w) <1
and
0 < P*4,(w) = PE\(w) < P4/ (w) + P S A (w) = PREy(w).

Hence P {w : P*E,(w) < 1,0 < PE (w) < P2E,(w)} > 0 contradicting the condi-
tional atomarity of % with respect to P|@. Therefore (4) is proven.

To prove (2) it suffices according to (4) to show that for all i, j € {1,---,n},
i¥jand all x €0, 1]
HY. . o(xp -0, x) = a(x) + ayp(1 — x)

if x; = x,x; =1 — x and x, = 0 elsewhere.
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Let w.lo.g. i = 1,j = 2. Using that H;”. .., (x;, - - -, x,) is the unique solution
s —
y of 27_(a; — »)

x; = 0, one has to show

s—1

(0‘1 - [0‘1%("1) + a1 - xl)]) X1

s—1

+ (ay = [ @,(x;) + ayp,(1 = x,)]) (I=x)=0.
This follows by a little computation from the definition of ¢,. Hence we have
proven (1).

From (1) we obtain that P® is additive on the system of @-measurable simple
functions:

If f, g are two @-measurable simple functions, then there exists a representation
of f and g such that

J=20]y,
8= 27=1.3i1,4,
where 4, € @,i = 1,- - -, n are disjoint and Z}_,4; = . From (1) we obtain that

PA(f+8) =P+ Pf%,

ie, P2 is additive on the system of all @-measurable simple functions. The
additivity of P® on L(Q, @, P) follows now from continuity condition (i) of the
introduction.

(ii) In the converse direction we shall even show, if P®|@ is additive for some
s#2, ie, P34, + A)) = P24, + P24, for disjoint 4,, 4, € @, then P|® is
% -conditional atomar.

Let A, A, € @ with 4, C A, be given. Put 4, = A, — 4,. If P,%@ is additive
we have

P24, =P34, + P?4, P —ae.

and hence according to our Lemma 1
(5) @ P, + PP4;) = 9 (P4;) = o(P4) + ¢(P4;) P —ae.
We have to show

P{w: (P4, + PRA)(w) < 1, P’4,(w) > 0, P’45(w) > 0} = 0.
Hence P|@ is according to (5) 9B -conditional atomar if we prove
(6) xp, X 2 0,1 + x, < L g (x + x3) = (1) + (x2)
implies x, = 0 or x, = 0.

We consider at first the case s < 2 and prove
(7) (ps(xl + x2) > q)s(xl) + "ps(x2)
for 0 < x,, x, and x, + x, < 1. This implies (6).
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To prove (7), differentiate ¢,. We have
, rx” (1 - x)"!
Pi(x) = —
[x’ + (1 — x) ]
Since s < 2 and hence r > 1 the numerator function is monotone increasing and
the denominator function is monotone decreasing over (0, %]. Hence

for x € (0,1)

(8) @)(x), x €(0, %] is monotone increasing for s < 2.

As g,(x) + ¢,(1 — x) = 1 we have ¢;(x) = @;(1 — x). Using these facts it is easy to
prove (7).

We consider now the case s > 2 and hence r < 1. Then ¢/(x), x € (0, 1] is
monotone decreasing. This yields similarly
9) @(x; + x) < @(x)) + py(x) for 0 <x, x, and x, +x,<1,
and hence (6) holds also in this case.

As can be seen from the proof (ii) of Theorem 2 P® is superadditive for
1 < s < 2 and subadditive for 2 < s < oo.

Though the proof of Theorem 2 shows that additivity of P% extends from the
indicator functions, for instance, to the class ¢ of all test functions—i.e., all &
measurable functions with values in [0, 1]—this does not hold true in general for
subadditivity or superadditivity instead of additivity. One can easily show, using
conditions (i) and P,®1 = 1, that P® is linear on ¢—and hence by the proof of
Theorem 2 on L (2, @, P) for all s > 1—if Pff is subadditive on all test functions
or superadditive on all test functions (or on all nonnegative simple functions) for
some s, with 1 < sy < o0 and s, 7 2.

From Theorem 2 and the remarks thereafter one easily obtains

COROLLARY 3. Let P|@ be a p-measure and B C @ a o-field. Then the following
conditions are equivalent:
(i) P2 LR, @, P) is linear for all s > 1,
(i) P2|@ is additive for some s > 1(s # 2),
(iii) P3|¢ is subadditive for some s > 1(s # 2),
(iv) P2|¢ is superadditive for some s > 1(s # 2),
(v) P|@ is B -conditional atomar.

As a further application we obtain necessary and sufficient conditions under
which the s-predictors are the 2-predictors, i.e., the usual conditional expectations.

COROLLARY 4. Let P|@ be a p-measure and B C @ be a o-field. Then the
following conditions are equivalent:
(i) P24 €{0,1,1} P-ae. foreach 4 € @,
(i) P3@ = PR1@  for some s > 1(s # 2),
(i) PP=PRon L nL, foralls>1

ProoF. We have P24 = ¢ (P;*4) according to our Lemma 1. If 5 # 2, then
o, (x) = x iff x € {0, 3, 1).



892 DIETER LANDERS AND LOTHAR ROGGE

If (i) is fulfilled, then P24 = ¢ (P24) = P24 P-ae. Hence P2|@ = PJ|@,
whence P®|@ is additive. According to Corollary 3, P®|L(Q, @, P) is therefore
linear and coincides with P,2> on @ and hence on all @-measurable simple
functions. Using a continuity argument (see (if) of the introduction), one obtains
P® = P2®on L, n L, Therefore (i) implies (iii).

Since (iii) = (ii) trivially, it remains to show (ii) = (i). Assume to the contrary
that there exists 4 € @ with

P({w: PP4(w) & {0, 3, 1}}) > 0.
Since P24 = P4 we obtain according to our Lemma 1

9(P*A(w)) = PA(w)

on a set of positive measure with P,*4(w) & {0, 1, 1}. Therefore there would exist

an x # 0, 3, 1 with ¢,(x) = x.
Now we will give a criterion for % -conditional atomarity in terms of regular
conditional probabilities which can be easily proven.

CRITERION 5. Let P be a p-measure on a countably generated o-field @ on Q
and % c @ be a sub-o-field. Assume that there exists a regular conditional
probability R : @ x @ - [0, 1] for P|@, given B. Then P|€ is B -conditional
atomar iff for P-almost all w € Q@ the p-measure 4 - R(4, w), A € @, is con-
centrated on at most two atoms of &.
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